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Summary

Stem cells of the gastrointestinal tract, pancreas, liver, and other columnar epithelia collectively 

resist cloning in their elemental states. Here we demonstrate the cloning and propagation of highly 

clonogenic, “ground state” stem cells of the human intestine and colon. We show that derived stem 

cell pedigrees sustain limited copy number and sequence variation despite extensive serial 

passaging and display exquisitely precise, cell-autonomous commitment to epithelial 

differentiation consistent with their origins along the intestinal tract. This developmentally 

patterned and epigenetically maintained commitment of stem cells likely enforces the functional 

specificity of the adult intestinal tract. Using clonally-derived colonic epithelia, we show that 
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toxins A or B of the enteric pathogen C. difficile recapitulate the salient features of 

pseudomembranous colitis. The stability of the epigenetic commitment programs of these stem 

cells, coupled with their unlimited replicative expansion and maintained clonogenicity, suggests 

certain advantages for their use in disease modeling and regenerative medicine.

Introduction

While dominating prospective strategies for regenerative medicine, embryonic stem cells 

(ESC) and induced pluripotent stem cells (iPSC) face formidable challenges including risk 

of teratoma, complex guiding protocols for lineage specificity, and limited regenerative 

capacity of the lineages ultimately produced3–8. The success and promise of iPSCs have 

largely overshadowed efforts to harness stem cells intrinsic to regenerative tissues. Green 

and colleagues developed methods for cloning epidermal stem cells9 that form a stratified 

epithelium upon engraftment, and these methods have been successfully applied to corneal, 

thymic, and airway epithelia10–12. However, stem cells of columnar epithelial tissues resist 

cloning in a manner that maintains their immaturity during proliferative expansion, and 

instead must be carried forward as regenerative, differentiating “organoids”13–18. Despite 

their obvious potential in regenerative medicine and constant improvement19, the very low 

percentage of clonogenic cells in organoids limits the kinetics of their propagation as well as 

their utility for exploring the elemental stem cell.

The present study reports the cloning and propagation of “ground state” human intestinal 

stem cells (ISCGS). This technology offers insights into the molecular and functional 

features of columnar epithelial stem cells and their utility for disease modeling and 

regenerative medicine.

Cloning human fetal intestinal stem cells

We developed media (herein SCM-6F8) containing novel combinations of growth factors 

and regulators of TGF-β/BMI1, Wnt/β-catenin, EGF, IGF, and Notch pathways9,20–21 that 

supports the maintenance of human intestinal stem cells in a highly clonogenic, ground state 

form. Thus single cell suspensions of intestinal epithelia derived from 20- to 22-week-old 

fetal demise cases yield colonies comprised of highly immature cells in which differentiation 

markers can be induced by Notch suppression (Fig. 1a). Following induced differentiation 

via Wnt withdrawal, we were unable to recover ground state stem cells by our methods 

(Extended Data Fig. 1).

The clonogenicity of cells in the colonies was determined by single cell transfer to be greater 

than 50% (Fig. 1b). This high clonogenicity permits the rapid generation of single cell 

“pedigree” lines for expansion and characterization of lineage fates upon differentiation12 

(Fig. 1b). Pedigree lines of ISCGS and tracheobronchial stem cells (TBSCGS)12 grown for 

several months in culture were differentiated in air-liquid interface (ALI) cultures for 10–30 

days (Fig. 1c). The ISCGS formed a highly uniform, 3-D serpentine pattern, whereas 

TBSCGS produced a stratified epithelium with apically positioned ciliated and goblet cells. 

Histological sections of differentiated ICSGS revealed a columnar epithelium of villus-like 

structures marked by goblet (Muc2+), endocrine (chromogranin A+), and Paneth cells and 
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polarized villin expression (Fig. 1d; Extended Data Fig. 1d), indicating the progeny of a 

single ISCGS can give rise to all epithelial lineages typically found in the small intestine. 

Importantly, differentiation of these ground state stem cells is accomplished by exposure to 

an air-liquid interface rather than a removal of factors such as Wnt that maintain immaturity.

While principal component analysis (PCA) of differentially expressed genes of ground state 

stem cells and ALI differentiated tissue showed great divergence as expected for columnar 

and stratified epithelia, the gene expression profiles of undifferentiated ISCGS and TBSCGS 

differed by less than 4% (>2.0-fold, p<0.05) (Fig. 1e). ISCGS showed high expression of 

intestinal stem cell markers such as OLFM4, CD13322, Lgr523, and Lrig124, whereas those 

from the airways had the typical stem cells markers of stratified epithelia (Krt14, Krt5, and 

Tp6311) (Fig. 1f).

Intestinal stem cell variation

Approximately one in 2,000 cells from duodenum (IduSC), jejunum (IjeSC), and ileum 

(IilSC) of a 21-week old fetal intestine form a colony (Fig. 2a). Although these colonies 

were morphologically indistinguishable in culture, whole genome expression analysis of 

multiple pedigrees showed a consistent, region-specific signature of 24–178 genes (>1.5-

fold, p<0.05; Fig. 2b; Extended Data Fig. 2).

After 10 days at an ALI, IduSC and IjeSC gave rise to a finer pattern of epithelial folds than 

that produced by IilSC (Fig. 2c). By histology, villi appear progressively more robust along 

the anterior-posterior axis, with IilSC producing the larger villi and more numerous goblet 

cells (Fig. 2d,e). Interestingly, the epithelia derived from IduSC expressed markers more 

typical of gastric epithelium (e.g. TFF2 and Muc5AC) consistent duodenum’s location 

between the stomach and the small intestine (Extended Data Fig. 2a,b,c). IjeSC-derived 

epithelium, however, expressed Muc2 consistent with intestinal epithelium (Extended Data 

Fig. 2c), and IilSC produced an epithelium more akin to colon (Fig. 2f). The pattern of 

proliferation in the ALI epithelia as measured by Ki67 staining was generally confined to 

cells proximal to the support membrane (Fig. 2e,f). PCA mapping of gene expression 

revealed more divergence among ALI-differentiated tissue than among the intestinal stem 

cells (Fig. 2g).

Colon stem cells

We also generated single cell pedigree lines from the ascending, transverse, and descending 

colon from the same 21-week fetal demise case (Fig. 3a). The variation in gene expression 

between the stem cells of these colonic segments was minimal with signatures of 19–28 

genes (>1.5-fold, p<0.05; Fig. 3b). As with pedigrees derived from the intestinal epithelium, 

those from the colon could be propagated for months without loss of clonogenicity (not 

shown). Differentiation of these colon pedigrees under identical ALI conditions employed 

for the intestinal stem cells resulted in networks of 3-D, large-diameter structures (Fig. 3c). 

Consistently, the histology of these ALI cultures revealed patterns of broad intestinal glands 

dominated by goblet cells (Fig. 3d). These ALI-generated tissues showed strong staining for 

intestinal goblet cell marker Muc2, as well as polarized villin and Krt20 typical of 
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differentiated colonic epithelium (Fig. 3e). And while the colonic stem cells as a group 

showed minor differences in gene expression (cf. Fig. 3b), they gave rise to epithelia with 

more distinct gene expression profiles (Extended Data Fig. 3). PCA mapping of these 

expression data showed a clustering of the colon stem cells relative to the intestinal stem 

cells with increasingly distant spaces occupied by stem cells of the ileum, jejunum, and 

duodenum, respectively (Fig. 3f). This distinction in global gene expression patterns is 

reflected, for instance, in the differential expression of transcription factors. In particular, 

Onecut2, NROB2, TRPS1, and ZNF503 show relatively high expression in the small 

intestine stem cells, whereas those of the colon showed a bias for Hox genes as well as the 

global chromatin organizer genes SATB1 and SATB2 (Fig. 3g,h).

Columnar versus stratified epithelia

The expression profiles of stem cells of human intestinal tract enabled a detailed comparison 

with those of stratified epithelia including human epidermis, corneal epithelium, mammary 

gland, prostate gland, and upper airway. From this analysis it is clear that stratified epithelia, 

all of which depend on the p53-related stem cell marker p63 for long-term self-renewal11, 

occupy a distinct expression space from that of the intestinal stem cells or other columnar 

epithelial stem cells (Fig. 4a). A survey of genes whose expression is associated with stem 

cells of one of these two major classes of epithelia revealed a strong bias for Olfm4, 

CD13322, Lgr523, Nr5a225, Id2, Lrig124, EphB2, Ascl2, and EphB3 in the intestinal stem 

cells, while the stratified epithelial stem cells expressed Znf750, Tp63, and Krt5 (Fig. 4b). 

Many of the markers differentially appearing in the intestinal stem cells, such as Olfm4, 

Lgr5, and Ascl2, are not general columnar epithelial stem cell markers as evidenced by their 

absence in fallopian tube stem cells, though Lrig1 is more highly expressed in fallopian tube 

stem cells than either those of the intestine or the colon (Extended Data Fig. 4a). Notably, 

Bmi1, a member of the Polycomb group (PcG) PRC1-like complex implicated in self-

renewal in both hematopoietic26 and as reserve cells for proliferating, Lgr5+ intestinal stem 

cells27–29, was not differentially expressed in the cloned intestinal versus stratified epithelial 

stem cells. And while many of the typical markers of intestinal stem cells such as Lgr5, 

CD44, Lrig1, EphB2, and ASCL2 show a decrease in expression as the intestinal stem cells 

are differentiated in ALI cultures, Bmi1 did not (Extended Data Fig. 4b,c). These findings 

suggest that we are cloning either crypt cells or so-called “+4” cells that have become crypt-

like in their expression patterns. We also examined transcription factors differentially 

expressed in ISC compared to stratified epithelial stem cells in an effort to understand the 

regiospecificity of commitment programs of stem cells along the intestinal tract (Fig. 4c). In 

addition to six transcription factors that were uniformly highly expressed in stem cells of the 

intestinal tract (CREB3L1, Myb, NR5A2, IRF8, HNF4G, and Msx2) versus 

tracheobronchial stem cells, this analysis revealed limited sets of transcription factors 

differentially expressed in stem cells along the anterior-posterior axis of the intestinal tract 

that conceivably function in maintaining commitment states. For instance and consistent 

with previous observations30, GATA4 and GATA6 were expressed most strongly in the 

anterior portions of the intestinal tract (Fig. 4c). Significantly, the selective deletion of 

GATA4 and GATA6 in the murine duodenum and jejunum results promotes ileal properties 

and a detrimental phenotype30,31, suggesting a role for these transcription factors in 
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maintaining segmental identity acting at the level of the stem cell. Similarly, the requirement 

for Onecut2 in the duodenum32 might be at the level of the duodenal stem cells. It is likely 

that analyses of cloned stem cells from the various segments of the intestinal tract will help 

to unravel the roles of such segment-specific transcription factors in the establishment of 

commitment and differentiation programs. Importantly, the overall properties of ISCs from 

fetal sources are conserved in those derived from endoscopic biopsies of pediatric and adult 

cases (Fig. 4d,e,f).

Genomic and lineage stability

Human ESC and iPSC lines acquire with successive passages genomic structural variations 

including some that confer a selective advantage33,34. To assess the genomic stability of our 

ISCGS, we examined copy number (CNV) and single nucleotide variation (SNV) in two 

independent ISCGS pedigrees derived from the ileum of one fetal demise case after 50 

(passage 5; P5), 100 (P10), 150 (P15), and 200 days (P20) of continuous proliferation (Fig. 

5a,b). At P5, when single ISCGS pedigrees can be amplified to an estimated 300 million to 

75 billion cells, no chromosomal aneuploidies were detected, though one pedigree showed 

three interstitial deletions affecting two genes (Fig. 5c; Extended Data Fig. 5a; SI Table 1). 

This low level of structural variation was maintained though passage 10 though increased by 

P15 and at P20 one of the pedigrees showed a frank trisomy of chromosome 12 (Fig. 5c; 

Extended Data Fig. 5a; SI Table 1). A similar upward trend in CNV as a function of passage 

number was observed in five intestinal pedigrees (pedigrees 3–7) derived from a separate 

fetal demise case (Extended Data Figs. 5, 6; SI Tables 1, 2).

By exome sequencing, our original two pedigrees showed few (0–1) non-synonymous 

mutations through passage 10, and these increased modestly (1–2 new non-synonymous 

mutations) through P15 and P20 (Extended Data Fig. 5a). None of these non-synonymous 

mutations have been reported as driver genes in human cancers. A similar trend was 

observed in the five pedigrees from the second fetal demise case followed through P5 and 

P25. By P25 the range of non-synonymous SNVs increased to 2–10 per clone, and while not 

involving obvious cancer driver genes, did include genes such as Ect2L and EP300 that 

might provide a selective growth advantage (Extended Data Fig. 5c). These data indicate that 

most pedigrees sustain few genomic changes within the first 100 days of proliferative 

expansion. By P15 and through P25, however, half the pedigrees showed evidence for 

aneuploidy as well as an increase in interstitial CNV and SNVs with allele frequencies 

nearing 0.5, suggesting the rise of an advantaged subclone. We asked how these late passage 

genomic changes might impact differentiation by comparing early and late passages of 

pedigree 2 in ALI differentiation. By all histological criteria, including Alcian blue staining 

for goblet cells and intestinal marker staining, we could not distinguish the ALI 

differentiated epithelia derived from P7, P17, and p27 (Fig. 5d; Extended Data Fig. 7). 

Similarly, we note that these intestinal stem cell pedigrees do not lose (or gain) 

clonogenicity when tested at P7 and p16, which remain stably above 50% (Fig. 5e,f). Lastly, 

we found no evidence of tumorigenicity by these ground state intestinal stem cells, including 

those at P25 harboring aneuploidies, following their subcutaneous implantation to 

immunodeficient (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) mice35 (Extended Data Fig. 8).
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Modeling C. difficile infections

Clostridium difficile (Cd) is a gram-positive, spore-forming bacterium and the primary cause 

of nosocomial diarrhea and pseudomembranous colitis36. The pathogenicity of Cd is linked 

to its production of two similar, high molecular weight toxins TcdA and TcdB. While 

together TcdA and TcdB cause fluid secretion, inflammation, and colonic tissue damage, 

their respective and possible synergistic roles have been difficult to ascertain37–39. We 

therefore challenged colonic epithelia derived from cloned, ground state colonic stem cells 

with recombinant TcdB (Fig. 6a,b; Extended Data Fig. 9a,b). At higher concentrations or 

longer time points there is a loss of goblet cells, disruption of the crypt architecture, cell 

polarity, and a specific loss of tight versus adherens junction proteins that correlates with 

increased dextran permeability (Fig. 6c). These dose-response changes in the ALI colonic 

epithelium mirror those of C. difficile-associated pseudomembranous colitis (Fig. 6d, 

Extended Data Fig. 9a,b). Microarray analysis of ALI-generated colonic epithelia following 

nine TcdB treatment conditions revealed alterations in gene expression in a time- and dose-

dependent manner (Fig. 6e,f; Extended Data Fig. 9c–f). Pathway analysis indicated that 

TcdB triggers changes in gene expression related to inflammation, RhoB-mediated actin 

regulation, and junctional dynamics previously implicated in C. difficile pathology40,41. In 

addition, this analysis revealed that DUOX2 and DUOXA2 were consistently the two 

highest up-regulated genes (Fig. 6e,f). These proteins form an enzyme capable of producing 

hydrogen peroxide and have been implicated in the inflammation of inflammatory bowel 

disease (IBD)42. Finally, we also tested C. difficile TcdA in our model. TcdA is reported to 

be a specific enterotoxin36,37, and indeed we found that it triggers similar cytopathic and 

permeability changes in ALI models of human colonic epithelium (Extended Data Fig. 10), 

albeit at lower doses than those effective for TcdB. Together these findings underscore the 

potential of this model system to recapitulate and elucidate C. difficile pathology.

Discussion

Adult stem cells of the highly regenerative intestinal tract remain largely defined by 

metabolic, marker profiling, or lineage tracing experiments in vivo or transplantation of cells 

from intestinal organoids23, 43–44. As stem cells comprise only minor component of 

organoids- perhaps less than 1%45, the molecular features of stem cells of columnar 

epithelia such as the intestinal tract have remained unclear. Therefore the selective cloning 

and proliferative expansion of highly clonogenic, ground state intestinal stem cells described 

here offers a first glimpse into the molecular properties of these cells. Our inability to 

convert differentiated cells to clonogenic cells supports the notion that we are cloning 

resident stem cells rather than somehow “reprograming” differentiated enterocytes. These 

resident stem cells possess robust epigenetic programs of commitment to regiospecific 

intestinal differentiation that are stable despite more than six months of continuous 

propagation. This cell-autonomous regiospecificity of stem cells along the intestinal tract 

argues against a unitary “intestinal stem cell” or even one each for the histologically 

recognized segments but rather a developmentally established spectrum of stem cells that 

ultimately maintains the histological and functional properties that define these segments. 

An heuristic deciphering of the commitment code from the regiospecific expression patterns 

presented here will guide parallel efforts with iPSCs to achieve appropriate lineage fates46. 
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Interestingly, many inductive signaling pathways and transcription factors implicated in 

embryonic gut formation47 may act to reinforce commitment codes via continued expression 

in stem cells of the intestinal tract.

We anticipate that the ability to maintain these stem cells in their elemental state will enable 

the discovery of epigenetic mechanisms that underlie properties of very long-term self-

renewal, exquisitely precise lineage commitment, and the intrinsically directed, self-

assembly of differentiated epithelia. Though we demonstrate the potential of clonally-

derived colonic epithelia to model the pathogenesis of C. difficile toxins, we anticipate the 

need to restore complexity in the form of mesenchyme, immune cells, enteric neurons, and 

perhaps components of the microbiome48 to fully recapitulate disease dynamics. In 

particular, enteric maladies such as inflammatory bowel disease represent significant 

medical challenges whose etiologies most likely reside in interactions between the immune 

system, intestinal mucosa, and intestinal flora49,50. Finally, the ability to clone patient-

specific, ground state stem cells from endoscopic biopsies, coupled with their orders-of-

magnitude expansion kinetics over organoids, favors their use in regenerative medicine, pre-

clinical trials, and disease modeling.

Methods

In vitro culture of human small intestinal and colonic epithelial stem cells

Intestinal tissue from 20- to 21-week-old late fetal demise cases were obtained under parent 

consent as de-identified material under approved institutional review board protocols at the 

Brigham and Women’s Hospital, Boston, MA, USA (2009P002281). Terminal ileum 

endoscopic biopsies were obtained under informed consent and institutional review board 

approval at the Connecticut Children’s Medical Center, Hartford, CT USA (15-047J-2). 

Fetal intestinal tissue or 1 mm endoscopic biopsies from terminal ileum were collected into 

cold F12 media (Gibco, USA) with 5% fetal bovine serum (HyClone, USA) and then 

minced by sterile scalpel into 0.2–0.5 mm3 sizes to a viscous and homogeneous appearance. 

The minced tissue was digested in 2 mg/ml collagenase type IV (Gibco, USA) at 37°C for 

30–60 min with agitation. Dissociated cells were passed through a 70 μm Nylon mesh 

(Falcon, USA) to remove aggregates and then were washed four times in cold F12 media, 

and then seeded onto a feeder layer of lethally irradiated 3T3-J2 cells9,12 in c-FAD media9 

modified to SCM-6F8 media by the addition of 125 ng/mL R-spondin1 (R&D systems, 

USA), 1 μM Jagged-1 (AnaSpec Inc, USA), 100 ng/ml human Noggin (Peprotech, USA), 

2.5 μM Rock-inhibitor (Calbiochem, USA), 2 μM SB431542 (Cayman chemical, USA), and 

10 mM nicotinamide (Sigma-Aldrich, USA). Cells were cultured at 37°C in a 7.5% CO2 

incubator. The culture media was replaced every two days. Colonies were digested by 

0.25 % trypsin-EDTA solution (Gibco, USA) for 5–8 min and passaged every 7 to 10 days. 

Colonies were trypsinized by TrypLE Express solution (Gibco, USA) for 8–15 min at 37°C 

and cell suspensions were passed through 30 μm filters (Miltenyi Biotec, Germany). 

Approximately 20,000 epithelial cells were seeded to each well of 6-well plate. Cloning 

cylinder (Pyrex, USA) and high vacuum grease (Dow Corning, USA) were used to select 

single colonies for pedigrees. Gene expression analyses were performed on cells derived 

from passage 4–8 (P4–P8) cultures.
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Histology and Immunostaining

Histology, hematoxylin and eosin (H&E), Alcian blue, Periodic acid–Schiff (PAS), 

Rhodamine B staining, immunohistochemistry, and immunofluorescence were performed 

using standard techniques. For immunofluorescence and immunohistochemistry, 4% 

paraformaldehyde-fixed, paraffin embedded tissue sections were subjected to antigen 

retrieval in citrate buffer (pH 6.0, Sigma-Aldrich, USA) at 120 °C for 20 min, and a blocking 

procedure was performed with 5% bovine serum albumin (BSA, Sigma-Aldrich, USA) and 

0.05 % Triton X-100 (Sigma-Aldrich, USA) in phosphate-buffered saline (PBS; Gibco, 

USA) at room temperature for 1 hr. Primary antibodies used in this study and staining 

condition were listed in Supplementary Information Table 3. All images were captured by 

using the Inverted Eclipse Ti-Series (Nikon, Japan) microscope with Lumencor SOLA light 

engine and Andor Technology Clara Interline CCD camera and NIS-Elements Advanced 

Research v.4.13 software (Nikon, Japan) or LSM 780 confocal microscope (Carl Zeiss, 

Germany) with LSM software. Bright field cell culture images were obtained on an Eclipse 

TS100 microscope (Nikon, Japan) with Digital Sight DSFi1camera (Nikon, Japan) and NIS-

Elements F3.0 software (Nikon, Japan).

Stem cell differentiation

Air-liquid interface (ALI) culture of intestinal and colonic epithelial cells was performed as 

described12,51. Briefly, Transwell inserts (Corning, USA) were coated with 20% Matrigel 

(BD Biosciences, USA) and incubated at 37 °C for 30 min to polymerize. 200,000 irradiated 

3T3-J2 cells were seeded to each transwell insert and incubated at 37 °C, 7.5% CO2 

incubator overnight. QuadroMACS Starting Kit (LS) (Miltenyi Biotec, Germany) was used 

to purify the stem cells by removal of feeder cells. 200,000–300,000 stem cells were seeded 

into each Transwell insert and cultured with SCM-6F8. At confluency (3–7 days), the apical 

media was removed through careful pipetting and the cultures were continued for an 

additional 6–12 days before analysis.

Clostridium difficile toxin treatment and epithelial permeability assay

Clostridium difficile toxins A and B (TcdA, TcdB) were prepared as described52. Intestinal 

stem cells were differentiated in air-liquid interface cultures as described above and treated 

with 100, 250, 500 pM and 10 nM TcdA or TcdB for 0, 8, 16, and 24 hr). At these time 

points, membranes with differentiated epithelia were collected for histology and microarray 

analysis. 4kDa FITC-dextran (Sigma-Aldrich, USA) was added to the apical chamber of the 

Transwell chambers for a final concentration of 0.5 mg/ml. Media was removed from the 

bottom compartment after different incubation times and fluorescence was read by 

fluorometer (Infinite® M1000 PRO, excitation 490 nm, emission 520 nm, Tecan, USA).

Implantation of intestinal stem cells

Intestinal stem cells (1.5 million cells) from different pedigrees with 50 % of Matrigel (BD 

Bioscience, USA) were subcutaneously implanted into female, six-eight-week-old 

immunodeficient (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) mice35 under IACUC approval 

(100533-1115) To test spontaneous transformation of the stem cells, mice were monitored 

every month (up to 4 months).
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RNA and genomic DNA sample preparation

For stem cell colonies, RNA was isolated using PicoPure RNA Isolation Kit (Life 

Technologies, USA). For ALI-differentiated epithelia, RNA was isolated using Trizol RNA 

Isolation Kit (Life Technologies, USA). RNA quality (RNA integrity number, RIN) was 

measured by analysis Agilent 2100 Bioanalyzer and Agilent RNA 6000 Nano Kit (Agilent 

Technologies, USA). RNAs having a RIN > 8 were used for microarray analysis. Genomic 

DNA was extracted with DNeasy Blood & Tissue kit (Qiagen, Netherlands) from intestinal 

and colonic stem cells for CNV analysis and exome capture sequencing. For genomic DNA 

extraction, human intestinal and colonic stem cells were isolated from mouse 3T3 feeder 

layer using QuadroMACS Starting Kit (Miltenyi Biotec, Germany). Genomic DNA 

concentration was measured with Qubit® dsDNA BR Assay Kit (Life Technologies, USA).

Expression microarray and bioinformatics

Total RNAs obtained from immature colonies and ALI differentiated structure were used for 

microarray preparation with WT Pico RNA Amplification System V2 for amplification of 

DNA and Encore Biotin Module for fragmentation and biotin labeling (NuGEN 

Technologies, USA). RNA quality (RNA integrity number, RIN) was measured by analysis 

using an Agilent 2100 Bioanalyzer and Agilent RNA 6000 Nano Kit (Agilent Technologies, 

USA). RNAs having a RIN > 8 were used for microarray analysis. All samples were 

prepared according to manufacturer’s instructions and hybridized onto GeneChip Human 

Exon 1.0 ST Array (Affymetrix, USA). GeneChip operating software was used to process all 

the Cel files and calculate probe intensity values. To validate sample quality, quality checks 

were conducted using Affymetrix Expression Console software. The intensity values were 

log2-transformed and imported into the Partek Genomics Suite 6.6 (Partek Incorporated, 

USA). Exons were summarized to genes and a 1-way ANOVA was performed to identify 

differentially expressed genes. For two sample statistics, p-values were calculated by student 

t-test for each analysis. Unsupervised clustering and heatmap generation were performed 

with sorted datasets by Euclidean distance based on average linkage clustering, and 

Principal Component Analysis (PCA) map was conducted using all or selected probe sets by 

Partek Genomics Suite 6.6. Gene Set Enrichment Analysis (GSEA)53 was performed for C. 

diff toxin B treatment. For the region-specific gene signature of small intestine and colon 

comparison (PD, PJ and MI for Figure 2b and AC, TC and DC for Figure 3b), differentially-

expressed genes were selected with a cutoff value of 1.5 fold and p < 0.05 in each 

comparison (e.g. 1) PD vs. PJ and 2) PD vs. MI) and then intersected genes in 2 gene lists of 

each comparison were taken as regio-specific gene sets. In the heatmaps (Fig. 2b and 3b), 3 

regio-specific gene sets (PD, PJ and MI, or AC, TC and DC) were combined, and the 

heatmaps were made with Euclidean distance based on average linkage clustering. For C. 
difficile toxin B treatment data sets, samples from indicated time points and dosages were 

compared with control (untreated samples). Differentially-expressed genes (2-fold up-

regulated and down-regulated genes) were counted and plotted in 3D column plots 

(Extended Data Figure 8c). In comparison of 500 pM 24 hrs toxin B treatment with control, 

39 genes were significantly upregulated (cutoff value: 3 fold and p < 0.05) and a heatmap 

(Figure 6e) was made with 39 genes using all samples. The whole genome expression data 

of 500 pM 24 hrs toxin B treatment vs. control were applied to GSEA program to detect 

significantly enriched pathway in toxin B treatment. Selected pathways (from KEGG) were 
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shown in Figure 6d. Datasets generated for this study have been submitted to the National 

Center for Biotechnology Information Gene Expression Omnibus (GEO) database under 

files GSE57584 and GSE63880.

Copy number variation

For copy number variation analysis of stem cell pedigrees and passage 0 pooled sample, 

genomic DNA samples were genotyped with HumanOmniExpress BeadChip Kit for clone 1 

and 2 (passage 5, 10, 15 and 20) (Illumina, USA) and Illumina HumanOmniZhonghua 

BeadChip Kit for clones 3 to 7(passage 5 and 25) following the manufacturer’s instructions. 

Analysis of BeadChip was performed using GenomeStudio Software (Illumina, USA). 

Illumina high-density SNP genotyping data was converted to kilobase-resolution detection 

of copy number variation. CNV detected in passage 0 pooled samples are considered as 

germline CNVs and removed in the analysis. The data was generated by PennCNV54. Genes 

within 10Kb of CNV regions are reported. The parameter is set as “-expandleft 10k” and “-

expandright 10k”. Other parameters are default. Confidence score > 10 was used as a cutoff. 

The call rates for CNV were all greater than 99%, and two larger CNV amplification and 

deletion events were validated by quantitative PCR.

Exome capture sequencing

For Exome capture and high-throughput sequencing for intestinal stem cells (pedigree 1 and 

2), 50 ng of gDNA was used to perform Nextera Expanded Exome Kit (Illumina, USA). For 

pedigree 3 to 7, 1μg of genomic DNA was sheared using a Covaris S1 Ultrasonicator 

(Covaris, USA), end-repaired, A-tailed, and Adaptor-ligated. Exome capture was performed 

using a Tru-seq Exome Enrichment Kit (Illumina, USA) following the manufacturer’s 

instructions. Multiplexed libraries were sequenced on an Illumina HiSeq sequencer using 

101-bp paired-end reads. Reads were aligned to the reference genome (UCSC hg19) using 

Burrows Wheeler Aligner (BWA, 0.6.2)55. PCR duplicates were removed using 

PICARD-1.94 (http://picard.sourceforge.net). The Genome Analysis Toolkit (GATK 

framework version 2.6.4)56 was used to realign reads near indels and to recalibrate base 

quality values.

When running GATK, the minimum phred-scaled confidence threshold at which variants 

were called (-stand_call_conf) was 50, and the minimum phred-scaled confidence threshold 

at which variants were emitted (-stand_emit_conf) is 30. The criteria of GATK Variant 

Filtration is as follows: --clusterWindowSize 10 --filterExpression “MQ0>4 && ((MQ0/

(1.0*DP))>0.1)” --filterName “HARD_TO_VALIDATE” --filterExpression “DP<5” --

filterName “LowCoverage” --filterExpression “QUAL<30” --filterName “VeryLowQual” --

filterExpression “QUAL>30 && QUAL<50” --filterName “LowQual” --filterExpression 

“QD<1.5” --filterName “LowQD” --filterExpression “FS>150” --filterName “StrandBias”. 

Potential mouse genomic DNA contaminant reads were detected by alignment to the mouse 

genome (UCSC mm10) and those containing less than 3 mismatches were removed from 

further analysis. SNVs were called in each sample separately using SAMtools- v0.1.1957 

and GATK in the exome capture targeted regions. Variants with at least Q50 confidence, 

phred-scaled quality score more than 40 and coverage higher than 10 were considered as 

true SNVs. Variants were annotated with ANNOVAR (version 11 Feb, 2013)58. Identical 
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variant calls in intestinal stem cells (passage 5 and higher) when compared to passage 0 

pooled samples were used to identify germline SNVs. Sanger sequencing validation was 

performed using primers designed with Primer3 software version 4.0 (http://

frodo.wi.mit.edu/). Extracted genomic DNA was amplified with titanium taq polymerase 

(Clontech Laboratories, CA, USA) and purified PCR products were sequenced in the 

forward directions using ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction 

kits and an ABI PRISM 3730 Genetic Analyzer (Applied Biosystems, CA, USA). We 

validated by PCR and Sanger sequencing 13 of 14 non-synonymous mutations called by our 

sequencing efforts suggesting a false discovery rate of less than 10%. Other quality control 

parameters are shown in Supplementary Information Table 4.
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Extended Data

Extended Data Fig. 1. Loss of clonogenicity in differentiated ISC
a. Schematic of ISC differentiation using either the gamma-secretase inhibitor 

dibenzazepine (DBZ) or withdrawal of the Wnt regulator R-spondin 1 (Rspo1). ISCs were 

plated on day 0, DBZ added or Rspo1 removed at day 2, and colonies passaged en mass at 

day 7. At day 14, after 7 days of continuous growth, colonies were counted. b. Micrographs 

show immunofluorescence at day 7 colonies grown without Rspo1 or in the presence of 

DBZ for five days using antibodies to Ki67, chromogranin A (CHGA), keratin 20 (Krt20), 

E-cadherin (E-cad), and mucin 2 (Muc2). Scale bar, 50um; n=4 technical replicates. c. 
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Histogram shows colony formation in each condition normalized to control ISCs. n=4 

biological replicates; Error bars, SD. d. Staining of ALI-differentiated intestinal stem cells 

with monoclonal antibody HD6 directed to Paneth cells. Scale bar, 50um; n=4 technical 

replicates.

Extended Data Fig. 2. Intestinal stem cell expression profiles
a. List of genes differentially expressed in ISC derived from duodenum, jejunum and ileum. 

These data correspond to heatmap of Fig. 2b. b. Immunofluorescence labeling of ALI-

differentiated ISCs from duodenum with antibodies against Tff2, mucin 5AC, villin, E-

cadherin, and mucin 2. c. Immunofluorescence labeling of ALI-differentiated epithelia from 

jejunum stem cells with antibodies to E-cadherin, mucin 2, villin, and mucin 5AC. Scale bar, 

50um; n=10 technical replicates.
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Extended Data Fig. 3. Differential gene expression in epithelia derived from colonic stem cells
Heatmap of differentially expressed (>1.5-fold, p<0.05) genes in ALI cultures derived from 

stem cell pedigrees of ascending, transverse, and descending colon.
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Extended Data Fig. 4. Differential gene expression across columnar and stratified epithelial stem 
cells
a. Histograms of expression microarray signal intensity of selected genes across averaged 

intestine and colon ISCs, stratified epithelial stem cells, and stem cells of the fallopian tube. 

Biological replicas n=2–6 (FT=2, stratified epithelia=3, colon, intestine=6); Error bars, SD. 

b. Dot plot showing expression microarray data of indicated genes for stem cell pedigrees 

(ISC; Duo, duodenum; Jej, jejunum; Ile, ileum; AC, ascending colon; TC, transverse colon; 

DC, descending colon) derived from various regions of the intestinal tract before and after 

air-liquid interface (ALI) differentiation. Biological replicas n=2 (total 12 datasets) for stem 

cells, technical replicas n=2 for ALI. c. Chart of aggregate p-values by Student t-test for 

gene expression changes between ground state stem cells and their ALI-differentiated 

counterparts.
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Extended Data Fig. 5. Genes impacted by CNV and SNV events in intestinal stem cell pedigrees 
during passaging
a. Summary of CNV [events (genes affected)] and non-synonymous SNV in pedigrees 1 and 

2 at P5 to P20. b. Summary of genes altered by interstitial CNV amplifications (top) or 

deletions (bottom) in ISC pedigrees no. 3 to 7 at P5 and P25. c. Summary of genes 

sustaining non-synonymous SNV in five ISC pedigrees at P5 and P25.
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Extended Data Fig. 6. 
Whole genome CNV profiles for intestinal stem cell pedigrees 3–7 at P5 and P25. Regions 

marked by ovals represent aneuploidy.
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Extended Data Fig. 7. Impact of ISCGS passaging on ALI differentiation
ALI differentiation of intestinal pedigree 2 initiated from cells at the indicated passage 

number. As indicated, histological sections of differentiated epithelia were stained with 

antibodies to either E-cadherin (ECAD, green) and mucin 2 (Muc2, red), or Ki67 (green) 

and chromogranin A (CHGA, red). Scale bar, 75um; n=4 technical replicates.
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Extended Data Fig. 8. ISCGS tumorigenicity assays in immunodeficient mice
a. Quantification of tumor formation assesses at 4–16 weeks following subcutaneous 

innoculation of two million cells of the indicated ISC pedigrees at passage 6 or passage 25 at 

4–16 weeks. “Pool” indicates total set of clones derived from P0 ileum culture prior to 

pedigree generation. “Cancer cells” refers to propagating cells from case of high-grade 

serous ovarian cancer. b. Left, Histological section through site of injection of 1 million cells 

from pedigree 3. Right, Section of injection site stained with antibody (STEM121) to human 

epithelial cells (brown) revealing benign cysts. Scale bar, 15um.
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Extended Data Fig. 9. Dose- and time-dependency of TcdB pathology in ALI-generated colonic 
epithelia
a. Immunofluorescence localization of adherens junction marker E-cadherin and tight 

junction marker claudin 3 in ALI differentiated epithelia derived from transverse colon stem 

cells following exposure to 100pM TcdB for the indicated durations. n=4 technical 

replicates. Scale bar, 100um. b. Representative H&E images of ALI cultures at indicated 

times and concentration of TcdB exposure. Scale bar, 250um; n=4 technical replicates. c. 
Gene Set Enrichment Analysis of whole genome expression data from colonic epithelia 

treated with 500pM TcdB for 24 hrs. and control samples showing enriched KEGG pathway 

sets. NES: normalized enrichment score; NOM p-value: nominal p-value. d. 3D plot of up-

regulated genes at the indicated time points and dosages >2-fold, p<0.05). n=2 technical 

replicates. e. Heatmap of up-regulated genes in 500 pM TcdB samples. The genes (237 

genes) were chosen by cutoff values (>2-fold, p < 0.05). Three time points (8, 16 and 24 hrs) 

are shown. f. 3D plot of down-regulated genes at the indicated time points and dosages >2-

fold, p<0.05). n=2 technical replicates.
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Extended Data Fig. 10. Dose- and time-dependency of TcdA pathology in ALI-generated colonic 
epithelia
a. left, Representative H&E images of ALI cultures at indicated times and concentration of 

TcdA exposure; right, Immunofluorescence localization of adherens junction marker E-

cadherin (ECAD; green) and mucin 2 (MUC2; red) in ALI differentiated epithelia derived 

from transverse colon stem cells following incubation with 10nM TcdA for the indicated 

durations. Scale bar, 100um; n=4 technical replicates. b. 3-D plot of histological scoring of 

representative H&E time points and concentrations performed by gastrointestinal pathologist 

according to a standard 0–3 rating for colonic epithelial integrity. c. Distribution of tight 

junction marker claudin 3 (Cldn3) and adherens junction marker (Cdh17) following 

treatment of ALI colonic epithelium with TcdA for the indicated times and doses. Scale bar, 

50um; n=4 technical replicates. d. Histogram of permeability of ALI colonic epithelium 
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(Papp) to small molecules (FD4, MW 4400Da) following exposure to the indicated doses of 

TcdA for the indicated times.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Cloning stem cells from fetal intestine
a. Sox9 expression in fetal intestine, scale bar, 25um; colonies from intestine (n=10 

biological replicates; colonies of ISC pedigree (n=30 independent experiments). Scale bar, 

75um. Right, ISC colonies stained with indicated antibodies. n=4 technical replicates. 

Bottom, Marker expression following Notch inhibition. n=4 technical replicates. b. ISC 

colony growth. Scale bar, 75um. Right, Clonogenicity of colony cells. n=3 biological 

replicates. c. ISC and TBSC pedigrees and ALI differentiation (tubulin, green; Muc5AC, 

red). Scale bar, 50um left, 25um right top, 25um bottom right; n=7 biological replicates; n=3 

technical replicates; 3 independent experiments d. ALI-differentiated ISC. Scale bar, 50um. 

n=7 biological replicates; n=3 technical replicates; 3 independent experiments. e. PCA using 

2158 genes (>2-fold, p<0.05 by Student t-Test) of ISC and TBSC and corresponding ALI-

differentiated epithelia. f. Markers in ISC and TBSC. n=3 technical replicates.
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Figure 2. Stem cells from fetal small intestine
a. Depiction of small intestine and clones derived from each. Scale bar, 400um; n=3 

biological replicates. b. Heatmap of pedigrees from duodenum (Du), jejunum (JE), and 

ileum (Il). c. Surface views of ALI cultures. Scale bar, 200um; n=30 technical replicates. 

d.,e. Histological sections through ALI cultures at low (Scale bar, 150um) and high Scale 

bar, 50um) magnification. f. Immunofluorescence on sections of ALI cultures with indicated 

antibodies. Scale bar, 75um; n=3 technical replicates. g. PCA map of stem cell gene 

expression from the three major regions of the small intestine together with their 

corresponding ALI-differentiated epithelia.
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Figure 3. Stem cells of fetal colon
a. Depiction of colon and clones derived from each. Scale bar, 75um; n=3 biological 

replicates. b. Expression heatmap of pedigrees from the three major divisions of the colon. c. 
Surface images of ALI cultures. Scale bar, 100um; n=20 technical replicates. d. Histological 

sections through ALI cultures of colon stem cells. Scale bar, 75um. e. Immunofluorescence 

on sections through ALI cultures with indicated antibodies. Scale bar, 50um. f. PCA map of 

gene expression of colon and intestine stem cells. g. Expression heatmap of stem cells of 

small intestine and colon. h. PCA map of gene expression profiles of intestinal stem cells 

and their corresponding ALI-differentiated epithelia.
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Figure 4. Differential gene expression in stem cells of stratified and columnar epithelia
a. PCA map of stem cells of stratified epithelia (corneal epithelium, Cor; mammary gland, 

MG; prostate gland, PG; epidermis, Epi; tracheobronchial epithelium; TB) and columnar 

epithelia (fallopian tube epithelium, FTSC). b. Gene expression in stem cells (stratified 

epithelia n=3 technical replicates; columnar epithelia n=2 technical replicates). c. 
Transcription factors differentially expressed in TBSC and ISC. d. ALI differentiated adult 

terminal ileum stem cells derived from endoscopic biopsy. Scale bar, 50um; n=10 technical 

replicates. e. PCA map of stem cells of adult terminal ileum, colon, fetal ISCs, and stratified 

epithelia. f. Stem cell markers in adult terminal ileum stem cells and TBSCs.
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Figure 5. Genomic stability of ISC in culture
a. Clone selection for pedigree generation. Scale bar, 200um. b. Serial passaging of 

pedigrees. c. CNV BAF and LRR profiles of pedigrees at P5 to P20 and trisomy 12 indicated 

(circle). d. ALI-differentiated pedigree 2 at P7, 17, and P27 stained with H&E (top), Alcian 

blue (middle), and periodic acid-Schiff (bottom). Scale bar, 100um; n=4 technical replicates. 

e. Clonogenicity assay revealing Rhodamine red-stained colonies grown 20 days following 

seeding 1,000 passaged cells. Scale bar, 10mm; n=3 technical replicates. f. Quantification of 

clonogenicity at indicated passage number of ground state stem cells from jejunum (IJejSC) 

and ileum (IIleSC). n=3 biological replicates; Error, SD.
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Figure 6. C. difficile Toxin B effects on in vitro generated colonic epithelia
a. TcdB effects on colonic stem cell-derived epithelia. Scale bar, 100um. n=4 technical 

replicates. b. Tight junction protein claudin 3 (CLDN3; red) and adherens junction marker 

cadherin-17 (CDH17; green) in ALI colonic epithelium TcdB. Scale bar, 50um; n=4 

biological replicates. c. Dextran permeability assay on TcdB-treated ALI colonic epithelia. 

d. 3-D plot of histological scoring by gastrointestinal pathologist according to a standard 0–3 

rating for colonic epithelial integrity. e. Heatmap of thirty-nine genes differentially 

expressed between TcdB (500 pM 24 hrs) and controls (>3-fold and p < 0.05 by Student t-

Test). f. 3-D plot of seven selected genes at time points and doses indicated. n=2 technical 

replicates.
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