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Abstract

DNA methylation is an epigenetic modification that plays critical roles in gene silencing,

development, and genome integrity. In Arabidopsis, DNA methylation is established by

DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) and targeted by 24 nt small

interfering RNAs (siRNAs) through a pathway termed RNA-directed DNA methylation (RdDM)1.

This pathway requires two plant-specific RNA polymerases: Pol-IV, which functions to initiate

siRNA biogenesis and Pol-V, which functions to generate scaffold transcripts that recruit

downstream RdDM factors1,2. To understand the mechanisms controlling Pol-IV targeting we

investigated the function of SAWADEE HOMEODOMAIN HOMOLOG 1 (SHH1)3,4, a Pol-IV

interacting protein3. Here we show that SHH1 acts upstream in the RdDM pathway to enable
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siRNA production from a large subset of the most active RdDM targets and that SHH1 is required

for Pol-IV occupancy at these same loci. We also show that the SHH1 SAWADEE domain is a

novel chromatin binding module that adopts a unique tandem Tudor-like fold and functions as a

dual lysine reader, probing for both unmethylated K4 and methylated K9 modifications on the

histone 3 (H3) tail. Finally, we show that key residues within both lysine binding pockets of SHH1

are required in vivo to maintain siRNA and DNA methylation levels as well as Pol-IV occupancy

at RdDM targets, demonstrating a central role for methylated H3K9 binding in SHH1 function and

providing the first insights into the mechanism of Pol-IV targeting. Given the parallels between

methylation systems in plants and mammals1,5, a further understanding of this early targeting step

may aid in our ability to control the expression of endogenous and newly introduced genes, which

has broad implications for agriculture and gene therapy.

SHH1 was recently identified as a Pol-IV interacting protein and shown to affect de novo

DNA methylation3. To investigate the role of SHH1 in the RdDM pathway genome-wide,

we generated siRNA profiles in wild-type Col plants, shh1 mutant plants, and several other

RdDM mutants for comparison. In wild-type plants ~12,500 siRNA clusters were defined,

representing 84.2% of all uniquely mapping 24 nt siRNAs. Consistent with previous

findings, 81.4% of these siRNAs were Pol-IV-dependent6,7 (Fig. 1a). Analysis of the siRNA

clusters reduced in shh1 mutants demonstrated that SHH1 is a major regulator of siRNA

levels, affecting 44% of Pol-IV-dependent clusters (Fig. 1b and Supplementary Fig. 1a).

These shh1-affected clusters represent the majority of all 24 nt siRNAs, as well as a majority

of clusters reduced in two downstream RdDM mutants (drm2 and pol-v) (Fig. 1b and

Supplementary Fig. 1a). The overlap of the reduced siRNA clusters in these mutants formed

four main subclasses (termed pol-iv only, shh1, shh1/drm2/pol-v, and drm2/pol-v; Fig. 1b),

which were used for subsequent analyses. Interestingly, the clusters that depend solely on

Pol-IV were more enriched in pericentromeric heterochromatin than those that also depend

on SHH1, DRM2, and Pol-V (Fig. 1c and Supplementary Fig. 1b, c), suggesting that

different mechanisms may be controlling siRNA production in the euchromatic arms versus

pericentromeric heterochromatin.

In shh1 mutants, siRNA levels at SHH1-dependent clusters (shh1 and shh1/drm2/pol-v

subclasses) are reduced to nearly zero, while siRNA levels at SHH1-independent clusters

experienced little to no change (Fig. 1d). These results demonstrate that SHH1 is a locus-

specific RdDM component that has strong affects at a large subset of RdDM loci. Notably,

the two downstream RdDM mutants (drm2 and pol-v) have the strongest affect on siRNAs

levels at clusters that also require SHH1 (shh1/drm2/pol-v subclass), and these same clusters

are amongst the highest siRNA-producing clusters in the genome (Fig. 1d, e and

Supplementary Fig. 1d, e). Together, these findings suggest that SHH1, and the downstream

RdDM mutants, converge to control siRNA levels at the most active sites of RdDM.

Using whole-genome bisulfite sequencing (BS-seq), we assessed DNA methylation levels at

the loci showing reduced siRNA levels and found that, consistent with its interaction with

Pol-IV, SHH1 is an upstream RdDM component—shh1 mutants only affect DNA

methylation at sites where siRNA levels are reduced (Fig. 1e and Supplementary Fig. 2a).

Furthermore, the residual siRNAs present in shh1 mutants appear to target some methylation
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(Supplementary Fig. 2b), as predicted for an upstream RdDM component. This is in contrast

to the downstream mutants, drm2 and pol-v, which reduced DNA methylation to nearly pol-

iv levels even at sites that retain siRNAs (Fig. 1e), presumably due to an inability of these

mutants to utilize siRNAs to target DNA methylation.

At loci corresponding to the shh1/drm2/pol-v and drm2/pol-v subclasses of siRNA clusters,

the observed losses of siRNAs were accompanied with a correspondingly large loss of DNA

methylation (Fig. 1e and Supplementary Fig. 2a). However, at the pol-iv only and shh1

subclasses, large losses of siRNAs were accompanied by relatively little DNA methylation

loss. A likely explanation for this finding is that other DNA methylation pathways are active

at sites corresponding to the pol-iv only and shh1 siRNA clusters. In addition to the RdDM

pathway, DNA methylation in Arabidopsis is controlled by two maintenance

methyltransferase pathways1: the DNA METHYLTRANSFERASE 1 (MET1) pathway,

which acts to maintain CG methylation, and the CHROMOMETHYLTRANSFERASE 3

(CMT3) pathway, which acts along with several H3K9 histone methyltransferases to

maintain CHG and some CHH methylation8. Consistent with this explanation we found,

using a previously published CMT3 ChIP-seq dataset9, that the pol-iv only and shh1

subclasses of reduced siRNA clusters displayed the highest levels of CMT3 occupancy (Fig.

1f), suggesting that CMT3 is able to maintain DNA methylation at nearly wild-type levels at

these loci. In contrast, the shh1/drm2/pol-v and drm2/pol-v subclasses, which show dramatic

DNA methylation losses in RdDM mutants, display lower levels of CMT3 enrichment (Fig.

1f) and are more highly and precisely enriched for the Pol-V polymerase10 (Fig. 1f and

Supplementary Fig. 2c), suggesting they are primarily targeted by the RdDM pathway.

To test the hypothesis that the siRNA losses observed in shh1 mutants are due to a lack of

Pol-IV targeting, we determined the genome-wide profile of Pol-IV occupancy in wild-type

and shh1 mutant backgrounds via chromatin immunoprecipitation coupled with high

throughput sequencing (ChIP-seq) using a Flag-tagged version of the largest Pol-IV subunit,

NRPD13. Consistent with our profile of Pol-IV-dependent siRNA clusters (Supplementary

Fig. 1b), Pol-IV was broadly enriched at pericentromeric heterochromatin (Supplementary

Fig. 3a) and at the defined subclasses of siRNA clusters (Fig. 2a and Supplementary Fig.

3b). In the shh1 mutant background, Pol-IV levels were drastically reduced or eliminated

specifically at shh1-dependent siRNA clusters (Fig. 2a and Supplementary Fig. 3c), further

supporting the biological relevance of our ChIP-seq profile and confirming that the reduced-

siRNA phenotype of shh1 mutants is due to altered Pol-IV chromatin association. At shh1-

independent siRNA clusters, Pol-IV levels, like siRNA levels, were not reduced in shh1

mutants (Fig. 2a and Supplementary Fig. 3c), suggesting that Pol-IV targeting to these loci

requires an alternative mechanism.

In addition to assessing the levels of Pol-IV enrichment over the affected siRNA cluster

subclasses, we also defined 928 reproducible, high confidence Pol-IV peaks using multiple

ChIP-seq datasets. These peaks were enriched for siRNAs and DNA methylation

(Supplementary Fig. 4a) and preferentially overlapped with the high siRNA-producing shh1/

drm2/pol-v or drm2/pol-v clusters as compared to the pol-iv only and shh1 clusters

(P<2.2e-16, Fisher's Exact Test), suggesting the ChIP procedure is preferentially identifying

sites where Pol-IV is most active. At the 928 defined Pol-IV peaks, we observed a variable
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level of SHH1-dependency and divided the peaks into three categories, SHH1-independent,

SHH1-dependent, and SHH1-enhanced (Supplementary Fig. 4b). In shh1 mutants, DNA

methylation and siRNA levels were reduced at the SHH1-dependent sites and, to a lesser

extent, at sites defined as SHH1-independent (Supplementary Fig. 4c, d). However, siRNA

and Pol-IV levels were increased at SHH1-enhanced sites in shh1 mutants, suggesting a

redistribution of Pol-IV to these sites in shh1 mutants (Supplementary Fig. 4b, c). Notably,

these SHH1-enhanced sites are unique amongst the Pol-IV peaks as they display very low

levels of Pol-V enrichment (Supplementary Fig. 4b), which could explain the

correspondingly low levels of CHH methylation observed at these sites in wild-type plants

(Supplementary Fig. 4d). Together with our analysis of SHH1-dependent siRNA clusters,

these findings demonstrate that SHH1 plays a critical role in facilitating Pol-IV chromatin

association at a subset of the most active sites of RdDM.

To gain insight into the mechanism through which SHH1 facilitates Pol-IV targeting, we

investigated the function of its previously uncharacterized SAWADEE domain11. Since

there are precedents for cross talk between DNA methylation and histone modifications1,12,

we tested the ability of the SAWADEE domain to bind modified histone tails using an

Active Motif modified peptide array. This assay revealed that the SAWADEE domain has a

preference for H3K9 methylation, but is also influenced by the methylation status of the

H3K4 residue, with only unmodified or H3K4me1 modifications being tolerated

(Supplementary Fig. 5a). To confirm these results, isothermal calorimetry (ITC) experiments

were conducted using modified histone tail peptides (Fig. 3a, b and Supplementary Table 1).

These analyses revealed that the SAWADEE domain is quite unique in its ability to bind all

three H3K9 methylation states (me1, me2, and me3) with very similar affinity, Kd ≈ 2 µM,

which is approximately 17 fold stronger than observed using unmodified H3 peptides (Fig.

3a and Supplementary Table 1). ITC experiments also confirmed that while the SAWADEE

domain will bind H3K9me2 peptides that contain H3K4me1 modifications, the presence of

H3K4me2 or H3K4me3 modifications resulted in reduced binding affinity (Supplementary

Table 1). Finally, ITC experiments using modified peptides corresponding to other known

methylated lysine residues on the N-terminal tails of the core histone proteins confirmed the

specificity of the SHH1 SAWADEE domain for H3K9 methylation (Fig. 3b and

Supplementary Table 1).

The anti-correlated effects of H3K9 and H3K4 methylation on SHH1 binding are reflective

of genome profiling studies in Arabidopsis showing that the distribution of H3K9

methylation is anti-correlated with H3K4 methylation13. Consistent with these studies and

the observed in vitro binding specificity of the SHH1 SAWADEE domain to H3K9

methylation, SHH1-dependent Pol-IV ChIP-seq peaks are enriched for H3K9me2

(Supplementary Fig. 5b) and depleted for H3K4 methylation (Supplementary Fig. 5c).

Together, these binding studies demonstrate that the SAWADEE domain is a novel

chromatin binding module that probes both the K4 and K9 positions of the H3 tail and

specifically binds repressive H3K9 methyl-modifications.

To determine the mode of methyl-lysine recognition by the SHH1 SAWADEE domain,

crystal structures of this domain either in the free-state or in complex with modified H3 tails

were solved (Supplementary Tables 2, 3, Fig. 3c, and Supplementary Fig. 6a). In the free-
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state, the SHH1 SAWADEE domain adopts a tandem Tudor domain-like fold that contains a

unique zinc-binding motif located within the Tudor 2 subdomain (Fig. 3c). The overall

structure of the SAWADEE domain resembles the UHRF1 tandem Tudor domain with an

r.m.s.d. of 2.3 Å (Supplementary Fig. 6b) despite only sharing 11.8% sequence identity

(Supplementary Fig. 7)14,15. This finding demonstrates that although the sequence of the

SAWADEE domain is plant specific its fold is highly conserved in eukaryotic organisms.

The structures of the SHH1 SAWADEE domain in complexes with H3K9me1, H3K9me2

and H3K9me3 peptides were also solved and all three peptides were bound in a similar

manner (Supplementary Table 3). Given the known role of the H3K9me2 modification in

gene silencing genome wide in plants16, we focused on the 2.70 Å structure solved with an

H3(1–15)K9me2 peptide (Fig. 4a and Supplementary Fig. 8a). This peptide binds in a

groove between the two Tudor subdomains, forming contacts with both subdomains (Fig.

4a–b and Supplementary Fig. 8b,c). Interestingly, there is no significant conformational

change in the SAWADEE domain upon ligand binding (Supplementary Fig. 9a), which

differs from the situation for UHRF115.

Within the SHH1 SAWADEE domain, there are two pockets that form key intermolecular

interactions with the unmodified K4 and the K9me2 side chains of the bound peptide (Fig.

4c, d). The unmodified H3K4 side chain inserts into an interfacial pocket formed by residues

from both Tudor subdomains. In this pocket, the K4 side chain is stabilized via

intermolecular hydrogen bonds and electrostatic interactions with the side chains of Glu130

and Asp141 (Fig. 4c). The H3K9me2 side chain inserts into a hydrophobic aromatic cage in

the Tudor 1 subdomain (Fig. 4d) where it is stabilized by cation-π interactions in a manner

similar to those reported previously for methylated lysine-binding modules17. The

SAWADEE complexes with H3K9me3 and H3K9me1 peptides also position the methylated

lysines within the same aromatic cage (Supplementary Fig. 10). The ability of the

SAWADEE domain to bind equally against all three H3K9 methylation states can be well

explained by structural observations: The methylated lysine recognition aromatic cage can

accommodate both H3K9me2 and H3K9me3 side chains through common hydrophobic

interactions, resulting in a lack of discrimination between these two methylation states. In

the H3K9me1 complex, although the lower lysine methylation state has a decreased

hydrophobic interaction with the aromatic cage, the side chain of His169 undergoes a small

but significant conformational change in order to hydrogen bond with the K9me1

ammonium proton, thereby contributing to the recovery of the binding affinity

(Supplementary Fig. 10). This lack of specificity for the state of K9 methylation is in

contrast to the higher level of methylation specificity observed for the tandem Tudor domain

of UHRF1, which has a slightly wider aromatic cage binding pocket (Supplementary Fig.

9b). Thus our structural analysis indicates how very subtle changes in the tandem Tudor

domain fold can result in a fine tuning of methyl-lysine specificity.

Consistent with our peptide binding studies (Supplementary Table 1), we were also able to

solve a structure of the SAWADEE domain in a complex with an H3(1–15)K4me1K9me1

peptide (Supplementary Table 3). Overall, this structure resembles the structure with the

H3K9me2 peptide, with the K4me1 accommodated within the same K4 binding pocket.

However, the methyl group forms a stabilizing hydrophobic interaction with Leu201 in
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place of the hydrogen bond that is formed between the unmethylated K4 and the Glu130

side chain (Fig. 4e). Since this K4 binding pocket is relatively closed and narrow, higher

methylation states of K4 would likely introduce steric conflicts and/or disrupt all the

hydrogen bonding interactions, explaining the observed decreases in binding affinity

(Supplementary Table 1).

To test the biological significance of methyl-H3K9 binding activity observed for the SHH1

SAWADEE domain, we generated point mutations within the two lysine binding pockets as

well as the zinc binding motif and tested their affect on DNA methylation, siRNA levels,

and Pol-IV recruitment in vivo. These point mutations were engineered into an

SHH1-3xMyc-BLRP-construct and transformed into an shh1 mutant background. DNA

methylation levels were assessed at a well characterized locus, MEA-ISR, by southern

blotting (Supplementary Fig. 11a) and genome-wide by BS-seq experiments (Fig. 4f and

Supplementary Fig. 11c–e). Addition of a wild-type SHH1-3xMyc-BLRP transgene restored

DNA methylation, but constructs harboring mutations within the H3K9 or the H3K4 pockets

were unable to fully complement the methylation defect observed in the shh1 mutant (Fig. 4f

and Supplementary Fig. 11c–e) despite being expressed at levels comparable to the wild-

type SHH1-3xMyc-BLRP protein (Supplementary Fig. 11a). In line with a canonical role for

the zinc-binding motif in protein structure and/or stability, mutations in the zinc

coordinating residues resulted in nearly undetectable levels of protein (Supplementary Fig.

11b) and thus were not characterized further.

Similar to the shh1 null mutant, the DNA methylation defects in the SHH1 lysine binding

pocket mutants were most pronounced in the shh1/drm2/pol-v subclass of affected siRNA

clusters (Fig. 4f and Supplementary Fig. 11c–e). Consistent with their positions and

predicted contributions to the binding affinity of the SHH1 SAWADEE domain, the

F162AF165A and the D141A mutants display stronger DNA methylation defects (Fig. 4f).

Assessment of siRNA levels in these lysine binding pocket mutants via siRNA-seq

experiments revealed a similar pattern of defects (Fig. 4g and Supplementary Fig. 11f).

Finally, to determine whether the observed losses of siRNAs and DNA methylation reflect a

defect in Pol-IV activity at chromatin, Pol-IV ChIP experiments were conducted in the

SAWADEE domain point mutant backgrounds. All four point mutants displayed reduced

levels of Pol-IV occupancy in two biological replicates (Fig. 4h). In addition, co-

immunoprecipitation experiments revealed that the SAWADEE domain point mutants were

still able to interact with Pol IV (Supplementary Fig. 11g), demonstrating the interaction

between SHH1 with the Pol IV complex is not dependent on its H3K9me binding activity.

Together, these findings show that residues within both the K4 and K9 binding pockets are

critical for SHH1 function in vivo and demonstrate a central role for methyl-H3K9 binding

by SHH1 at the level of Pol IV association with chromatin.

The finding that the H3K4 binding pocket is critical for SHH1 function in vivo was

unexpected considering that the SHH1 SAWADEE does not bind H3K4 methylation in the

absence of H3K9 methylation and that the addition of a methyl group to K4 does not impart

additional binding affinity (Supplemental Table 1). One hypothesis to explain these in vivo

findings is that the mere presence of a lysine at the position five residues back from the

methylated H3K9 residue is necessary for SAWADEE domain binding. Indeed, such dual
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lysine reading could serve to help ensure that the SAWADEE domain only binds lysine

methylation when it is present at the K9 position of the H3 tail as opposed to a methylated

lysine at a different position on the H3 tail, especially the H3K27 position which has similar

ARKS sequence context as H3K9 but a Thr22 at five residues back. To test this hypothesis,

ITC experiments were conducted using H3 tails harboring an H3K4A mutation with or

without the presence of the H3K9me2 modification. Indeed, the SAWADEE domain binds

the H3K4AK9me2 peptide with approximately 30-fold weaker affinity than the H3K9me2

peptide (Supplemental Table 1). Furthermore, the SHH1 SAWADEE domain binds the

H3K4A peptide with weaker affinity than the wild type H3 tail (Supplemental Table 1)

demonstrating that the K4 residue is contributing to binding independent of the methylation

status of the K9 residue.

Together, these in vivo and in vitro analyses demonstrate that the SHH1 SAWADEE domain

is probing the H3 tail at both the K4 and K9 positions and is quite selective for the

combination of histone modifications present at transposons and other repetitive DNA

elements, namely unmodified H3K4 and methylated H3K9. Although H3K9 methylation is

anti-correlated with H3K4 methylation genome-wide13, the aversion of the SAWADEE

domain to higher order H3K4 methylation could serve to allow transcription, which is

correlated with H3K4 methylation, to overcome DNA methylation and associated repressive

H3K9 methyl modifications in a developmental or locus specific manner. Likewise, the

specificity of the SAWADEE domain could inhibit siRNA generation at body methylated

genes which contain CG methylation and H3K4 methyl-modifications, but lack CHG and

CHH methylation as well as siRNAs13,18,19.

In summary, we demonstrate that SHH1 is a novel chromatin binding protein that functions

to enable Pol-IV recruitment and/or stability at the most actively targeted genomic loci in

order to promote siRNA biogenesis. The finding that SHH1 binds to repressive histone

modifications, together with the observation that SHH1 is required for Pol-IV chromatin

association at a similar set of loci as downstream RdDM mutants, could explain the

previously observed self-reinforcing loop in which downstream RdDM mutants are required

for the production of full levels of siRNAs from a subset of genomic loci20–23. Indeed, it has

been shown that downstream RdDM mutants can cause a reduction of both DNA

methylation and H3K9 methylation at RdDM loci24, suggesting that the loss of siRNAs in

these mutants may be due to the associated loss of the appropriate chromatin marks

necessary for SHH1 binding.

METHODS

ChIP-seq, BS-seq and siRNA-seq library construction and sequencing

The first replicate of ChIP-seq libraries (NRPD1-Flag and Col) was generated using the

Ovation Ultralow IL Multiplex System (NuGEN) while the second replicate (NRPD1-Flag,

NRPD1-Flag ; shh1, and Col) was generated using the Ovation Ultralow DR Multiplex

System (NuGEN). Both sets of ChIP-seq libraries used 18 cycles for the library

amplification step. BS-seq libraries were generated as previously reported19. siRNA-seq

libraries were generated using the small RNA TruSeq kit (Illumina) following the

manufacturer instructions with the exception that 15 cycles were used during the
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amplification step. The wild-type (Col) and nrpe1 BS-seq libraries used in this study were

previously published10 and were subsequently reanalyzed for this study. All libraries were

sequenced using the HiSeq 2000 platform following manufacturer instructions (Illumina) at

a length of 50bp. Read statistics are listed in Supplementary Table 4.

Mapping and processing of reads

Sequenced reads were base-called using the standard Illumina pipeline. For ChIP-seq and

BS-seq libraries, only full 50 nt reads were retained, whereas for siRNA-seq libraries, reads

had adapter sequence trimmed and were retained if they were between 18 nt and 28 nt in

length. For ChIP-seq and siRNA-seq libraries, reads were mapped to the Arabidopsis

genome (TAIR8 – www.arabidopsis.org) with Bowtie25 and only perfect matches that

mapped uniquely to the genome were retained for further analysis although the total number

of mapping reads, unique and non-unique, were used when normalizing the siRNA-seq

libraries to total number of reads per library. For BS-seq libraries, reads were mapped using

the BSseeker wrapper for Bowtie26. For ChIP-seq and BS-seq, identical reads were

collapsed into one read, whereas for siRNA-seq identical reads were retained. For

methylation analysis, percent methylation was calculated as previously reported19 with the

unmethylated chloroplast genome serving as the measure of non-bisulfite converted

background methylation. For the second replicate of ChIP-seq, there was a large disparity of

resultant reads for the NRPD1-Flag and NRPD1-Flag ; shh1 libraries, so the NRPD1-Flag

and Col libraries were sampled down to match the read total of the smaller library (the

NRPD1-Flag ; shh1 library).

DNA methylation analysis

For assessment of DNA methylation at siRNA clusters, only those clusters with at least one

cytosine in the respective class being assayed (CG, CHG, or CHH), were considered. For

calculating significance levels of methylation change via the Mann-Whitney U test of

methylation levels for clusters within the different subclasses (Fig. 1e) the number of

clusters within each subclass was down sampled to the smallest subclass (the drm2/nrpe1

subclass) to allow for comparable significance values between subclasses.

Identification of siRNA clusters

Small RNA clusters (Supplementary Table 5) in the Arabidopsis genome were defined in a

manner similar to a previously published approach27. In brief, the genome was divided into

200 bp bins, and the average coverage per bin of non-identical siRNA reads was calculated

in two technical replicates of our wild-type (Col) library. This average was used assay the

significance of the number of non-identical reads at a given bin in wild-type plants,

assuming a Poisson distribution of such counts. In the R environment a Poisson exact test

was carried out for each bin, and bins with a P-value less than 1e-5 in each wild-type

technical replicate were considered as clusters.

Once clusters were defined, comparisons between read counts, including identical reads,

were carried out for each mutant and the wild-type (Col) library using a Fisher’s Exact Test.

Resultant P-values were Benjamini-Hochberg adjusted to estimate FDRs, and clusters

reduced in a mutant background at a FDR<1e-10 were then considered to be dependent on
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the wild-type function the mutant protein (Supplementary Table 5). For boxplot analysis of

siRNA levels, the first technical replicate of the Col library was used as representative of

Col siRNA levels. For calculating significance levels of siRNA change via the Mann-

Whitney U test of siRNA levels for clusters within the different genotypic subclassess (Fig.

1d) the number of clusters within each subclass was down sampled to the smallest subclass

(the drm2/nrpe1 subclass) to allow for comparable significance values between subclasses.

Identification of NRPD1 peaks

The R package BayesPeak28,29 was used to identify regions of Pol-IV enrichment in a

NRPD1-Flag ChIP-seq library as compared to a paired Col ChIP-seq control library done in

parallel. Only high scoring peaks (PP>0.999) identified in both NRPD1-Flag ChIP-seq

replicates (928 peaks) were retained for further analysis (Supplementary Table 6). For the

purposes of assaying overlap of Pol IV peaks with siRNA clusters, “overlap” is called when

>=1bp of a peak overlaps with a locus.

To classify peaks as SHH1-dependent, -independent, or –enhanced, read counts over Pol IV

peaks were compared between the NRPD1-Flag and NRPD1-Flag ; shh1 ChIP-seq libraries,

and significance was assessed using Fisher’s Exact Test. Resultant P-values were

Benjamini-Hochberg adjusted to estimate FDRs. Peaks with a loss of NRPD1 signal in the

shh1 library at a FDR<0.001 were considered SHH1-dependent. Similarly, peaks that gained

signal in shh1 at a FDR<0.001 were considered SHH1-enhanced. Peaks that fell into neither

of these categories were considered SHH1-independent.

Protein preparation

The gene encoding the SAWADEE domain of atSHH1 (residues 125–258) was cloned into

a self-modified vector, which fuses a hexa-histidine tag plus a yeast sumo tag onto the N

terminus of the target gene. The plasmid was transformed into the E. coli strain BL21 (DE3)

RIL (Stratagene). The cells were cultured at 37 °C until the OD600 reached 0.8 and then the

media was cooled to 20 °C and 0.2 mM IPTG was added to induce protein expression

overnight. The recombinant expressed protein was first purified using a HisTrap FF column

(GE Healthcare). The hexa-histidine-sumo tag was cleavage by the Ulp1 protease and

removed by passing through a second HisTrap FF column. The pooled target protein was

further purified using a Q FastFlow column and a Hiload Superdex G200 16/60 column (GE

Healthcare) with buffer (150 mM NaCl, 20 mM Tris pH 8.0, and 5 mM DTT). In order to

prepare the Se-methionine substituted protein, Leu200 and Leu218 of the SAWADEE

domain were mutated to methionine using a QuikChange Site Directed Mutagenesis Kit

(Stratagene). The Se-methionine substituted SAWADEE protein was expressed in M9

medium supplemented with amino acids Lys, Thr, Phe, Leu, Ile, Val, Se-Met, and purified

using the same protocol as the wild-type protein. Peptides were synthesized by the Tufts

University peptide synthesis facility or by Krzysztof Krajewski.

Crystallization

Crystallization of the SAWADEE domain was conducted at 4 °C using the sitting drop

vapor diffusion method by mixing 1 µl of protein sample at a concentration of 5 mg/ml and

1 µl of reservoir solution (0.2 M NH4F and 20% PEG 3350), which was equilibrated against
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a 0.4 ml reservoir. 4-Cyclohexyl-1-Butyl-β-D-Maltoside (CYMAL®-4, Hampton Research)

was added in the drop with a final concentration of 7.6 mM as an additive, which resulted in

considerable improvement in crystal quality. Thin plate-shaped crystals appeared within 2

days. To generate crystals of complexes of SAWADEE domain with modified H3 peptides

[H3(1–15)K9me3, H3(1–15)K9me2, H3(1–15)K9me1, and H3(1–15)K4me1K9me1], the

SAWADEE domain was mixed with peptides at a molar ratio of 1:2 at 4 °C for 1 hour. The

crystals of the different complexes were grown under the same conditions as described for

free SAWADEE protein. All the crystals were soaked into a reservoir solution supplemented

with 20% glycerol for 2 minutes. The crystals were then mounted on a nylon loop for

diffraction data collection. The diffraction data from the native SAWADEE protein and its

Se-methionine substituted counterpart were collected at the NE-CAT beamline 24ID-C,

Advanced Photon Source (APS), Argonne National Laboratory, Chicago, at the zinc peak

and selenium peak, respectively. The data of the complex of the H3K9me3 peptide bound to

the SAWADEE domain were collected at beamline X29A, National Synchrotron Light

Source (NSLS) at Brookhaven National Laboratory, New York. The data on the SAWADEE

domain in complex with H3K9me2, H3K9me1 and H3K4me1K9me1 peptides were

collected at APS 24ID-E. All the crystallographic data were processed with the HKL2000

program30. The statistics of the diffraction data are summarized in Supplementary Tables 2

and 3.

Structure determination and refinement

The structure of the selenomethionine-substituted SAWADEE domain was solved using the

single-wavelength anomalous dispersion (SAD) method as implemented in the Phenix

program31. The model building was carried out using the Coot program32 and structural

refinement using the Phenix program31. The structure of the wild type SAWADEE domain

in the free state was solved using the molecular replacement method using the Phenix

program31. Zn2+ ions were identified and further confirmed by anomalous signal scattering.

All the structures of SAWADEE domain in complexes with different modified H3 peptides

were solved using the molecular replacement method with the same protocol as the native

protein. The peptides showed clear electron density and were properly built with residues

from Thr3 to Ser10 for H3(1–15)K9me3/2/1 and from Thr3 to Thr11 for H3(1–

15)K4me1K9me1. Throughout the refinement, a free R factor was calculated using 5%

random chosen reflections. The stereochemistry of the structural models were analyzed

using the Procheck program33. The refinement and structure statistics are shown in

Supplementary Tables 2 and 3. All the molecular graphics were generated with the Pymol

program (DeLano Scientific LLC).

Isothermal titration calorimetry

The protein samples were not stable at room temperature. Thus, all the binding experiments

were performed on a Microcal calorimeter ITC 200 instrument at 6 °C. First, protein

samples were dialyzed overnight against a buffer of 100 mM NaCl, 2 mM β-

mercaptoethanol and 20 mM HEPES, pH 7.5, at 4 °C. Then the protein samples were diluted

and the lyophilized peptides were dissolved with the same buffer. The titration was

performed according to standard protocol and the data were fit using the Origin 7.0 program
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with a 1:1 binding model. Themodynamic parameters for complex formation are listed in

Supplementary Table 1.

Modified peptide array binding

A GST-SHH1 SAWADEE domain (125–258aa) construct was generated in the

pENTR/TEV/D plasmid (Invitrogen), recombined into the pDEST 15 plasmid (Invitrogen)

and transformed into the Rosetta 2 (DE3) bacterial cell line (Novagen). Protein expression

was induced by the addition of 500 µL of 1M IPTG per 500 mL at an OD of 0.6 and cultures

were grown at 16 °C overnight. At the time of induction the media was supplemented with

500 µL of 500 mM ZnSO4. The GST fusion protein was then purified as described in

Johnson et. al34 and dialyzed into storage buffer (50 mM Tris pH 6.8, 300 mM NaCl, 40%

glycerol, 2mM DTT, 0.1% triton X-100). The purified GST-SHH1 (125–258aa) protein was

used to probe a MODified™ Histone Peptide Array (Active Motif) under the following

conditions: The array was blocked at 25 °C for 45 min in a 5% milk 1× TBS solution,

washed three times in a 1× TBS-T solution at 25 °C for 5 minutes, and then probed

overnight at 4 °C with the GST-SHH1 SAWADEE domain protein at a concentration of 6.5

µg/mL in Binding Buffer (50 mM HEPES pH7.5, 50 mM NaCl, 5% glycerol, 0.4 mg/mL

BSA, 2 mM DTT). The array was then washed three times as above, and probed an HRP

conjugated GST antibody at a 1:5000 dilution at 25 °C for 1 hour. The array then washed as

detailed above and developed using an ECL Plus kit (GE healthcare).

Plant lines, site-directed mutagenesis, southern and western blotting

The various previously characterized Arabidopsis RdDM mutant alleles, the complementing

SHH1-3xMyc-BLRP transgenic plant line, and the pSHH1::SHH1-3xMyc-BLRP construct

used are as described in Law et. al3. The pol-iv and pol-v mutants correspond to mutations in

the nrpd1 and nrpe1 subunits of these polymerases, respectively. The structure-based

mutations were generated in the pSHH1::SHH1-3xMyc-BLRP construct using a QuikChange

Site Directed Mutagenesis Kit (Stratagene) and were transformed into the shh1-1 mutant

background via the floral dip method. siRNA-seq and ChIP-seq experiments in the Col and

RdDM mutant lines were conducted using floral tissue and BS-seq experiments were

conducted using 10 day old seedlings. Southern and western blotting experiments were

conducted using tissue from the same individual plant lines in the T1 generation and using

previously described probes34 and antibodies35. The siRNA-seq and BS-seq experiments in

the SAWADEE domain point mutant lines were conducted using floral tissue or 10 day old

seedlings, respectively, from T3 plants homozygous for the various pSHH1::SHH1-3xMyc-

BLRP transgenes. The Pol IV ChIP experiments and co-immunoprecipition experiments in

the various SAWADEE domain point mutant backgrounds were conducted using floral

tissue from F1 plants that were homozygous for the shh1 mutant allele.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Epigenetic profile of siRNA clusters affected in RdDM mutants
a, Pie chart showing the abundance of 24 nt siRNA reads in wild-type (ecotype Col)

sequencing libraries (5,967,213 uniquely mapping reads total). b, Schematic Venn diagram

showing approximate relationships of 24 nt siRNA clusters reduced in each genotype and

the subclasses used for downstream analysis. c, Pie charts showing the chromosomal

distribution (based on previously described definitions of pericentromeric heterochromatin

and euchromatin16) of affected siRNA clusters in the indicated subclasses. d and e, Boxplots

of siRNA and CHH methylation levels at the subclasses shown in (b) for various RdDM
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mutants (* indicates significant reduction; P<1e-10 Mann-Whitney U test). f, Metaplots

showing CMT3 and Pol-V enrichment at affected siRNA clusters (+/− 5000 bp from the

siRNA cluster midpoint).
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Figure 2. Pol-IV levels at defined siRNA clusters
Metaplots of Pol-IV enrichment over the defined siRNA clusters in the indicated genetic

backgrounds. Metaplots extend +/− 5000 bp from the midpiont of the siRNA cluster.
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Figure 3. The SHH1 SAWADEE domain recognizes H3K9 methylation and adopts a unique
tandem Tudor domain-like fold
a and b, ITC-based measurements of the SAWADEE domain binding to the modified or

unmodified histone peptides as indicated. Kd values are listed. NDB means no detectable

binding. c, The overall structure of the SHH1 SAWADEE domain in the free form. The

zinc-binding motif is shown as an enlarged ball-and-stick model, highlighting the details of

the metal coordination. A bound detergent molecule 4-Cyclohexyl-1-Butyl-β-D-Maltoside

moiety from the crystallization condition is shown in a stick representation.

Law et al. Page 17

Nature. Author manuscript; available in PMC 2014 August 03.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4. Structural basis for recognition of H3(1–15)K9me2 peptide by the SHH1 SAWADEE
domain and the functional impact of mutations of residues lining the K4 and K9me2 pockets
a, Overall structure of the H3(1–15)K9me2-SAWADEE complex with the SAWADEE

domain as a ribbon diagram and the peptide as a stick representation. The simulated

annealing composite omit map at 1σ level of the bound peptide is also shown. b, Stereo view

highlighting the intermolecular interactions between the SAWADEE domain and the bound

peptide. Intermolecular hydrogen-bonding interactions are designated by dashed red lines. c,
d and e, Close-up views of H3 lysine residues in their respective binding pockets. f and g,

Boxplots of genome-wide % CHH methylation and siRNA levels in wild-type, shh1
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mutants, and shh1 mutants transformed with SHH1 constructs (shh1 + SHH1) that encode

wild-type SHH1 or K9 (F162AF165A and Y140A) or K4 (D141A and Y212A) binding

pocket mutants. h, qPCR of Pol-IV enrichment in the backgrounds described in f at a

defined Pol IV binding site. Bars are the average of two biological replicates normalized to

input and actin levels (+/− SE).
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