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Abstract

Mitochondria exist as dynamic interconnected networks that are maintained through a balance of 

fusion and fission1. Equal distribution of mitochondria to daughter cells during mitosis requires 

fission2. Mitotic mitochondrial fission depends upon both the relocalization of large GTPase Drp1 

to the outer mitochondrial membrane and phosphorylation of S616 on Drp1 by the mitotic kinase 

cyclin B/Cdk12. We now report that these processes are mediated by the small Ras-like GTPase 

RalA and its effector RalBP1 (RLIP76/RLIP1/RIP1)3,4. Specifically, the mitotic kinase Aurora A 

phosphorylates S194 of RalA, relocalizing it to the mitochondria, where it concentrates RalBP1 

and Drp1. Furthermore, RalBP1 associates with cyclin B/Cdk1 kinase activity to foster 

phosphorylation of Drp1 on S616. Disrupting either RalA or RalBP1 leads to a loss of 

mitochondrial fission at mitosis, improper segregation of mitochondria during cytokinesis and a 

decrease in ATP levels and cell number. Thus, the two mitotic kinases Aurora A and cyclin B/

Cdk1 converge upon RalA and RalBP1 to promote mitochondrial fission, the appropriate 

distribution of mitochondria to daughter cells and ultimately proper mitochondrial function.

The mitotic kinase Aurora A phosphorylates S194 in the C-terminus of RalA5, increasing 

the level of active GTP-bound RalA5,6 and redistributing it from the plasma membrane to 

internal membranes6. The related protein KRas is also phosphorylated at the C-terminus by 

PKC, which relocalizes it from the plasma membrane to the mitochondria7. Given this, we 

tested and found that a portion of GFP-RalA co-localized with internal membranes stained 

with the dye MitoTracker Red8 in human HEK-TtH9 cells (Fig. 1a). Similarly, endogenous 

RalA was detected by immunoblot in a highly purified (complex Vβ-positive, calnexin, 

tubulin and Na+/K+ ATPase-negative) mitochondrial fraction (Fig. 1b). Moreover, RalA was 

enriched in the mitochondrial fraction upon expression of kinase active (T288D)10, but not 
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inactive (K162R)10 Aurora A (Fig. 1C). Similarly, an Aurora A phosphomimetic (S194D) 

version of RalA (Supplementary Fig. S2a), previously shown to be enriched in internal 

membranes6, showed a marked increase in co-localization with mitochondria, whereas 

mutation of this phosphorylation site (S194A) decreased this co-localization (Fig. 1a). Taken 

together, these data suggest that phosphorylation of RalA by Aurora A results in the 

accumulation of RalA at mitochondria, or vesicles tightly associated with mitochondria11.

Notably, Aurora A activity also had an effect on mitochondria morphology. While the 

majority of vector control cells exhibited a mix of interconnected and smaller, punctate 

mitochondria, most cells expressing Aurora AT288D displayed small punctate or circular 

mitochondria, whereas most cells expressing Aurora AK162R, which has been reported to 

exhibit dominant-negative activity6,12, had long interconnected mitochondria (Fig. 1d). To 

further investigate this effect on mitochondrial dynamics, we analyzed the distribution of the 

large GTPase Drp1, which relocalizes from a diffuse cytoplasmic to a punctate 

mitochondrial distribution during mitochondrial fission13. Like RalA, the levels of Drp1 in 

the mitochondrial fraction increased in cells expressing Aurora AT288D, but not Aurora 

AK162R (Fig. 1c). Moreover, the Drp1K38A mutant that lacks GTPase activity and inhibits 

fission14,15 reversed the fragmented mitochondrial phenotype induced by Aurora AT288D 

(Supplementary Fig. S2b), arguing that Aurora A does not block fusion but instead promotes 

mitochondrial fission. Furthermore, while most cells over-expressing wild type RalA 

(Supplementary Fig. S2a) exhibited slightly more fragmented mitochondria than vector 

control cells (Fig. 1d), consistent with higher levels of RalA, expression of RalAS194D 

caused a significant shift away from this phenotype, with most cells instead characterized by 

a fragmented mitochondrial network (Fig. 1e). Similarly, the fragmented mitochondrial 

phenotype of cells expressing Aurora AT288D was reversed if RalA was knocked down by 

RalA shRNA and replaced with shRNA-resistant RalAS194A, but not wild type RalA 

(Supplementary Fig. S2c). Taken together, these data suggest that Aurora A promotes 

mitochondrial fission through phosphorylation of RalA on S194.

To assess whether loss of RalA results in fusion, we analyzed the mitochondrial morphology 

of HEK-TtH cells in which RalA was knocked down by shRNA and complemented with 

either an empty vector, shRNA-resistant wild type or S194A mutant RalA (Supplementary 

Fig. S2a). While scramble control cells had a mixture of short and long mitochondria (Fig. 

1f), half of the cells expressing RalA shRNA exhibited long interconnected networks of 

mitochondria, with few cells having short punctate mitochondria (Fig. 1f). Knockdown of 

RalA also resulted in a roughly two-fold reduction in total Drp1 protein levels, but an 18-

fold reduction in the level of Drp1 in the mitochondrial fraction (Fig. 1g). Furthermore, 

FRAP analysis of mitochondrial targeted YFP revealed that RalA knockdown cells had a 

significantly faster recovery following photobleaching than scramble controls (Fig. 1h, 

Supplementary Fig. S2d), indicating a more interconnected mitochondrial network16. This 

interconnected phenotype was reversed upon expression of shRNA-resistant wild type, but 

not S194A mutant RalA (Fig. 1f). Knockdown of the highly related RalB protein, which is 

not a target of Aurora A5, did not affect mitochondrial morphology (Supplementary Fig. 

S3a). These loss-of-function experiments are in agreement with the described gain-of-

function experiments, suggesting that Aurora A promotes mitochondrial fission through 

phosphorylation of RalA on S194.

Kashatus et al. Page 2

Nat Cell Biol. Author manuscript; available in PMC 2012 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the active state, RalA binds effector proteins to mediate signaling3,4. In the presence of 

Aurora A, RalA preferentially co-immunoprecipitates with the multifunctional effector 

RalBP1 over the effectors Sec5 and Exo846. Given this, whole cell and purified 

mitochondrial extracts isolated from HEK-TtH cells expressing vector control, active 

(T288D) or inactive (K162R) Aurora A were immunoblotted to ascertain the subcellular 

localization of endogenous RalBP1. While the level of RalBP1 in whole cell extracts was 

similar in each cell line, it was increased two-fold in the mitochondrial fraction of cells 

expressing Aurora AT288D compared to cells expressing vector or Aurora AK162R (Fig. 2a). 

Furthermore, while total RalBP1 levels were unaffected by the presence or absence of RalA, 

there was a greater than two-fold reduction in the levels of RalBP1 in the mitochondrial 

fraction upon knockdown of RalA. Conversely, knockdown of RalBP1 had no effect on the 

amount of RalA in the mitochondrial fraction (Fig. 2b). Like RalA, knockdown of RalBP1 

also led to a significant increase in the number of cells with long interconnected networks of 

mitochondria and a relative absence of short punctate mitochondria compared to scramble 

control cells (Fig. 2c); an effect that was reversed by expression of shRNA-resistant RalBP1 

(Supplementary Fig. S2a, Fig. 2c). Conversely, knockdown of the RalA effector Sec5 

resulted in, if anything, a decrease in elongated mitochondria (Supplementary Fig. S3a). 

Furthermore, knockdown of RalBP1 in cells expressing Aurora AT288D reduced both the 

number of these cells with short, punctate or circular mitochondria (Fig. 2d), nearly to the 

level observed in control cells (Fig. 1d), and reduced the levels of Drp1 in the mitochondrial 

fraction (Fig. 2e). Both of these effects were reversed by expression of an shRNA-resistant 

version of RalBP1 (Fig. 2d,e). Taken together, these data suggest that when RalA is 

phosphorylated by Aurora A, it is enriched at mitochondria with RalBP1, which promotes 

recruitment of Drp1 and mitochondrial fission.

To test whether RalA-mediated recruitment of RalBP1 to mitochondria is sufficient to 

induce mitochondrial fission, RalBP1 was fused in frame with the C-terminal 30 amino 

acids of RalA (RalBP1-RalA), which contains S194 and imparts the polarized membrane 

delivery function and transforming activity of RalA to RalB17,18 (Fig. 1e, Supplementary 

Fig. S2c). GFP-RalBP1-RalA in the phosphomimetic S194D configuration primarily co-

localized with the mitochondria, while GFP-RalBP1-RalAS194A did not, despite widespread 

staining in the cell (Fig. 2f). Similarly, biochemical analysis revealed that more Myc-

RalBP1-RalAS194D was present in the mitochondrial fraction compared to Myc-RalBP1-

RalAS194A (Fig. 2g). Consistent with these results, almost half of the cells expressing Myc-

RalBP1-RalAS194D exhibited small discrete and circular mitochondria (Fig. 2h) and had 

higher levels of mitochondrial Drp1 (Fig. 2g) similar to cells expressing Aurora AT288D or 

RalAS194D (Fig. 1d,e). Conversely, cells expressing RalBP1-RalAS194A typically had 

elongated mitochondria (Fig. 2h) and lower levels of mitochondrial Drp1 (Fig. 2g), similar 

to knockdown of RalA or RalBP1 (Fig. 1f,2c), suggesting RalBP1-RalAS194A has dominant-

negative activity, perhaps through sequestration of factors involved in promoting fission. 

These experiments support the notion that the localization of RalBP1 to mitochondria, 

through its association with phosphorylated RalA, is sufficient to recruit Drp1 to the 

mitochondria and drive fragmentation.

While RalA is a known substrate of Aurora A5,6, phosphorylation of RalA by Aurora A 

during mitosis had not been described. HeLa cells, which can be readily synchronized and 
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have previously been used to study mitotic mitochondrial dynamics2, were therefore 

engineered to express RalA or the phosphorylation-deficient mutant RalAS194A and either 

left unsynchronized or synchronized and then collected at M-phase. Analysis of 

immunoprecipitated RalA by immunoblot with a phospho-S194 specific antibody showed 

that phosphorylation of RalA was higher in mitotic cells (cyclin B-positive) compared with 

unsynchronized controls (Fig. 3a), but was abolished in immunoprecipitates of RalAS194A 

(Supplementary Fig. S3b). In addition, RalA, RalBP1, and Drp1 all accumulated in the 

mitochondrial fraction of M-phase cells, but not unsynchronized controls (Fig. 3b). 

Moreover, the enrichment of Drp1 in the mitochondrial fraction of M-phase (cyclin B and 

phospho-histone H3-positive) cells was reduced if either RalA, RalBP1, or Aurora A were 

knocked down (Fig. 3c,d and Supplementary Fig. S3d). This reduction did not result from a 

delay in M-phase entry, as levels of phospho-histone H3 (S10), a marker of mitotic cells, 

were elevated normally in each cell line (Supplementary Fig. 3c,d). Moreover, knockdown 

of Mff1, but not Fis1 (Supplementary Fig. S3e), reduced the mitochondrial recruitment of 

both RalBP1 and Drp1 at mitosis (Fig. 3e,f), consistent with Mff1, and not Fis1, being the 

primary protein involved in mitochondrial recruitment of Drp1 in mammalian cells19. 

Knockdown of Plk1 (Supplementary Fig. S3e), another target of Aurora A that mediates 

many of its mitotic effects20, had no effect on the mitochondrial levels of RalBP1 or Drp1 

(Fig. 3f). These data suggest that Aurora A, RalA, and RalBP1 are required for recruitment 

of Drp1 to mitochondria during M-phase.

In addition to mitochondrial recruitment of Drp1, mitotic mitochondrial fission also requires 

phosphorylation of Drp1 on S616 by the mitotic kinase cyclin B/Cdk12. Therefore, RalA 

and RalBP1 were knocked down in HeLa cells and the levels of total and S616 

phosphorylated Drp1 were analyzed by immunoblot. Interestingly, knockdown of RalBP1, 

but not RalA, reduced the amount of phosphorylated Drp1 compared to scramble control 

cells (Fig. 4a). As RalBP1 binds cyclin B/Cdk1 and promotes phosphorylation of Epsin 

during mitosis21, we tested whether Drp1-specific cyclin B/Cdk1 activity 

immunoprecipitated with RalBP1 from mitotic cell extracts. Immunoblot analysis confirmed 

that both cyclin B and S616 phosphorylated Drp1 were increased in M-phase versus 

unsynchronized extracts. The immunoprecipitates of cyclin B or RalBP1, but not a control 

immunoprecipitate, phosphorylated recombinant GST-Drp1518–736, and moreover, this 

kinase activity was increased in M-phase extracts compared to unsynchronized extracts (Fig. 

4b). Furthermore, RalBP1 immunoprecipitated with cyclin B from M-phase extracts (Fig. 

4b). Based on these results, we speculate that RalBP1, through its interaction with cyclin B, 

acts as a scaffold to foster cyclin B/Cdk1 phosphorylation of Drp1 at mitosis. In agreement, 

addition of GST-RalBP1, but not control GST, led to a dose-dependent increase in S616 

phosphorylation of recombinant GST-Drp1518–736 by GST-cyclin B/Cdk1 in vitro, as 

measured both by autoradiography of 32P-labeled GST-Drp1518–736 and by immunoblot 

with a phospho-S616-specific antibody (Fig. 4c). Thus, RalBP1 promotes cyclin B/Cdk1 

phosphorylation of Drp1 at mitosis independently of RalA. RalBP1 complexed with cyclin 

B/Cdk1 and Drp1 is, in turn, tethered to mitochondria through RalA. Indeed, 

immunoprecipitation of endogenous RalA from the mitochondrial fraction of HeLa cells 

collected at M-phase and treated with Dithiobis[succinimidyl propionate] to cross-link 

closely associated proteins revealed a complex including RalA, RalBP1, Drp1 and cyclin B 
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(Fig. 4d). Taken together, we propose that RalBP1 acts as a scaffold to bring cyclin B/Cdk1 

in proximity to Drp1 to promote Drp1 phosphorylation on S616. RalBP1 also localizes this 

active Drp1 complex to mitochondria though its association with RalA, which is targeted to 

the mitochondria vis-à-vis phosphorylation on S194 by Aurora A (Supplementary Fig. S1).

During mitosis, extensive mitochondrial fission occurs during prophase, and mitochondria 

reform an interconnected network following cytokinesis2. Given the convergence of the two 

mitotic kinases Aurora A and cyclin B/Cdk1 on RalA and RalBP1, and the role RalA and 

RalBP1 play in mitochondrial morphology, we assessed whether RalA and RalBP1 are 

required for mitotic mitochondrial fission. To that end, we used time-lapse video 

microscopy to monitor mitotic mitochondrial morphology, visualized by a mitochondrial 

targeted red fluorescent protein, of HeLa cells stably expressing scramble, RalBP1, or RalA 

shRNA. Compared to scramble control cells, the mitochondria of cells in which either RalA 

or RalBP1 were knocked down retained an interconnected morphology throughout mitosis, 

which in some cells resulted in mitochondrial bridges during cytokinesis (Fig. 5a, 

Supplementary Movies 1–6) and unequal partitioning of mitochondria between mother and 

daughter cells (Fig. 5a, Supplementary Movies 1–6). In some cells cytokinesis was also 

disrupted, perhaps a consequence of a failure to segregate mitochondria correctly, although 

RalA may also play a more direct role in this process22. To more closely investigate these 

mitotic phenotypes, mitochondria from HeLa cells expressing a scramble, RalBP1, or RalA 

shRNA alone or in conjunction with shRNA-resistant RalAWT or RalAS194A (Fig. 5b,c) 

were analyzed by confocal microscopy throughout each stage of mitosis, defined by the 

condensation and positioning of DAPI-stained chromosomes. Consistent with the live cell 

imaging and with previous reports2, scramble control HeLa cells exhibited significant 

mitochondrial fragmentation beginning at prophase and lasting through to telophase (Fig. 

5b). In contrast, mitochondria in RalA or RalBP1 knockdown cells did not undergo 

fragmentation, but instead maintained a netlike appearance throughout mitosis (Fig. 5b). To 

quantitate this effect, the number of cells with an extended network of mitochondria at 

metaphase was measured, revealing that knockdown of either RalA or RalBP1 more than 

doubled the number of cells with this mitochondrial morphology (Fig. 5d). Notably, 

expression of shRNA-resistant wild type RalA, but not RalAS194A, rescued the effect of 

RalA shRNA on mitochondrial morphology, restoring the normal fragmentation of 

mitochondria at metaphase (Fig. 5c,d). Stable expression of Aurora AK162R also nearly 

doubled the number of cells exhibiting netlike mitochondria during metaphase compared to 

scramble control cells (Supplementary Fig. S3f). These data suggest that Aurora A promotes 

mitochondrial fission at mitosis through RalA and RalBP1.

The loss of mitochondrial fission is associated with mitochondrial dysfunction, including 

impaired energy production23,24. Intriguingly, compared to scramble control HeLa cells, 

knockdown of RalA or RalBP1 (Fig. 3c) significantly lowered the levels of cellular ATP 

(Fig. 5e) and eventually led to a decrease in the number of metabolically active cells (Fig. 

5f). Such an effect could be the consequence of successive rounds of unequal distribution of 

mitochondria during cell division, and indeed disruption of fission has been reported to 

decrease mtDNA levels over time24, but could also be the result of either a defect in the 
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clearing of damaged mitochondria or in the ability of functional mitochondria to 

complement damaged mitochondria through content mixing1.

Normal cell division requires coordinated and equal distribution of a vast amount of cellular 

material between the two daughter cells. In this regard, we now propose that during mitosis, 

Aurora A phosphorylates RalA at S194, redistributing a fraction of this protein and its 

effector RalBP1 to mitochondria, or vesicles associated with mitochondria. Coordinately, 

RalBP1 enhances the phosphorylation of Drp1 on S616 by the mitotic kinase cyclin B/Cdk1 

and through its association with RalA, promotes Drp1 recruitment to mitochondria, fission, 

and proper segregation of mitochondria during cell division, which helps maintain proper 

mitochondrial and cellular function (Supplementary Fig. S1).

Methods

Plasmids

pSuper-Retro-Puro plasmids encoding RalA shRNA, RalB shRNA, RalBP1 shRNA, or a 

scramble sequence, pSuper-Retro-Puro-TetO encoding scramble or Aurora A shRNA, 

pBabe-Bleo encoding HA epitope-tagged Aurora AK162R and Aurora AT288D, pBabe-Neo 

encoding shRNA-resistant Myc epitope-tagged RalA, pBabe-Puro encoding shRNA-

resistant Flag epitope-tagged RalA, GFP-tagged RalA, RalAS194D and RalAS194A, and 

pCMV-Neo Tet Repressor were described previously6,17,25. shRNA sequences targeting 

Sec5 (5’-GGGTGATTATGATGTGGTT-3’)26, Mff1 (5’-

AACGCTGACCTGGAACAAGGA-3’)19, Fis1 (5’-AGGCATCGTGCTGCTCGAG-3’)27 

and Plk1 (5’-GGAGGTGTTCGCGGGCAAG-3’)28 were cloned into pSuper-Retro-Puro. 

GST-RalBP1 and GST-Drp1518–736 expression vectors were created by subcloning RalBP1 

from pBabe-Puro RalBP1, and the fragment encoding amino acids 518 to 736 of Drp1 from 

the plasmid pcDNA3.1-flag-Drp129, into pGEX-5X2. The last 30 amino acids of RalAS194A 

or RalAS194D were fused in frame to the C-terminus of RalBP1 in pBabe-Puro-myc-RalBP1 

and further subcloned into pEGFP-C2 to generate GFP-RalBP1-RalAS194A and GFP-

RalBP1-RalAS194D. pBabe-Puro-Drp1K38A was generated by subcloning Drp1K38A from 

pcDNA3.1-flag-Drp1K38A 29.

Cell culture

Transgenes and shRNA were either stably introduced into human HEK-TtH9,17 or HeLa 

(ATCC) cells by retroviral infection as previously described30 or, for GFP fusion constructs, 

were transiently introduced using the Fugene6 reagent (Roche). For synchronization, HeLa 

cells were treated with 2mM thymidine for 19 h, released in DMEM for 9 h, treated with 

2mM thymidine for 15 h, released in DMEM for 10 h (10.5 h for Aurora A shRNA) and 

subjected to immunofluorescence to visualize mitochondria or harvested for immunoblot 

analysis2. To inducibly knock down Aurora A, HeLa cells stably expressing Tet Repressor 

(TR) and pSuper-Retro-Puro-TetO scramble or Aurora A shRNA were treated with 

10µg/mL doxyxycline (sigma) for 10 h prior to cell harvest.
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Protein analysis

Whole cell lysates were prepared in RIPA buffer (1% NP-40, 20 mM Tris pH 8.0, 137 mM 

NaCl, 10% glycerol, 2mM EDTA), and either resolved by SDS-PAGE or subjected to 

immunoprecipitation with 5µg of α-Cyclin B, α-RalBP1 (Santa Cruz) or α-myc (Cell 

Signaling Technologies) antibodies6 and resolved by SDS-PAGE. For mitochondrial 

fractions31, cells were resuspended in hypotonic lysis buffer (20 mM HEPES-KOH, pH 7.5, 

10 mM KCl, 1.5 mM MgCl2, 1 mM EDTA, 1 mM EGTA, 250 mM sucrose, 1 mM 

dithiothreitol), on ice for 1 hour, then lysed with 125 strokes of a Teflon homogenizer. 

Homogenates were centrifuged at 750g and the supernatant was centrifuged at 10,000g to 

separate the cytoplasmic fraction (supernatant) and the heavy membrane fraction (pellet). 

The heavy membrane fraction was either lysed in RIPA (crude mitochondria) or 

resuspended in mitochondrial isolation buffer (MIB: 840 mM mannitol, 240 mM sucrose, 40 

mM KCl, 1 mM succinate, 0.5 mM EDTA, 0.5 mM EGTA), and centrifuged over a 

discontinuous Percoll gradient (0, 25, 30, 37, 42%) for 25 min at 25,000 RPM. Highly 

purified mitochondria were recovered from the 37–42% interface and resuspended in 1 

volume of RIPA buffer. Proteins for immunoblot were quantitated by Bradford assay (Bio-

Rad), equivalent protein amounts (50 or 100µg) were resolved by SDS-Page, and 

immunoblotted with α-RalBP1 (Novus), α-RalA, α-Plk-1 (T210), α-Drp1 (BD Transduction 

Laboratories), α-S616-Drp1, α-Na+/K+-ATPase, α-Cdk1, α-S10-Histone H3, α-Histone H3 

(Cell Signaling Technology), α-Complex V-β (Molecular Probes), α-calnexin (Stressgen), 

α-HA (Roche), α-RalB (Millipore), α-Cyclin B, α-Fis1 (Santa Cruz), β-actin, α-MFF or α-

tubulin (Sigma). All antibody dilutions were 1:1000 except α-Cyclin B, α-Fis1, α-Cdk1, α-

Drp1 and α-S616-Drp1 at 1:500.

Generation of phospho-S194 RalA antibody

Polyclonal anti-phospho-S194 antibody was generated by Open Biosystems according to the 

following protocol: 500µg KLH-conjugated phospho-peptide corresponding to S194 

phosphorylated RalA (CGKKKRK[pS]LAKRIRE) was injected subcutaneously into 10 sites 

of two New Zealand white rabbits on day 1 followed by booster injections of 250µg into 4 

sites/rabbit on days 14, 28 and 42. Production bleeds of 50 mL/rabbit were performed on 

days 56 and 58. Following ELISA titration of all bleeds and affinity purification of pooled 

bleeds from each rabbit, negative adsorption of antibodies against non-phosphorylated 

peptide (CGKKKRKLAKRIRE) was performed. Antibody was used at 1:200 in TBST + 1% 

BSA.

In Vitro Kinase Assays

Recombinant GST-Drp1518–736 and GST-RalBP1 were purified from bacteria using 

glutathione-sepharose-4B (GE) and eluted with 15mM glutathione (Sigma). Proteins were 

dialyzed overnight in 2L elution buffer (100 mM Tris pH 8.0, 120 mM NaCl) and 

concentrated with an Amicon Ultra 10K centrifugal filter device (Millipore). For the In vitro 

kinase assay2, α-cyclin B1 or α-RalBP1 immunoprecipitates or 25ng GST-CyclinB/Cdk1 

(Cell Signaling Technologies) plus 0–1000ng GST-RalBP1 were suspended in protein 

kinase buffer (20 mM Hepes-KOH buffer, pH 7.4, 15 mM EGTA, and 20 mM MgCl2) with 

200ng of purified GST-Drp1518–736, 50 µM ATP, γ32P-ATP (hot kinase assay) and 1 µM 
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DTT for 30 min at 30°C. Samples were resolved by SDS-PAGE, and immunoblotted for 

phospho-S616-Drp1, Drp1, RalBP1 and Cdk1 (cold) or stained with Coomassie Brilliant 

Blue (Drp1 and RalBP1) followed by autoradiography for phospho-Drp1 (hot).

ATP Assay

Subconfluent HeLa cells were harvested in PBS, 0.5% Triton X-100, 2mM EDTA for 15 

minutes on ice and 15µL of equivalent protein amounts were added to 135µL reaction buffer 

with 1mM DTT, 500µM D-luciferin and 1.25µg/mL firefly luciferase (ATP Determination 

Kit, Molecular Probes). 12 replicates were performed for each condition in a 96-well plate, 

including a no extract control. After 30 minute incubation at room temperature, 

luminescence was measured at 560nm on a Victor3 luminometer (Perkin Elmer).

MTT Assay

HeLa cells were plated at 5000 cells per well in 3 × 96-well plates. At 24, 48 and 72 h, 

50µL/well of 5mg/mL 3-(4,5-Dimethyl- 2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide 

(MTT, Sigma) was added. After 4 hrs, cells were resuspended in 200µL DMSO. 

Absorbencies were recorded at 540 nm32.

Immunofluorescence

Cells were plated on glass microslides the previous day, treated with 100nM MitoTracker 

Red CMXRos (Molecular Probes) for 30 minutes, fixed, permeabilized and either mounted 

immediately or incubated with Alexa-488 conjugated Phalloidin (1:50, Molecular Probes). 

Leica SP5 scanning confocal imaging system with Leica Pan Apochromat 100×/1.4–0.70 oil 

objective was used. A cell was judged to have fragmented mitochondria if greater than 90% 

of the mitochondria visible in the cell were punctate or circular and highly interconnected if 

less than 10% of the mitochondria were punctate or circular. >100 cells per cell type were 

blindly analyzed for three independent experiments33.

Live Cell Imaging

HeLa cells expressing RFP targeted to the mitochondrial matrix (RFP-mito) were plated on 

35mm glass bottom dishes and synchronized. Ten hours after release from thymidine live 

cell imaging was performed using Zeiss Axio Observer Z1 motorized imaging system with 

100×/1.46 oil Plan Apochromat DIC objective and QuantEM backthinned EM-CCD camera. 

MetaMorph 7.6.5 software was used for image acquisition, movies and montages.

Analysis of Co-localization

Imaris software was employed for visualization and quantification of co-localization. Z-

series images obtained from Leica SP5 scanning confocal imaging system were processed 

using the co-localization tool within Imaris. The GFP threshold was set to 0 and the 

MitoTracker red threshold was set to 80 to define the regions to be included or excluded 

from the co-localization analysis. The voxels meeting the selected criteria (thus identified as 

co-localized) were displayed as white voxels. Surface rendering of the GFP image and the 

co-localized image (GFP co-localized with the mitochondrial stain) was performed to 

determine the intensity sum per object. The percentage of GFP protein co-localized with 

Kashatus et al. Page 8

Nat Cell Biol. Author manuscript; available in PMC 2012 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MitoTracker red was quantified by calculating the total of the intensity sum per object for 

the co-localized image divided by the total of the intensity sum per object for the GFP 

image.

Mitochondrial connectivity FRAP assay

HEK-TtH cells plated on glass-bottom plates in + 10% FBS were transiently transfected 

with YFP targeted to the mitochondrial matrix (mito-YFP). FRAP data collection and 

analysis was done using the Leica LAS AF FRAP-wizard software. Sixty RalA shRNA and 

scramble control HEK-TtH cells were evaluated in two independent experiments. A 240µm 

square was imaged with the 63× water-immersion objective (zoom 1.0) before and after a 

one iteration photobleach (488 nm laser) of a 4 µm circle placed over multiple mitochondria. 

Post-bleach recovery was evaluated with eighteen images recorded once every second post 

bleaching, with a total elapsed time of 18 seconds. Fluorescence was assessed at each time 

point for the FRAP region of interest and an unrelated background region. FRAP 

fluorescence data was normalized for background fluorescence and bleaching of the 

unrelated region, and graphed as a percentage of starting fluorescence. The mobile fraction 

of mito-YFP represents the ratio of recovered fluorescence to total fluorescence averaged for 

all cells assessed in one experiment34. Error bars indicate standard error of the mean within 

one experiment assessing 30 cells. p values were calculated using a paired two-tailed 

student’s t-Test.

DSP Crosslinking and Co-IP

HeLa cells synchronized in M-phase (10 hours after last thymidine block) were incubated 

with 1mM dithiobis[succinimidylpropionate] (DSP, ThermoScientific) for 30 minutes at 

room temperature followed by addition of 10mM Tris pH 7.4 for 15 minutes. Cells were 

then lysed in solubilization buffer (50 mM Tris-HCL, pH 7.5, 1% digitonin)19. Crude 

mitochondrial and whole cell extracts extracts were prepared and endogenous RalA was 

immunoprecipitated from 400µg of extract using 0.75µg mouse anti-RalA monoclonal 

antibody (BD Transduction Laboratories). Input samples of 100 µg total protein isolated 

from uncrosslinked whole cell extracts or crude mitochondrial preparations were made 

alongside DSP-treated extracts.

RT-PCR

Reverse transcription of 2µg of total RNA was done with the Qiagen Omniscript RT kit 

using oligo-Dt priming. The resulting cDNA was diluted 1:25 and assessed by qPCR using 

SybrGreen PCR mastermix (Applied Biosystems) and the following Sec5 specific primers: 

5’-GATCCTTCAGCTCATGCACA-3’ (Forward) and 5’-

GACTGAGATGGCCCAACAC-3’ (Reverse). Reference primers for EEF1A1: 5’-

GGATTGCCACACGGCTCACATT-3’ (Forward) and 5’-

GGTGGATAGTCTGAGAAGCTCTC-3’ (Reverse) were used as controls. Measurements 

were done on the BioRad iCycler iQ (v3.1), with 40 amplification cycles. No RT control 

cDNA was included to ensure against contaminating transcript. For each sample, qPCR was 

done in triplicate, and the average of these values was used for ddCT analysis of relative 

transcript levels.
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Statistical analysis

In each graph data represent mean ± S.D. of the indicated number (n) of independent 

experiments. Where indicated, statistical significance has been calculated by a Student t-test. 

P values are indicated in the legends

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Aurora A promotes RalA mitochondrial localization and fission. A HEK-TtH cells stably 

expressing GFP-tagged RalA, RalAS194D or RalAS194A were incubated with MitoTracker 

red to visualize mitochondria. GFP-RalA (green) and mitochondria (red) were visualized 

using confocal microscopy. A merge (yellow, 2D colocalization) and surface rendering 

(white, 3D co-localization) of the co-localization of GFP-RalA with mitochondria was 

determined with Imaris software. The percentage of GFP protein co-localized with 

MitoTracker red was quantified by calculating the total of the intensity sum per object for 
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the co-localized image divided by the total of the intensity sum per object for the GFP 

image. (scale bar = 5µm). B,C,G Immunoblot analysis of RalA and Drp1 levels in highly 

enriched mitochondrial fraction (mito), whole cell extracts (WCE) and when tested, 

cytoplasmic fraction (cyto) isolated from HEK-TtH cells expressing B no transgene, C 
vector, Aurora AT288D or Aurora AK162R or G scramble or RalA shRNA. Complex V-β 

(mitochondria), calnexin (ER), Na+/K+ ATPase (plasma membrane) and tubulin (cytoplasm) 

were analyzed to assess purity. Representative of 3 experiments. D,E,F Mitochondrial 

morphology visualized by MitoTracker Red staining of HEK-TtH cells expressing the 

indicated shRNAs and/or transgenes. Graph: % of cells (mean ± SD) exhibiting highly 

fragmented (■), intermediate (■) or highly interconnected (□) mitochondrial morphologies 

from 3 independent experiments (>100 cells). (scale bar = 5µm). H Mitochondrial network 

connectivity in HEK-TtH cells expressing scramble or RalA shRNA and transfected with 

mito-YFP. The normalized and photobleach corrected mobile fractions represent the mean ± 

SEM of 30 individual FRAP curves (** p = 2.02 × 10−8).
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Figure 2. 
RalBP1 promotes mitochondrial fragmentation. A,B,E,G Immunoblot analysis of RalA, 

RalBP1 or Drp1 levels in highly enriched mitochondrial fraction (mito) and whole cell 

extracts (WCE) isolated from HEK-TtH cells expressing A vector, Aurora AT288D or Aurora 

AK162R, B scramble control (scram), RalA shRNA or RalBP1 shRNA E Aurora AT288D plus 

either scramble control or RalBP1 shRNA complemented with vector (V) or shRNA-

resistant RalBP1 (BP1) or G myc-RalBP1-RalAS194A or myc-RalBP1-RalAS194D. Complex 

V-β (mitochondria) was analyzed to assess purity. Representative of 3 experiments. C,D,H 

Kashatus et al. Page 14

Nat Cell Biol. Author manuscript; available in PMC 2012 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Mitochondrial morphology visualized by MitoTracker Red staining of C HEK-TtH cells, D 
HEK-TtH cells expressing active Aurora AT288D and a scramble sequence or RalBP1 

shRNAs alone or in conjunction with shRNA-resistant wild type RalBP1 or H HEK-TtH 

cells expressing Myc-RalBP1-RalAS194A or Myc-RalBP1-RalAS194D. Graph: % of cells 

(mean ± SD) exhibiting highly fragmented (■), intermediate (■) or highly interconnected 

(□) mitochondrial morphologies from 3 independent experiments (>100 cells) (scale bar = C 
5µm D,H 25µm). F Overlap (merge, yellow) of the distribution of GFP-RalBP1-RalAS194A 

or GFP-RalBP1-RalAS194D, as detected by immunofluoresence of GFP (green), and 

MitoTracker red-positive mitochondria (red) in HEK-TtH cells. Surface rendering of the co-

localization of GFP-RalBP1-RalA fusion proteins with mitochondria (white) was 

determined with Imaris software. The percentage of GFP protein co-localized with 

mitotracker red was quantified by calculating the total of the intensity sum per object for the 

co-localized image divided by the total of the intensity sum per object for the GFP image. 

(scale bar = 5µm for SD or 3µm for SA).
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Figure 3. 
RalA and RalBP1 promote mitochondrial localization Drp1. A Extracts isolated from HeLa 

cells expressing myc-RalA, either unsynchronized (U) or synchronized in mitosis (M) using 

double thymidine block were either analyzed by immunoblot for levels of myc-RalA and 

cyclin B or subjected to immunoprecipitation (IP) with antibodies against myc and analyzed 

by immunoblot for levels of myc-RalA or phospho-S194 RalA. Representative of 3 

experiments. B Immunoblot analysis of RalA, RalBP1 and Drp1 levels in mitochondrial 

fractions (mito) and whole cell extracts (WCE) isolated from HeLa cells either 

Kashatus et al. Page 16

Nat Cell Biol. Author manuscript; available in PMC 2012 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



unsynchronized (U) or synchronized in mitosis (M) using double thymidine block. 

Representative of 3 experiments. C–F Immunoblot analysis of RalA, RalBP1, Drp1, Cyclin 

B, Aurora A and Mff1 levels in crude mitochondrial fractions (mito) and whole cell extracts 

(WCE) isolated from HeLa cells, either unsynchronized (U) or synchronized in mitosis (M) 

using double thymidine block, and expressing C scramble control, RalA shRNA or RaBP1 

shRNA or D doxycycline inducible scramble control or Aurora A shRNA E scramble 

control or Mff1 shRNA or F Plk1 or Fis1 shRNA. Representative of 3 experiments.
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Figure 4. 
RalBP1 promotes phosphorylation of Drp1. A Immunoblot analysis of S616 phosphorylated 

(p-S616-Drp1), Drp1, RalA, RalBP1 and actin levels in HeLa cells expressing a scramble 

control, RalA shRNA or RalBP1 shRNA. Graph represents mean p-S616-Drp1 signal 

intensity measured by imageJ from 3 experiments +/− SD (** p = 0.008). B Extracts isolated 

from HeLa cells, either unsynchronized (U) or synchronized in mitosis (M) using double 

thymidine block were either analyzed by immunoblot for levels of RalA, Drp1, cyclin B or 

S616 phosphorylated Drp1, or subjected to immunoprecipitation (IP) with either no antibody 
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or antibodies against cyclin B or RalBP1, followed by incubation with GST-Drp1 and γ32P-

ATP, and resolved on an acrylamide gel. 32P-labeled GST-Drp1 was visualized by 

phosphorimager while total GST-Drp1 was visualized by coomassie brilliant blue staining. 

Graphs represent mean 32P-GST-Drp1 signal intensity measured by imageJ from 3 

experiments +/− SD (* p = 0.028 for Cyclin B, 0.027 for RalBP1). C 200ng GST-Drp1 and 

25ng GST-Cyclin B/Cdk1 were incubated with increasing amounts of either GST-RalBP1 or 

GST (0, 125, 250, 500, 1000ng) in addition to either ATP or γ32P-ATP. Reactions were 

resolved by SDS-PAGE and either subjected to immunoblot for Drp1, RalBP1 and S585 

phosphorylated Drp1 (cold kinase assay) or visualized by phosphorimager (hot kinase 

assay). GST, GST-Drp1 and GST-RalBP1 were visualized by coomassie brilliant blue 

staining (CBB). Graph represents mean p-S616-Drp1 signal intensity measured by imageJ 

from 3 experiments +/− SD (* p = 0.020, 0.028 ** p = 0.009). D Immunoblot analysis of 

RalA, RalBP1, Drp1 and Cyclin B levels in crude mitochondrial fractions (mito) and whole 

cell extracts (WCE) isolated from HeLa cells synchronized in mitosis (M) using double 

thymidine block, treated with DSP, and subjected to immunoprecipitation with and anti-

RalA antibody.
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Figure 5. 
Knockdown of RalA or RalBP1 prevents mitosis-induced mitochondrial fission. A 
Mitochondrial morphology as visualized by live cell imaging of HeLa cells stably 

expressing RFP-Mito and scramble control, RalA shRNA or RalBP1 shRNA after release 

from double thymidine block. Arrows (1, 2) indicate regions of mitochondria retained 

during telophase and (3, 4) unequal distribution of mitochondria to daughter cells (scale bar 

= 10µm). B Mitochondrial morphology visualized by MitoTracker Red staining of HeLa 

cells expressing a scramble control, RalA shRNA or RalBP1 shRNA at the indicated phases 
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of mitosis upon being synchronized in mitosis using double thymidine block. DAPI staining 

was used to assign mitotic phase (scale bar = 25µm for scram interphase and metaphase and 

RalA interphase and prophase, 10µm for scram anaphase and telophase and RalBP1 

interphase and 7.5µm for all other images). C Mitochondrial morphology HeLa cells 

expressing RalA shRNA complemented with GFP-tagged, shRNA resistant RalA in the wild 

type (WT) or S194A mutant configuration and captured at metaphase (DAPI) (scale bar = 

10µm). D Quantitation of the percent of cells (mean ± SD, n = 3 independent experiments 

with ≥ 30 cells analyzed per condition) exhibiting mitochondrial elongation during 

metaphase. (* p ≤ 0.05, ** p ≤ 0.01) E ATP production of HeLa cells stably expressing 

scramble, RalA or RalPB1 shRNA was determined by measuring ATP-dependent luciferase 

activity measured at 560nm on a Victor3 luminometer. (The experiments were repeated at 

least 3 times, and each time the error was calculated from 12 replicates, ** p = 1.6 × 10−7 

for RalA, 5.3 × 10−7 for RalBP1). F Proliferation of HeLa cells stably expressing scramble 

(◆), RalA (■) or RalBP1 (▲) as measured by MTT assay. Measurements were performed 

over three days using cells with fewer than 5 or greater than 20 population doublings 

following selection for the transgene. (The experiments were repeated at least 3 times, and 

each time the error was calculated from 16 replicates; day 2: ** p = 4.5 × 10−5 for RalA, 6.3 

× 10−5 for RalBP1, day 3: ** p = 4.5 × 10−8 for RalA, 2.7 × 10−6 for RalBP1)
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