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Abstract

Current HIV-1 vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive 

neutralizing antibodies arise in ~20% of HIV-1-infected individuals, and details of their generation 

could provide a roadmap for effective vaccination. Here we report the isolation, evolution and 

structure of a broadly neutralizing antibody from an African donor followed from time of 

infection. The mature antibody, CH103, neutralized ~55% of HIV-1 isolates, and its co-crystal 

structure with gp120 revealed a novel loop-based mechanism of CD4-binding site recognition. 

Virus and antibody gene sequencing revealed concomitant virus evolution and antibody 

maturation. Notably, the CH103-lineage unmutated common ancestor avidly bound the 

transmitted/founder HIV-1 envelope glycoprotein, and evolution of antibody neutralization 

breadth was preceded by extensive viral diversification in and near the CH103 epitope. These data 

elucidate the viral and antibody evolution leading to induction of a lineage of HIV-1 broadly 

neutralizing antibodies and provide insights into strategies to elicit similar antibodies via 

vaccination.

Induction of HIV-1 envelope (Env) broadly neutralizing antibodies (BnAbs) is a key goal of 

HIV-1 vaccine development. BnAbs can target conserved regions that include 

conformational glycans, the gp41 membrane proximal region, the V1/V2 region, glycans-

associated C3/V3 on gp120, and the CD4 binding site (CD4bs)1–9. Most mature BnAbs have 

one or more unusual features (long heavy chain third complementarity determining regions 

[HCDR3s], polyreactivity for non-HIV-1 antigens, and high levels of somatic mutations) 

suggesting substantial barriers to their elicitation4,10–13. In particular, CD4bs BnAbs have 

extremely high levels of somatic mutation suggesting complex or prolonged maturation 

pathways4–7. Moreover, it has been difficult to find Envs that bind with high affinity to 

BnAb germline or unmutated common ancestors (UCAs), a trait that would be desirable for 

candidate immunogens for induction of BnAbs7,14–18. Whereas it has been found that Envs 

bind to UCAs of BnAbs targeting gp41 membrane proximal region16,19, and to UCAs of 

some V1/V2 BnAb20, to date, heterologous Envs have not been identified that bind the 

UCAs of CD4bs BnAb lineages7,18,21–23, although Envs that bind CD4bs BnAb UCAs 

should exist21.

Eighty percent of heterosexual HIV-1 infections are established by one transmitted/founder 

(T/F) virus24. The initial neutralizing antibody response to this virus arises approximately 3 
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months after transmission and is strain-specific25,26. This antibody response to the T/F virus 

drives viral escape, such that virus mutants become resistant to neutralization by autologous 

plasma25,26. This antibody-virus race leads to poor or restricted specificities of neutralizing 

antibodies in ~80% of patients; however in ~20% of patients, evolved variants of the T/F 

virus induce antibodies with considerable neutralization breadth, e.g. BnAbs2,20,27–33.

There are a number of potential molecular routes by which antibodies to HIV-1 may evolve, 

and indeed, types of antibodies with different neutralizing specificities may follow different 

routes6,11,15,34. Because the initial autologous neutralizing antibody response is specific for 

the T/F virus31, some T/F Envs might be predisposed to binding the germline or unmutated 

common ancestor (UCA) of the observed BnAb in those rare patients that make BnAbs. 

Thus, although neutralizing breadth generally is not observed until chronic infection, a 

precise understanding of the interplay between virus evolution and maturing BnAb lineages 

in early infection may provide insight into events that ultimately lead to BnAb development. 

BnAbs studied to date have only been isolated from individuals who were sampled during 

chronic infection1,3–7,20,27,29. Thus, the evolutionary trajectories of virus and antibody from 

the time of virus transmission through the development of broad neutralization remain 

unknown.

We and others have proposed vaccine strategies that begin by targeting unmutated common 

ancestors (UCAs), the putative naïve B cell receptors of BnAbs with relevant Env 

immunogens to trigger antibody lineages with potential ultimately to develop 

breadth6,11,13–16,18,19,21. This would be followed by vaccination with Envs specifically 

selected to stimulate somatic mutation pathways that give rise to BnAbs. Both aspects of this 

strategy have proved challenging due to lack of knowledge of specific Envs capable of 

interacting with UCAs and early intermediate (I) antibodies of BnAbs.

Here we report the isolation of the CH103 CD4bs BnAb clonal lineage from an African 

patient, CH505, who was followed from acute HIV-1 infection through BnAb development. 

We show that the CH103 BnAb lineage is less mutated than most other CD4 binding site 

BnAbs, and may be first detectable by as early as 14 weeks after HIV-1 infection. Early 

autologous neutralization by antibodies in this lineage triggered virus escape, but rapid and 

extensive Env evolution in and near the epitope region preceded the acquisition of plasma 

antibody neutralization breadth defined as neutralization of heterologous viruses. Analysis 

of the cocrystal structure of the CH103 Fab and a gp120-core demonstrated a novel loop 

binding mode of antibody neutralization.

Isolation of the CH103 BnAb lineage

The CH505 donor was enrolled in the CHAVI001 acute HIV-1 infection cohort35 

approximately 4 weeks after HIV-1 infection (Supplementary Fig. 1) and followed for more 

than 3 years. Single genome amplification of 53 plasma viral Env gp160 RNAs (5) from 4 

weeks after transmission identified a single clade C transmitted/founder (T/F) virus. 

Serologic analysis demonstrated the development of autologous neutralizing antibodies at 14 

weeks, CD4 binding site (CD4bs) antibodies that bound to a recombinant Env protein 

(resurfaced core, RSC3)5 at 53 weeks, and evolution of plasma cross-reactive neutralizing 
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activity from 41–92 weeks after transmission30 (Fig. 1, Supplementary Table 1, 

Supplementary Fig. 2). The natural variable regions of heavy- (VHDJH) and light-chain 

(VLJL) gene pairs of antibodies CH103, CH104, CH106 were isolated from peripheral blood 

mononuclear cells (PBMC) at 136 weeks after transmission by flow sorting of memory B 

cells that bound RSC3 Env protein36,5,13 (Fig. 1b). The VHDJH gene of antibody CH105 

was similarly isolated, but no VLJL gene was identified from the same cell. Analysis of 

characteristics of VHDJH (VH4–59 [posterior probability, PP = 0.99), D3–16 (PP=0.74), JH4 

[PP= 1.00]) and VLJL (Vλ3–1 [PP=1.00], Jλ1 [PP=1.00]) rearrangements in mAbs CH103, 

CH104, CH105 and CH106 demonstrated that these antibodies were representatives of a 

single clonal lineage we designated as the CH103 clonal lineage (Fig. 2, Supplementary 

Table 2).

Neutralization assays using a previously described5,37 panel of 196 geographically and 

genetically diverse Env-pseudoviruses representing the major circulated genetic subtypes 

and circulating recombinant forms demonstrated that CH103 neutralized 55% of viral 

isolates with a geometric mean IC50 of 4.54 ug/ml among sensitive isolates (Fig. 1c, 

Supplementary Table 3). ELISA cross-competition analysis demonstrated that CH103 

binding to gp120 was competed by known CD4bs ligands such as mAb VRC01 and the 

chimeric protein CD4-Ig (Fig. 1d); CH103 binding to RSC3 Env was also substantially 

diminished by gp120 with P363N and Δ371I mutations known to reduce binding of most 

CD4bs mAbs (Supplementary Fig. 3)5,30.

Molecular characterization of the CH103 BnAb lineage

The RSC3 probe isolated CH103, CH104, CH105, and CH106 BnAbs by single cell flow 

sorting. The CH103 clonal lineage was enriched by VHDJH and VLJL sequences identified 

by pyrosequencing PBMC DNA34,38 obtained 66 and 140 weeks after transmission and 

cDNA antibody transcripts6 obtained 6, 14, 53, 92 and 144 weeks after transmission. From 

pyrosequencing of antibody gene transcripts, we found 457 unique heavy and 171 unique 

light chain clonal members (Figs. 2a, 2b). For comprehensive study, a representative 14 

member BnAb pathway was reconstructed from VHDJH sequences (1AH92U, 1AZCET and 

1A102R) recovered by pyrosequencing, and VHDJH genes of the inferred intermediate (I) 

antibodies (I1–I4, I7, I8)11,16,34 (Kepler, TB, Submitted, 2012) that were paired and 

expressed with either the UCA or I2 VLJL depending on the genetic distance of the VHDJH 

to either the UCA or mature antibodies (Fig. 2c, Supplementary Table 2). The mature 

CH103, CH104 and CH106 antibodies were paired with their natural VLJL. The CH105 

natural VHDHJH isolated from RSC3 memory B cell sorting was paired with the VLJL of I2.

Whereas the VHDJH mutation frequencies calculated by using the method as described in 

the Online Methods of the published CD4bs BnAbs VRC01, CH31 and NIH45–46 VHDJH 

are 30–36%5–7,22,39, the VHDJH frequencies of CH103 lineage CH103, CH104, CH105 and 

CH106 are 13–17% (Fig. 2c). Additionally, antibodies in CH103 clonal lineage do not 

contain the large (>3 nt) insertion or deletion mutations common in VRC01-class of BnAbs 

(1–3) with the exception of the VLJL of CH103 which contained a 3 aa LCDR1 deletion.
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It has been proposed that one reason CD4bs BnAbs are difficult to induce is heterologous 

HIV-1 Envs do not bind their UCAs7,18,22. We wondered, however, whether the CH505 T/F 

Env, the initial driving antigen for the CH103 BnAb lineage, would preferentially bind to 

early CH103 clonal lineage members and the UCA compared to heterologous Envs. Indeed, 

a heterologous gp120 T/F Env, B.63521, did not bind to the CH103 UCA (Fig. 2d) but did 

bind to later members of the clonal lineage. Affinity for this heterologous Env increased four 

orders of magnitude during somatic evolution of the CH103 lineage, with maximal Kd 

values of 2.4 to 7.0 nM in the mature CH103–CH106 mAbs (Fig. 2d). The CH103 UCA 

mAb also did not bind other heterologous T/F Envs AE.427299, B.9021 and C.1086 

(Supplementary Table 4), confirming lack of heterologous Env binding to CD4bs UCAs. 

Moreover, the gp120 Env RSC3 protein was also not bound by the CH103 UCA and earlier 

members of the clonal lineage (Supplementary Fig. 3a) and no binding was seen with RSC3 

mutant proteins known to disrupt CD4bs BnAb binding (Supplementary Fig. 3b).

In contrast to heterologous Envs, the CH505 T/F Env gp140 bound well to all of the 

candidate UCAs (Supplementary Table 5) with the highest UCA affinity of Kd = 37.5 nM. 

In addition, the CH505 T/F Env gp140 was recognized by all members of the CH103 clonal 

lineage (Fig. 2d). Whereas affinity to the heterologous T/F Env B.63521 increased by over 

four orders of magnitude as the CH103 lineage matured, affinity for the CH505 T/F Env 

increased by no more than ten fold (Fig. 2d). To directly demonstrate Env escape from 

CH103 lineage members, autologous recombinant gp140 Envs isolated at weeks 30, 53 and 

78 post-infection were expressed and compared with the CH505 T/F Env for binding to the 

BnAb arm of the CH103 clonal lineage (Supplementary Table 6, Supplementary Fig. 4). 

Escape mutant Envs could be isolated that were progressively less reactive with the CH103 

clonal lineage members. Envs isolated from weeks 30, 53 and 78 lost UCA reactivity and 

only bound intermediate antibodies 3, 2 and 1 as well as BnAbs CH103, CH104, CH105 and 

CH106 (Supplementary Table 6). In addition, two Env escape mutants from week-78 viruses 

also lost either strong reactivity to all intermediate antibodies or to all lineage members 

(Supplementary Table 6).

To quantify CH103 clonal variants from initial generation to induction of broad and potent 

neutralization, we used pyrosequencing of antibody cDNA transcripts from five time points, 

weeks 6, 14, 53, 92 and 144 weeks after transmission (Supplementary Table 7). We found 

two VHDJH chains closely related to, and possibly members of, the CH103 clonal lineage 

(Fig. 2a, Supplementary Table 7). Moreover, one of these VHDJH when reconstituted in a 

full IgG1 backbone and expressed with the UCA VLJL weakly bound the CH505 T/F Env 

gp140 at endpoint titer of 11 ug/ml (Fig. 2a). These reconstructed antibodies were present 

concomitant with CH505 plasma autologous neutralizing activity at 14 weeks after 

transmission (Supplementary Fig. 2). Antibodies that bound the CH505 T/F Env were 

present in plasma as early as 4 weeks after transmission (data not shown). Both CH103 

lineage VHDJH and VLJL sequences peaked at week 53 with 230 and 83 unique transcripts, 

respectively. VHDJH clonal members fell to 46 at week 144, and VLJL members were 76 at 

week 144.

Polyreactivity is a common trait of BnAbs, suggesting that the generation of some BnAbs 

may be controlled by tolerance mechanisms10,21,40. Conversely, polyreactivity can arise 
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during the somatic evolution of B cells in germinal centers as a normal component of B-cell 

development41. The CH103 clonal lineage was evaluated for polyreactivity as measured by 

HEp-2 cell reactivity and binding to a panel of autoantigens10. While earlier members of the 

CH103 clonal lineage were not polyreactive by these measures, polyreactivity was acquired 

in concert with BnAb activity by the intermediate antibody I2, I1, and clonal members, 

CH103, CH104 and CH106 (Supplementary Figs. 5a, 5b). The BnAbs CH106 and 

intermediate antibody I1 also demonstrated polyreactivity in protein arrays with specific 

reactivity to several human autoantigens, including elongation factor-2 kinase and ubiquitin-

protein ligase E3A (Supplementary Figs. 5c and 5d).

Structure of CH103 in complex with HIV-1 gp120

Crystals of the complex between Fab CH103 and the ZM176.66 strain of HIV diffracted to 

3.25-Å resolution, and molecular replacement identified solutions for Fab CH103 and for 

the outer domain of gp120 (Fig. 3a). Inspection of the CH103-gp120 crystal lattice 

(Supplementary Fig. 6) indicated the absence of the gp120 inner domain was likely related 

to proteolytic degradation of the extended gp120 core to an outer domain fragment. 

Refinement to Rwork/Rfree of 19.6%/25.6% (Supplementary Table 8) confirmed a lack of 

electron density for gp120 residues N terminal to residue Val 255gp120 or C terminal to 

Gly472gp120 (gp120 residues are numbered according to standard HXB2 nomenclature), and 

no electron density was observed for residues 301–324gp120 (V3), 398–411gp120 (V4) and 

421–439gp120 (β20–21). Superposition of the ordered portions of gp120 (gp120 residues are 

numbered according to standard HXB2 nomenclature) in complex with CH103 with the 

fully extended core gp120 bound by antibody VRC017 indicated a highly similar structure 

(Cα-rmsd 1.16 Å) (Fig. 3b). Despite missing portions of core gp120, the entire CH103 

epitope appeared to be present in the electron density for the experimentally observed gp120 

outer domain.

The surface bound by CH103 formed an elongated patch with dimensions of ~40 × 10 Å, 

which stretched across the site of initial CD4 contact on the outer domain of gp120 (Fig. 3c). 

The gp120 surface recognized by CH103 correlated well with the initial site of CD4 contact; 

of the residues contacted by CH103, only eight of these residues were not predicted to 

interact with CD4. CH103 interacted with these residues through side-chain contact with 

Ser256gp120 in loop D, main- and side-chain contacts with His364gp120 and Leu369gp120 in 

the CD4-binding loop, and main- and side-chain contacts with Asn463gp120 and 

Asp464gp120 in the V5 loop (Fig. 3d). Notably, residue 463 is a predicted site of N-linked 

glycosylation in strain ZM176.66 as well as in the autologous CH505 virus, but electron 

density for an N-linked glycan was not observed. Overall, of the 22 residues that mAb 

CH103 was observed to contact on gp120, 14 were expected to interact with CD4 (16 of 

these residues with antibody VRC01), providing a structural basis for the CD4-epitope 

specificity of CH103 and its broad recognition (Supplementary Table 9).

Residues 1–215HC on the antibody heavy chain and 1–209LC showed well defined backbone 

densities. Overall, CH103 utilizes a CDR H3 dominated mode of interaction, although all 

six of the complementarity-determining regions (CDRs) interacted with gp120 as well as the 

light chain framework region 3 (FWR3) (Supplementary Figs. 7a,b, Supplementary Tables 
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10 and 11). It is important to note that ~40% of the antibody contact surface was altered by 

somatic mutation, in two regions, in the CDR H2 and in the CDR L1, L2 and FWR3. In 

particular, residues 56HC, 50LC, 51LC and 66LC are altered by somatic mutation to form 

hydrogen bonds with the CD4-binding loop, loop D and loop V5 of gp120. Nevertheless, 

88% of the CH103 VHDHJH and 44% of the VλJλ contact areas were with amino acids 

unmutated in the CH103 germline, potentially providing an explanation for the robust 

binding of the T/F Env to the CH103 UCA (Supplementary Figs. 7c, 7d, and Supplementary 

Table 12).

Evolution of transmitted/founder Env sequences tracks acquisition of 

BnAb activity

Using single genome amplification and sequencing24 we tracked the evolution of CH505 

env genes longitudinally from the T/F virus through 160 weeks post-transmission (Fig. 4, 

Supplementary Fig. 8). The earliest recurrent mutation in Env, N279K (HIV-1 HXB2 

numbering), was found at 4 weeks post-infection, and was in Env loop D in a CH103 

contact residue. By week 14 additional mutations in loop D appeared, followed by mutations 

and insertions in V1 at week 20. Insertions and mutations in the V5 loop began to 

accumulate by week 30 (Fig. 4). Thus, the T/F virus began to diversify in key CD4 contact 

regions starting within 3 months of infection (Supplementary Figs. 8, 9). Loop D and V5 

mutations were directly in or adjacent to CH103/Env contact residues. Although the V1 

region was not included in the CH103-Env co-crystal, the observed V1 CH505 Env 

mutations were adjacent to contact residues for CD4 and VRC01 so are likely to be relevant. 

It is also possible that early V1 insertions (Fig. 4) were selected by inhibiting access to the 

CD4bs in the trimer or that they arose in response to early T cell pressure. CD4 binding-loop 

mutations were present by week 78. Once regions that could directly impact CH103-lineage 

binding began to evolve (loop D, V5, the CD4 binding, loop, and possibly V1), they were 

under sustained positive selective pressure throughout the study period (Fig. 4, 

Supplementary Figs. 8, 9, Supplementary Table 13).

Considerable within-sample virus variability was evident in Env regions that could impact 

CH103-linage antibody binding, and diversification within these regions preceded 

neutralization breadth. Expanding diversification early in viral evolution (4–22 weeks after 

transmission) (Supplementary Figs. 8, 9) coincided with autologous NAbs development, 

consistent with autologous NAb escape mutations. Mutations that accumulated from weeks 

41–78 in CH505 Env contact regions immediately preceded development of NAb breadth 

(Fig 4, Supplementary Figs. 8, 9). By weeks 30–53, extensive within-sample diversity 

resulted from both point mutations in and around CH103 contact residues, and to multiple 

insertions and deletions in V1 and V5 (Supplementary Fig. 9). A strong selective pressure 

seems to have come into play between weeks 30 and 53, perhaps due to autologous 

neutralization escape, and neutralization breadth developed after this point (Fig. 4, 

Supplementary Figs 8, 9). Importantly, due to apparent strong positive selective pressure 

between week 30 and week 53, there was a dramatic shift in the viral population that is 

evident in the phylogenetic tree, such that only viruses carrying multiple mutations relative 

to the T/F, particularly in CH103 contact regions, persisted after week 30. This was followed 
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by extreme and increasing within time-point diversification in key epitope regions, 

beginning at week 53 (Supplementary Fig. 9). Emergence of antibodies with neutralization 

breadth occurred during this time (Supplementary Fig. 2, Supplementary Table 1). Thus, 

plasma breadth evolved in the presence of highly diverse forms of the CH103 epitope 

contact regions (Fig. 4, Supplementary Fig. 2).

To evaluate and compare the immune pressure on amino acids in the region of CH103 and 

CD4 contacts, we compared the frequency of mutations in evolving T/F sequences of patient 

CH505 during the first year of infection and in 16 other acutely infected subjects followed 

over time (Supplementary Fig. 10). The accumulation of mutations in the CH505 virus 

population was concentrated in regions likely to be associated with escape from the CH103 

lineage (Supplementary Fig. 10a), and diversification of these regions was far more 

extensive during the first six months of infection in CH505 than in other subjects 

(Supplementary Fig. 10b). However, by one year into their infections, viruses from the other 

subjects had also begun to acquire mutations in these regions. Thus, the early and continuing 

accumulation of mutations in CH103 contact regions may have potentiated the early 

development of neutralizing antibody breadth in patient CH505.

Neutralization of autologous and heterologous viruses and the CH103 

lineage

Heterologous BnAb activity was confined to the later members (I3 and later) of the BnAb 

arm of the CH103 lineage as manifested by their neutralization capacity of pseudoviruses 

carrying tier 2 Envs A.Q842 and B.BG1168 (Fig. 5a). Similar results were seen with Envs 

A.Q168, B.JRFL, B.SF162 and C.ZM106 (Supplementary Tables 14 and 15). In contrast, 

neutralizing activity of clonal lineage members against the autologous T/F Env pseudovirus 

appeared earlier with measurable neutralization of the CH505 T/F virus by all members of 

the lineage after the UCA except mAb 1AH92U (Fig. 5a). Thus, within the CH103 lineage, 

early intermediate antibodies only neutralized the T/F virus, while later intermediate 

antibodies gained neutralization breadth, indicating evolution of neutralization breadth with 

affinity maturation, and CH103–CH106 BnAbs evolved from an early autologous 

neutralizing antibody response. Moreover, the clonal lineage was heterogeneous, with an 

arm of the lineage represented in Fig. 5a evolving neutralization breadth and another 

antibody arm capable of mediating only autologous T/F virus neutralization. While some 

escape viruses are clearly emerging over time (Supplementary Table 4), it is important to 

point out that, whereas escape mutant viruses are driving BnAb evolution, the BnAbs 

remained capable of neutralizing the CH505 T/F virus (Fig. 5a). Of note, the earliest 

mutations in the heavy chain lineage clustered near the contact points with gp120, and these 

remained fixed throughout the period of study, while mutations that accumulated later 

tended to be further from the binding site and may be impacting binding less directly 

(Supplementary Fig. 11). Thus, stimulation of the CH103 BnAbs occurs in a manner to 

retain reactivity with the core CD4bs epitope present on the T/F Env. One possibility that 

might explain this is that the footprint of UCA binding contracts to the central core binding 

site of the CH103 mature antibody. Obtaining a crystal structure of the UCA with the T/F 

Env should inform this notion. Another possibility is that because affinity maturation is 
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occurring in the presence of highly diverse forms of the CD4bs epitope, antibodies that favor 

tolerance of variation in and near the epitope are selected instead of those antibodies that 

acquire increased affinity for particular escape Envs. In both scenarios, persistence of 

activity to the T/F form and early viral variants would be expected. Fig. 5b and 

Supplementary Fig. 11 show views of accumulations of mutations or entropy during the 

parallel evolution of the antibody paratope and the Env epitope bound by mAb CH103.

Vaccine Implications

In this study, we demonstrate that the binding of a T/F Env to an UCA B cell receptor of a 

BnAb lineage was responsible for the induction of broad neutralizing antibodies, thus 

providing a logical starting place for vaccine-induced CD4bs BnAb clonal activation and 

expansion. Importantly, the number of mutations required to achieve neutralization breadth 

was reduced in the CH103 lineage compared to most CD4bs BnAbs, although the CH103 

lineage had reduced neutralization breadth compared to more mutated CD4bs BnAbs. Thus, 

this type of BnAb lineage may be less challenging to attempt to recapitulate by vaccination. 

By tracking viral evolution through early infection we found that intense selection and 

epitope diversification in the T/F virus preceded the acquisition of NAb breadth in this 

individual -- thus demonstrating the viral variants associated with development of BnAbs 

directly from autologous neutralizing antibodies and illuminating a pathway for induction of 

similar B cell lineages.

These data have implications for understanding the B cell maturation pathways of the 

CH103 lineage and for replicating similar pathways in a vaccine setting. First, we 

demonstrate in CH505 that BnAbs were driven by sequential Env evolution beginning as 

early as 14 weeks after transmission, a time period compatible with induction of this type of 

BnAb lineage with a vaccine given the correct set of immunogens. Second, whereas 

heterologous Envs did not bind with UCAs or early intermediate antibodies of this lineage, 

the CH505 T/F Env bound remarkably well to the CH103 UCA, and subsequent Envs bound 

with increased affinity to later clonal lineage members. This suggests that immunizations 

with similar sequences of Env or Env subunits may drive similar lineages. Third, the CH103 

lineage is less complicated than those of the VRC01-class of antibodies because antibodies 

in this lineage has fewer somatic mutations, and no indels, except CH103 VL has a deletion 

of 3 amino acid residues in the LCDR1 region. It should be noted as well that our study is in 

one patient. Nonetheless, in each BnAb patient, analysis of viral evolution should elucidate a 

similar pathway of evolved Envs that induce BnAb breadth. The observation that rhesus 

macaques infected with the CCR5-tropic SHIV-AD8 virus frequently develop neutralization 

breadth42 suggests the notion that certain envelopes may be more likely to induce breadth 

and potency than others.

Polyreactivity to host molecules in the CH103-lineage arose during affinity maturation in 

the periphery coincident with BnAb activity. This finding is compatible with the hypothesis 

that BnAbs may be derived from an inherently polyreactive pool of B cells, with 

polyreactivity providing a neutralization advantage via heteroligation of Env and host 

molecules21,43. Alternatively, as CH103 affinity maturation involves adapting to the 

simultaneous presence of diverse co-circulating forms of the epitope44, the selection of 

Liao et al. Page 9

Nature. Author manuscript; available in PMC 2013 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



antibodies that can interact with extensive escape-generated epitope diversification may be 

an evolutionary force that also drives incidental acquisition of polyreactivity.

Thus, a candidate vaccine concept could be to use the CH505 T/F Env or Env subunits (to 

avoid dominant Env non-neutralizing epitopes) to initially activate an appropriate naïve B 

cell response, followed by boosting with subsequently evolved CH505 Env variants either 

given in combination to mimic the high diversity observed in vivo during affinity 

maturation, or in series, using vaccine immunogens specifically selected to trigger the 

appropriate maturation pathway by high affinity binding to UCA and antibody 

intermediates11. These data demonstrate the power of studying subjects followed from the 

transmission event through the development of plasma BnAb activity for concomitant 

isolation of both T/F viruses and their evolved quasispecies along with the clonal lineage of 

induced BnAbs. The finding that the T/F Env can be the stimulator of a potent BnAb and 

bind optimally to that BnAb UCA is a critical insight for vaccine design, and could allow the 

induction of BnAbs by targeting UCAs and IAs of BnAb clonal lineage trees11.

Methods

Study subject

Plasma and peripheral blood mononuclear cells (PBMC) were isolated from serial blood 

samples that were collected from a HIV-1 infected subject CH505 starting 6 weeks after 

infection up to 236 weeks after infection (Supplementary Table 1) and frozen at −80°c and 

liquid nitrogen tanks, respectively. During this time, no anti-retroviral therapy was 

administered. All work related to human subjects was in compliance with Institutional 

Review Board protocols approved by the Duke University Health System Institutional 

Review Board.

Inference of unmutated common ancestor (UCA) and identification of clone members

The inference of the UCA from a set of clonally related genes is described in detail in 

manuscript by Kepler, T.B., “Reconstructing a B cell clonal lineage: I. Statistical Inference 

of Unobserved Ancestors (http://arxiv.org/submit/665968)”. Briefly, we parameterize the 

VDJ rearrangement process in terms of its gene segments, recombination points, and n-

regions. Given any multiple sequence alignment A for the set of clonally related genes and 

any tree T describing a purported history, we can compute the likelihood for all parameter 

values, and thus the posterior probabilities on the rearrangement parameters conditional on 

A and T. We can then find the UA with the greatest posterior probability and compute the 

maximum likelihood alignment A* and tree T* given this UA, and then recompute the 

posterior probabilities on rearrangement parameters conditional on A* and T*. We iterate 

the alternating conditional maximizations until convergence is reached. We use ClustalW47 

for the multiple sequence alignment, dnaml (PHYLIP) to infer the maximum likelihood tree, 

and our own software for the computation of the likelihood over the rearrangement 

parameters. The variable regions of heavy- and light chain (VHDJH and VLJL) gene 

segments were inferred from the natural pairs themselves. The posterior probabilities for 

these two gene segments are 0.999 and 0.993, respectively. We first inferred the UA from 

the natural pairs as described above. We identified additional clonally related variable region 
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sequences from deep sequencing and refine the estimate of the UCA iteratively. We 

identified all variable region sequences inferred to have been rearranged to the same VHDJH 

and JH, and to have the correct CDR3 length. For each sequence, we counted the number of 

mismatches between the sequence and the presumed VHDJH gene up to the codon for the 

second invariant cysteine. Each iteration was based on the CDR3 of the current posterior 

modal UA. For each candidate sequence, we computed the number of nucleotide 

mismatches between its CDR3 and the UA CDR3. The sequence was rejected as a potential 

clone member if the z-statistic in a test for difference between proportion is greater than 

two48. Once the set of candidates has been thus filtered by CDR3 distance, the UA was 

inferred on that larger set of sequences as described above. If the new posterior modal UA 

differed from the previous one, the process was repeated until convergence was reached. 

Due to the inherent uncertainty in UA inference, we inferred the 6 most likely VH UCA 

sequences resulting in 4 unique amino acid sequences that were all produced and assayed for 

reactivity with the transmitted/founder envelope gp140 (Supplementary Table 5).

Phylogenetic Trees

Maximum-likelihood phylograms were generated using the dnaml program of the PHYLIP 

package (version 3.69) using the inferred ancestor as the outgroup root, “speedy/rough” 

disabled, and default values for the remaining parameters. For the large antibody datasets, 

neighbor-joining phylogenetic trees were generated using the EBI bioinformatics server at 

http://www.ebi.ac.uk/Tools/phylogeny/ using default parameter values. All NJ trees were 

generated subsequent to the inference of the UAs.

Isolation of VHDJH and VL genes and expression of VHDJH and VLJL genes as full-length 
IgG1 recombinant mAbs

The VHDJH and VLJL gene segment pairs of the observed CH103, CH104 and CH106 and 

the VHDJH gene segment of CH105 were amplified by RT/PCR of flow sorted HIV-1 Env 

RSC3 (re-surface core3) -specific memory B cells using the methods as described 

previously36,5–7,22. To compare VH mutation frequency of CH103, CH104, CH105 and 

CH106 with that of previously published of CD4bs BnAbs VRC01, CH31 and NIH45–46, 

VH sequences of these antibodies were aligned to the closest VH gene segment from the 

IMGT reference sequence set, and counted differences between the target sequence and the 

VH gene segment up to and including the second invariant cysteine. The comparison 3' of 

Cys2 is omitted since the unmutated form of the ancestral sequence is not as well known.

Additional VHDJH and VLJL and VLJL genes were identified by 454 pyrosequencing. 

Clonally related VHDJH and VLJL sequences derived from either sorted single B cells or 454 

pyrosequencing were combined and used to generate neighbor-joining phylogenetic trees 

(Figs 2a and 2b). Antibodies that were recovered from single memory B cells are noted in 

the figure in red, and bolded lines show the inferred evolutionary paths from theUCA to 

mature BnAbs. For clarity, related VH variants that grouped within monophyletic clades 

from the same time-point were collapsed to single branches, condensing 457 VHDJH and 

174 V VLJL variants to 119 and 46 branches, respectively, via the “nw_condense” function 

from the Newick Utilities package (v. 1.6)49. The frequencies of VHDJH variants in each B 

cell sample are shown to the right of the VHDJH tree in Fig. 2a, and were computed from 
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sample sizes of 188,793, 186,626, and 211,901 sequences from weeks 53, 92, and 144, 

respectively. Two VHDJH genes (IZ95W and 02IV4) were found at 14 weeks after 

transmission and paired with UCA VLJL for expression as IgG1 mAbs. IZ95W mAb weakly 

bound the CH505 T/F Env gp140 with end-point titer of 11 ug/ml. Among heavy chain 

sequences in the tree, the mean distance of each to its nearest neighbor to was calculated to 

be 8.1 nt. The cumulative distribution function shows that, while there are pairs that are very 

close together (nearly 30% of sequences are 1nt from its neighbor), 45% of all sequences 

differ by 6nt or more from its nearest neighbor. The probability of generating a sequence 

that differs by 6 or more nucleotides from the starting sequence by PCR and sequencing is 

very small. The numbers of sequences obtained from a total of 100 million PBMC were 

within the expected range of 50–500 antigen-specific B cells.

Regarding the number of unique VHDJH and VLJL genes that we have isolated, we have 

analyzed this issue in a number of ways. First, we have clarified the calculations for the 

possible number of antigen-specific CD4bs memory B cells that could have been isolated 

from the samples studied. We studied 5 patient CH505 time points with pyrosequencing 

with ~20 million PBMC per time point for a total of 100 million PBMC studied. In chronic 

HIV, there is a mean of 145 total B cells per ul of blood, and a mean of 60 memory B cells 

per ul of blood50. This high percent of memory B cells of ~40% of the total B cells in 

chronic HIV infection is due to selective loss of naïve B cells in HIV infection. Thus, in 100 

ml (100,000 ul) of blood, there will be approximately 6 million memory B cells. If 0.1 to 

1.0% are antigen specific, that that would be 6,000 to 60,000 antigen-specific B cells 

sampled, and if, of these, 5% were CD4bs antibodies, then from 300 to 3000 CD4 bs B cells 

would have been sampled in 100 million PBMC studied. This is completely compatible and 

within the range of the calculations of the reviewer above (50 CD4 bs B cells per 5 million 

PBMC), since we studied 100 million PBMC, there should, by these calculations, 1000 

CD4bs B cells sampled. Either calculation therefore yields estimates that are completely 

compatible with the 474 VHDJH genes amplified.

To further study the plausibility of sequences isolated, the second method of analysis we 

used was as follows. Among heavy chain sequences in the tree, one can compute the 

distance of each to its nearest neighbor. The mean distance to the nearest neighbor is 8.1 nt. 

The cumulative distribution function shows that, while there are pairs that are very close 

together (nearly 30% of sequences are 1nt from its neighbor), 45% of all sequences differ by 

6nt or more from its nearest neighbor. The probability of generating a sequence that differs 

by 6 or more nucleotides from the starting sequence by PCR and sequencing is very small. 

We believe the number of genes represented in our sample is closer to 200 than to 50, and 

most likely is larger than 200.

The third analysis we performed was to compute the distance of each heavy chain sequences 

in the tree to its nearest neighbor. The mean distance to the nearest neighbor is 8.1 nt. We 

used agglomerative clustering to prune the sequence alignment. At the stage where no pairs 

of sequences were 3 nucleotides apart or closer, there were 335 of 452 sequences remaining; 

when no pairs are 6nt apart or closer, there are still 288 sequences remaining. Therefore with 

this analysis, we believe the number of genes represented in our sample is closer to 300 than 
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to 50, and may be larger. Thus, by the sum of these re-analyses, we believe that the number 

of genes in the trees in Figure 2 are quite plausible.

The isolated Ig VHDJH and VLJL gene pairs, the inferred UCA and intermediate VHDJH and 

VLJL sequences, and select VHDJH gene sequences identified by pyrosequencing were 

studied experimentally (Supplementary Table 2) and used to generate a phylogenetic tree 

showing percentage of mutated VH sites and time of appearance after transmission (Figs 2c) 

and binding affinity (Fig 2d). The isolated four mature antibodies are indicated in red, 

antibodies derived from 454 pyrosequencing are indicated in black, and inferred-

intermediate antibodies (I1–I4, I7, I8) are indicated by circles at ancestral nodes. The deep 

clades in this tree had modest bootstrap support, and the branching order and UCA inference 

were somewhat altered when more sequences were added to the phylogenetic analysis 

(compare the branching order of Fig. 2c and Fig. 2a). The tree depicted in Figs. 2c and 2d 

was used to derive the ancestral intermediates of the representative lineage early in our 

study, and marked an important step in our analysis of antibody affinity maturation. The 

VHDJH and VLJL genes were synthesized (GenScript, NJ) and cloned into pcDNA3.1 

plasmid (Invitrogen, Grand Island, NY) for production of purified recombinant IgG1 

antibodies as described previously51,52. The VHDJH genes of I1–I4, I7 and I8 as well as the 

VHDJH of CH105 were paired with either the VL gene of the inferred UCA or I2 depending 

on the genetic distance of the VHDJH to either the UCA or mature antibodies for expressing 

as full-length IgG1 antibodies as described51 (Supplementary Table 2).

Recombinant HIV-1 Proteins

HIV-1 Env genes for subtype B, 63521, subtype C, 1086, and subtype CRF_01, 427299, as 

well as subtype C, CH505 autologous transmitted/founder Env were obtained from acutely 

infected HIV-1 subjects by single genome amplification24 codon-optimized by employing 

the codon usage of highly expressed human housekeeping genes53, de novo synthesized 

(GeneScript, NJ) as gp140 or gp120 (AE.427299) and cloned into a mammalian expression 

plasmid pcDNA3.1/hygromycin (Invitrogen, Grand Island, NY). Recombinant Env 

glycoproteins were produced in 293F cells cultured in serum-free medium and transfected 

with the HIV-1 gp140- or gp120-expressing pcDNA3.1 plasmids, purified from the 

supernatants of transfected 293F cells by using Galanthus nivalis lectin-agarose (Vector 

Labs, Burlingame, CA) column chromatography16,54,52, and stored at −80°C. Select Envs 

made as CH505 T/F Env were further purified by superose 6 column chromatography to 

trimeric forms, and used in binding assays that showed similar results as with the lectin-

purified oligomers.

Enzyme-Linked Immunoassay (ELISA)

Binding of patient plasma antibodies and CH103 clonal lineage antibodies to autologous and 

heterologous HIV-1 Envs was measured by ELISA as described previously34,52. Plasma 

samples in serial 3-fold dilutions starting at 1:30 to 1:521,4470 or purified mAbs in serial 3-

fold dilutions starting at 100ug/ml to 0.000ug/ml diluted in PBS were assayed for binding to 

autologous and heterologous HIV-1 Envs. Binding of biotin-labeled CH103 at the 

subsaturating concentration was assayed for cross competition by unlabeled HIV-1 

antibodies and soluble CD4-Ig in serial 4-fold dilutions starting at 10ug/ml. The half 
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maximal effective concentration (EC50) of plasma samples and mAbs to HIV-1 Envs were 

determined and expressed as either the reciprocal dilution of the plasma samples or 

concentration of mAbs.

Surface plasmon resonance (SPR) affinity and kinetics measurements

Binding Kd and rate constant (association rate ka, dissociation rate kd) measurements of 

mAbs and all candidate UCAs to the autologous Env C. CH05 gp140 and/or the 

heterologous Env B.63521 gp120 were carried out on BIAcore 3000 instruments as 

described previously19,43,45. Anti-human IgG Fc antibody (Sigma Chemicals) was 

immobilized on a CM5 sensor chip to about 15000 Response Unit (RU) and each antibody 

was captured to about 50–200 RU on three individual flow cells for replicate analysis, in 

addition to having one flow cell captured with the control Synagis (anti-RSV) mAb on the 

same sensor chip. Double referencing for each mAb-HIV-1 Env binding interactions was 

used to subtract non-specific binding and signal drift of the Env proteins to the control 

surface and blank buffer flow respectively. Antibody capture level on the sensor surface was 

optimized for each mAb to minimize rebinding and any associated avidity effects. C.CH505 

Env gp140 protein was injected at concentrations ranging from 2 to 25μg/mL and B.63521 

gp120 was injected at 50 – 400 μg/mL for UCA and early intermediates (IA8, IA4), 10–100 

μg/mL (IA3), and 1–25 μg/mL for the distal and mature mAbs. All curve fitting analysis 

were performed using global fit of to the 1:1 Langmuir model and are representative of at 

least three measurements. All data analysis was performed using the BIAevaluation 4.1 

analysis software (GE Healthcare).

Neutralization assays

Neutralizing antibody assays in TZM-bl cells were performed as described previously55. 

Neutralizing activity of plasma samples in 8 serial 3-fold dilutions starting at 1:20 dilution 

and for recombinant mAbs in 8 serial 3-fold dilutions starting at 50ug/ml were tested against 

autologous and herologous HIV-1 Env-pseudotyped viruses in TZM-bl-based neutralization 

assays using the methods as described5,37,55. Neutralization breadth of CH103 was 

determined using previous described5,37a panel of 196 of geographically and genetically 

diverse Env-pseudoviruses representing the major circulated genetic subtypes and 

circulating recombinant forms. The subtypes shown in Figure 1c are consistent with prior 

publications5,56, and the clades described in Los Alamos database (www.hiv.lanl.gov). 

HIV-1 Subtype robustness is derived from the analysis of HIV-1 clades over time57. The 

data were calculated as a reduction in luminescence units compared with control wells and 

reported as IC50 in either reciprocal dilution for plasma samples or in μg/ml for mAbs.

Crystallization of antibody CH103 and its gp120 complex

The antigen binding fragment (Fab) of CH103 was generated by LyS-C (Roche) digestion of 

IgG1 CH103 and purified as previously described7. The extended core gp120 of HIV-1 

clade C ZM176.66 was used to form a complex with Fab CH103 by using previously 

described methods58. Briefly, deglycosylated ZM176.66, constructed as an extended gp120 

core59, that was produced using the method as described previously7 and Fab CH103 were 

mixed at a 1:1.2 molar ratio at room temperature and purified by size exclusion 

chromatography (Hiload 26/60 Superdex S200 prep grade, GE Healthcare) with buffer 
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containing 0.35 M NaCl, 2.5 mM Tris pH 7.0, 0.02% NaN3. Fractions of the Fab or 

gp120:CH103 complex were concentrated to ~10 mg/ml, flash frozen with liquid nitrogen 

before storing at −80°C and used for crystallization screening experiments.

Commercially available screens, Hampton Crystal Screen (Hampton Research), Precipitant 

Synergy Screen (Emerald BioSystems), Wizard Screen (Emerald BioSystems), PACT Suite 

and JCSG+ (Qiagen) were used for initial crystallization screening of both Fab CH103 and 

its gp120 complex. Vapor-diffusion sitting drops were set up robotically by mixing 0.2 μl of 

protein with an equal volume of precipitant solutions (Honeybee 963, DigiLab). The screen 

plates were stored at 20°C and imaged at scheduled times with RockImager (Formulatrix.). 

The Fab CH103 crystals appeared in a condition from the JCSG+ kit containing 170 mM 

ammonium sulfate, 15% glycerol and 25.5 % PEG 4000. For the gp120:CH103 complex 

(Supplementary Table 8), crystals were obtained after 21 days of incubation in a fungi-

contaminated60,61 droplet of the PACT suite that contained 200 mM sodium formate, 20% 

PEG 3350 and 100 mM Bistrispropane, pH 7.5.

X-ray data collection, structure determination and refinement for the gp120:CH103 
complex

Diffraction data were collected under cryogenic conditions. Optimal cryo-protectant 

conditions were obtained by screening several commonly used cryo-protectants as described 

previously7. X-ray diffraction data were collected at beam-line ID-22 (SER-CAT) at the 

Advanced Photon Source, Argonne National Laboratory, with 1.0000 Å radiation, processed 

and reduced with HKL200062. For the Fab CH103 crystal, a data set at 1.65 Å resolution 

was collected with a cryo-solution containing 20% ethylene glycol, 300 mM ammonium 

sulfate, 15% glycerol and 25 % PEG 4000 (Supplementary Table 8). For the gp120:CH103 

crystals, a data set at 3.20 Å resolution was collected using a cryo-solution containing 30% 

glycerol, 200 mM sodium formate, 30% PEG 3350 and 100 mM Bistrispropane, pH 7.5 

(Supplementary Table 8).

The Fab CH103 crystal was in the P21 space group with cell dimensions at a=43.0, b=146.4, 

c=66.3, α=90.0, β=97.7, γ=90.0 and contained two Fab molecules per asymmetric unit 

(Supplementary Table 8). The crystal structures of Fab CH103 were solved by molecular 

replacement using Phaser63 in the CCP4 Program Suite64 with published antibody structures 

as searching models. The gp120:CH103 crystal also belonged to the P21 space group with 

cell dimensions at a=48.9, b=208.7, c=69.4, α=90, β=107.2, γ=90.0, and contained two 

gp120:CH103 complexes per asymmetric unit (Supplementary Table 8). The high resolution 

Fab CH103 structure was used as an initial model to place the Fab CH103 component in the 

complex. With the Fab CH103 position fixed, searching with the extended core gp120 of 

ZM176.66 in the VRC01-bound form as an initial model failed to place the gp120 

component in the complex. After trimming the inner domain and bridging sheet regions 

from the gp120 search model, Phaser was able to correctly place the remaining outer domain 

of gp120 into the complex without significant clashes. Analysis of the packing of the 

crystallographic lattice indicated a lack of space to accommodate the inner domain of gp120, 

suggesting possible protease cleavage of the gp120 by the containing fungi during 

crystallization60,61.
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Structural refinements were carried out with PHENIX65. Starting with torsion-angle 

simulated annealing with slow cooling, iterative manual model building was carried out on 

COOT66 with maps generated from combinations of standard positional, individual B-factor, 

TLS refinement algorithms and non-crystallographic symmetry (NCS) restraints. Ordered 

solvents were added during each macro cycle. Throughout the refinement processes, a cross 

validation (Rfree) test set consisting of 5% of the data was used and hydrogen atoms were 

included in the refinement model. Structure validations were performed periodically during 

the model building/refinement process with MolProbity67 and pdb-care68. X-ray 

crystallographic data and refinement statistics are summarized in Supplementary Table 8. 

The Kabat nomenclature69 was used for numbering of amino acid residues in amino acid 

sequences in antibodies.

Protein structure analysis and graphical representations

PISA70 was used to perform protein-protein interfaces analysis. CCP466 was used for 

structural alignments. All graphical representation with protein crystal structures were made 

with Pymol71.

Polyreactivity analysis of antibodies by HEp-2 cell staining, ANA assays and protein array 
microchip

All antibodies in CH103 clonal lineage were assayed at 50 ug/ml for autoreactivity to HEp-2 

cells (Inverness Medical Professional Diagnostics, Princeton, NJ) by indirect 

immunofluorescence staining and a panel of autogens by ANA assays using the methods as 

reported previously10. The intermediate antibody (IA1) and CH106 were identified as 

reactive with HEp-2 cells and then selected for further testing for reactivity with human host 

cellular antigens using ProtoArray 5 microchip (Invitrogen, Grand Island, NY) according to 

the instructions of the microchip manufacturer. Briefly, ProtoArray 5 microchips were 

blocked and exposed to 2 μg/ml IA1, CH106 or an isotype-matched (IgG1, k) human 

myeloma protein, 151K (Southern Biotech) for 90 min at 4 °C. Protein-Ab interactions were 

detected by 1 μg/mL Alexa Fluor 647-conjugated anti-human IgG. The arrays were scanned 

at 635 nm with 10μm resolution using 100% power and 600 gain (GenePix 4000B scanner, 

Molecular Devices). Fluorescence intensities were quantified using GenePix Pro 5.0 

(Molecular Devices). Lot-specific protein spot definitions were provided by the microchip 

manufacturer and aligned to the image.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Structure factors and coordinates for Fab CH103, both unbound and bound to HIV-1 gp120, are in the process of 
being deposited with the Protein Data Bank. We are also in the process of depositing next-generation sequencing 
data used in this study to NCBI Short Reads Archives. The opinions herein are those of the authors and should not 
be construed as official or representing the views of the U.S. Department of Health and Human Services, National 
Institute for Allergy and Infectious Diseases. H.X.L., R.L., T.Z., F.G., S.D.B., B.H.H., T.B.K., J.R.M., P.D.K. and 
B.F.H. have filed patent applications on mAbs and/or CH505 Envs used in this study.
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Figure 1. Development of neutralization breadth in donor CH505 and isolation of antibodies
a, Shown are HIV-1 viral RNA copies and reactivity of longitudinal plasmas samples with 

HIV1-1 YU2 core gp120, RSC3 and negative control RSC3Δ371I(ΔRSC3) proteins. b, 

PBMCs from week 136 was used for sorting CD19+, CD20+, IgG+, RSC3+ and ΔRSC3− 

memory B cells (0.198%). Individual cells indicated as orange, blue and green dots yielded 

mAbs CH103, CH104 and CH106, respectively, as identified by index sorting. c, The 

neutralization potency and breadth of the CH103 antibody are displayed using a neighbor 

joining tree created with PHYLIP package. The individual tree branches for 196 HIV-1 

Envs representing major circulating clades are colored according to the neutralization IC50 

values as indicated. d, Cross competition of CH103 binding to YU2 gp120 by the indicated 

HIV-1 antibodies, and soluble CD4-Ig was determined by ELISA.
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Figure 2. CH103-clonal family with time of appearance, VHDJH mutations, and HIV-1 Env 
reactivity
Phylogenies of VHDJH (a) and VLJL (b) sequences from sorted single memory B cells and 

pyrosequencing. The ancestral reconstructions for each were done using the methods 

described in the Online Methods. The phylogenetic trees themselves were subsequently 

computed using neighbor joining on the complete set of DNA sequences (see Online 

Methods) to illustrate the correspondence of sampling date and read abundance in the 

context of the clonal history. Within time-point VH monophyletic clades are collapsed to 

single branches; variant frequencies are indicated on the right. Isolated mature antibodies are 

red, pyrosequencing-derived sequences are black. The inferred evolutionary paths to 

observed matured antibodies are bold. c, Maximum-likelihood phylogram showing the 

CH103 lineage with the inferred intermediates (circles, I1–4, I7 and I8), and percentage 

mutated VH sites and timing (blue), indicated. d, Binding affinity (Kd, nM) of antibodies to 

autologous CH505 (left box) and heterologous B.63521 were measured by surface plasmon 

reasonance (SPR) (right box).
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Figure 3. Structure of antibody CH103 in complex with the outer domain of HIV-1 gp120 (OD)
a, Overall structure of complex with gp120 polypeptide depicted in red ribbon and CH103 

shown as a molecular surface (heavy chain in green and light chain in blue). Major CH103-

binding regions on gp120 are colored orange for Loop D, yellow for the CD4-binding site 

and purple for Loop V5. b, Superposition of OD bound by CH103 (red) and core gp120 

bound by VRC01 (gray) with polypeptide shown in ribbon representation. c, CH103 epitope 

(green) on OD (red) with the initial CD4-binding site superposed (yellow boundaries) in 

surface representation. d, Sequence alignment of outer domains of the crystallized gp120 

shown on the first line and diverse HIV-1 Envs recognized by CH103. Secondary structure 

elements are labeled above the alignment with gray dashed lines indicating disordered 

regions. Symbols in yellow or green denote gp120 OD contacts for CD4 and CH103, 

respectively, with open circles representing main-chain contacts, open circles with rays 

representing side-chain contact, and filled circles representing both main-chain and side-

chain contacts.
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Figure 4. Sequence Logo displaying variation in key regions of CH505 Envs
The frequency of each amino acid variant per site is indicated by its height, deletions are 

indicated by grey bars. The first recurring mutation, N279K, appears at week 4 (open 

arrow). The timing of BnAb activity development (from Supplementary Fig. 2 and 

Supplementary Table 1) is on the left. Viral diversification, which precedes acquisition of 

breadth, is highlighted by vertical arrows to the right of each region. CD4 and CH103 

contact residues, and amino acid position numbers based on HIV-1 HXB2, are shown along 

the base of each Logo column.
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Figure 5. Development of neutralization breadth in the CH103-clonal lineage
a, Phylogenetic CH103 clonal lineage tree showing the IC50 (μg/ml) of neutralization of 

either the autologous T/F (C.CH505), heterologous tier clades A (A.Q842) and B 

(B.BG1168) viruses as indicated. b, Interplay between evolving virus and developing clonal 

lineage mapped on to models of CH103-developmental variants and contemporaneous virus. 

The outer domain of HIV gp120 is depicted in worm representation, with worm thickness 

and color (white to red) mapping the degree of per-site sequence diversity at each time 

point. Models of antibody intermediates are shown in cartoon diagram with somatic 

mutations at each time point highlighted in spheres and colored red for mutations carried 

over from I8 to mature antibody, cyan for mutations carried over from I4 to mature 

antibody, green for mutations carried over from I3 to mature antibody, blue for mutations 

carried over from I2 to mature antibody, orange for mutations carried over from II to mature 

antibody, magenta for CH103 mutations from I1. Transient mutations that did not carry all 

the way to mature antibody are colored in deep olive. The antibody (paratope) residues are 

shown in surface representation and colored by their chemical types as indicated.
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