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Abstract

Exposure of cells to various stresses often leads to the induction of a group of proteins called heat

shock proteins (HSPs, molecular chaperones)1,2. Hsp70 is one of the most highly inducible

molecular chaperones, but its expression must be maintained at low levels under physiological

conditions to permit constitutive cellular activities to proceed3,4. Heat shock transcription factor 1

(HSF1) is the transcriptional regulator of HSP gene expression5, but it remains poorly understood

how newly synthesized HSPs return to basal levels when HSF1 activity is attenuated. CHIP

(carboxy terminus of Hsp70-binding protein), a dual-function co-chaperone/ubiquitin ligase,

targets a broad range of chaperone substrates for proteasomal degradation6–11. Here we show that

CHIP not only enhances Hsp70 induction during acute stress but also mediates its turnover during

the stress recovery process. Central to this dual-phase regulation is its substrate dependence: CHIP

preferentially ubiquitinates chaperone-bound substrates, whereas degradation of Hsp70 by CHIP-

dependent targeting to the ubiquitin–proteasome system occurs when misfolded substrates have

been depleted. The sequential catalysis of the CHIP-associated chaperone adaptor and its bound

substrate provides an elegant mechanism for maintaining homeostasis by tuning chaperone levels

appropriately to reflect the status of protein folding within the cytoplasm.

The activation status of HSF1 is governed in large part by the balance between the amount

of misfolded proteins and the chaper-one availability in the cell12,13. However, HSF1 also

seems to have additional layers of regulation in the cell14. For example, our previous data

indicate that CHIP elicits the transcriptional activation of HSF1, independently of its ability

to facilitate the clearance of misfolded proteins in the cell15. To improve our understanding

of the effects of CHIP on both HSF1 activity and chaperone availability, we manipulated

CHIP expression levels in HEK-293 cells by plasmid-mediated overexpression or double-
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stranded RNA (dsRNA)-dependent knockdown. In concordance with our previous

observations, CHIP overexpression triggered the activation of HSF1 in a dose-dependent

manner as indicated by luciferase reporter assays (Fig. 1a). Immunoblotting demonstrated

elevated levels of Hsp70 as expected. Conversely, cells depleted of CHIP by dsRNA had

lower basal levels of HSF1 activity. To our surprise, however, no decrease in Hsp70 levels

was observed in these cells, and instead we found a moderate but consistent induction of

Hsp70 protein levels (Fig. 1b). To explore this observation further, we analysed Hsp70

expression in CHIP−/− and wild-type fibroblasts. Consistent with their reduced stress

response in the absence of CHIP was our observation that CHIP−/− cells demonstrated much

lower Hsp70 induction after heat shock (42 °C, 15 min; Fig. 1c). However, the basal Hsp70

level before heat shock was paradoxically higher in CHIP−/− than in CHIP+/+ cells. Taken

together, these experiments imply that CHIP regulates Hsp70 expression through

mechanisms that operate differentially under physiological and stressful conditions.

To assess the effects of CHIP on Hsp70 availability under conditions in which its ability to

activate HSF1 is inoperative, we used an immortalized fibroblast cell line derived from

HSF1−/− mice. Recombinant adenovirus (AdV)-mediated CHIP overexpression markedly

decreased Hsp70 in these cells, whereas no such effect was observed by overexpressing an

inactive mutant of CHIP, CHIP(K30A), that does not dock with chaperones16 (Fig. 1d).

Previous studies have indicated that HSF1−/− cells are sensitive to stress because they lack

an appropriate heat shock response17. We predicted that the diminished levels of Hsp70 after

CHIP over-expression should render these cells more susceptible to stresses such as heat

shock. As expected, HSF1−/− cells were less viable when CHIP was overexpressed during

incubation at 41 °C than were cells overexpressing CHIP(K30A) (Fig. 1e). Taken together,

these observations indicate a role for CHIP in multiple steps of the stress response: while

activating HSF1 and consequently inducing HSP expression, CHIP also negatively regulates

steady-state levels of Hsp70 through an HSF1-independent mechanism.

As a co-chaperone ubiquitin ligase, CHIP is capable of ubiquitinating its associated

chaperone partners in vivo and in vitro18, although it has not been apparent that this leads to

their proteasomal degradation, nor have physiological roles for CHIP-dependent chaperone

ubiquitination been assigned. To explore this relationship further, we examined turnover of

HSPs in CHIP−/− cells after reintroducing either CHIP, CHIP(K30A) or green fluorescent

protein (GFP) alone as an additional control. Because the basal level of Hsp70 in mouse

fibroblasts is very low, the infected cells were transiently exposed to 42 °C for 30 min and

recovered at 37 °C for 6 h. The turnover of stress-induced Hsp70 was examined by

incubating cells in the presence of the protein synthesis inhibitor cycloheximide. Hsp70 was

remarkably stable (t1/2 ≫ 8 h) in the absence of CHIP (Fig. 2a). However, adding back

CHIP resulted in much shorter t1/2 for Hsp70 (less than 4 h), whereas little change in t1/2

was observed by adding back CHIP(K30A). In addition to Hsp70, CHIP interacts with

Hsc70 and Hsp90, and CHIP also affected the stability of these proteins (Fig. 2a). After

subtraction of their different turnover rates in the absence of CHIP, the most prominent net

effect of CHIP was found on Hsp70 (Fig. 2a). The stability of Grp78, an endoplasmic

reticulum-localized chaperone that does not interact with CHIP, was not affected by the
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manipulation of CHIP levels. The differential effects of CHIP on Hsc70 and Hsp70 were

further confirmed in a pulse–chase analysis followed by immunoprecipitation (Fig. 2b).

We next examined whether the selective effects of CHIP on Hsp70 in vivo can be

recapitulated in vitro with a reconstituted ubiquitination and degradation system. Equal

amounts of Hsc70 and Hsp70 were incubated in a reaction containing E1, E2 (UbcH5a),

CHIP, ubiquitin and ATP. Although CHIP is capable of targeting both chaperones for

ubiquitination, Hsp70 was much more susceptible (Fig. 2c). The addition of purified 26S

proteasomes resulted in rapid degradation of Hsp70, whereas only modest proteasome-

dependent degradation was observed for Hsc70. No proteasomal degradation of Hsp70 was

observed in the absence of CHIP (Fig. 2c, bottom panel). The degradative effects of CHIP

on stress-inducible Hsp70 were further investigated by using ubiquitin mutants bearing a

single lysine. We found that CHIP was able to initiate both canonical and non-canonical

ubiquitin chains on both Hsc70 and Hsp70. However, Lys 48-linked high-molecular-weight

species were selectively observed in reactions containing Hsp70 but not in those containing

Hsc70 (Fig. 2d), which probably accounts for their differential susceptibility to proteasome-

mediated degradation. Because Hsc70 and Hsp70 have nearly identical amino-acid

sequences except for residues near the C-terminal region that are responsible for CHIP

binding, it is possible that divergent residues flanking the binding sequence EEVD

contribute partly to the differential activity of CHIP. Consistent with this notion is the

observation that in vitro binding assays have shown different binding affinities of Hsc70 and

Hsp70 for CHIP16.

When engaged by CHIP, Hsp70 functions as an adaptor for CHIP to access chaperone

clients. Thus, it is unlikely that CHIP could negatively regulate Hsp70 availability while

simultaneously facilitating the degradation of chaperone clients. We therefore postulated

that a competitive relationship might exist in CHIP-mediated ubiquitination between adaptor

and substrate. To test this hypothesis in vivo, we first examined the turnover of Hsp70 in the

enforced presence of unfoldable cytoplasmic protein. Because proteotoxic insults such as

heat shock have various cellular effects, we performed these experiments with

cytoplasmically expressed bovine serum albumin (cBSA). This protein is incapable of

acquiring its normal conformation in the reducing cytosolic environment19. Its degradation

by the proteasome can be further facilitated by CHIP over-expression (Supplementary Fig.

1). We found that expression of cBSA significantly decreased the proteasome-dependent

turnover of Hsp70 (as demonstrated through proteasome inhibition with MG132) in

comparison with the expression of β-galactosidase (β-Gal), a stably folded protein that is not

a CHIP substrate (Fig. 3a).

The data in Fig. 3a imply that misfolded proteins compete with Hsp70 for the ubiquitin

ligase activity of CHIP. However, there is no mutual competition between Hsp70 turnover

and substrate degradation because Hsp70 overexpression does not interfere with the

degradation of cBSA (Supplementary Fig. 2). This indicates that CHIP might preferentially

ubiquitinate chaperone-bound substrates, whereas chaperone ubiquitination occurs after

substrate abundance is depleted. To test this hypothesis directly, we reconstituted CHIP-

dependent degradation by means of the proteasome. Purified Hsp70, in the presence of

native firefly luciferase or thermally denatured luciferase (a known CHIP substrate20), was

Qian et al. Page 3

Nature. Author manuscript; available in PMC 2014 July 27.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



incubated with E1, E2(UbcH5a) and CHIP in reaction buffer containing ubiquitin, ATP and

26S proteasome. Non-denatured luciferase was minimally degraded even after incubation

for 3 h, whereas Hsp70 was degraded with linear kinetics in the same sample (Fig. 3b). In

contrast, heat-denatured luciferase underwent rapid degradation (t1/2 ≈ 30 min).

Remarkably, under these conditions the steady-state level of Hsp70 was stable until most

denatured luciferase had been degraded. The biphasic kinetics of Hsp70 degradation under

these conditions is markedly different from the kinetics in the absence of denatured

substrate, supporting the concept of a hierarchy in the CHIP-targeted degradation of its

chaperone adaptors and their associated substrates.

On the basis of these observations, we further predicted that stress-induced Hsp70 undergoes

CHIP-mediated autoregulation during stress recovery in which most misfolded proteins are

degraded or refolded21. To examine the physiological kinetics of stress-induced Hsp70

expression in vivo, we measured total Hsp70 levels in normal mouse fibroblasts during the

acute phase of the stress response and the chronic phase of stress recovery. Hsp70 was

rapidly induced to its peak level about 4 h after heat shock (42 °C, 10 min) and maintained

its steady-state level for about 8 h, followed by a decrease (Fig. 4a). This biphasic pattern

echoes the substrate-dependent Hsp70 turnover observed in reconstitution assays in vitro

(Fig. 3b). The degradation of misfolded proteins approximates first-order kinetics (Fig. 3a),

whereas the stability of Hsp70 is maintained until substrate concentrations fall below a

threshold, at which time Hsp70 degradation accelerates rapidly (Figs 3b and 4a). Further

supporting the model that threshold levels of misfolded substrates determine when the

clearance of excess Hsp70 begins, there is a close correlation between the intensities of

applied stress and the sustained period of Hsp70 expression (Supplementary Fig. 3).

The results presented here show a previously unknown mechanism to regulate inducible

HSP expression and resolution of the stress response. Our observations indicate that the

effect of CHIP on Hsp70 might not counteract its active role in the clearance of misfolded

proteins and that both functions might instead be integrally related during the stress response

and recovery process. To define the role of CHIP in orchestrating both phases, we examined

the behaviour of Hsp70 in CHIP−/− cells during acute stress and the chronic recovery phase

before and after reintroducing CHIP with the use of AdV. As expected from previous

observations, adding back CHIP, but not CHIP(K30A), resulted in enhanced Hsp70

induction after heat shock, which was consistent with the role of CHIP in activating HSF1

(Fig. 4b). During the recovery phase, however, a rapid decrease in steady-state levels of

Hsp70 was observed only in the presence of wild-type CHIP. In contrast, cells infected with

AdV expressing GFP or CHIP(K30A) showed a prolonged plateau of Hsp70 levels. The role

of CHIP in the regulation of Hsp70 availability was further confirmed by pulse–chase

analysis followed by immunoprecipitation, which indicated that the t1/2 of Hsp70 was much

shorter during the stress recovery phase when CHIP was reintroduced into CHIP−/−cells

(Fig. 4c). Thus, the presence of CHIP actively maintains cellular homeostasis not only by

enhancing Hsp70 induction during the acute phase of stress but also by removing excess

Hsp70 during the recovery process.

The U-box is required for CHIP ubiquitin ligase activity but is dispensable in the stimulation

of HSF1 activity15. We therefore predicted that inactivation of the CHIP U-box would lead
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to sustained high levels of Hsp70 in the cell after heat shock. CHIP(H260Q), a U-box

mutant that does not bind E2, shows dominant-negative effects in HEK-293 cells. Indeed,

we observed a much higher basal level of Hsp70 in cells transfected with CHIP(H260Q)

(Fig. 4d). After a mild heat shock, the amount of Hsp70 was largely sustained in cells

expressing CHIP(H260Q), whereas overexpression of CHIP accelerated both the elevation

and restoration of Hsp70 levels (Fig. 4e). These results confirm that the ubiquitin ligase

activity of CHIP is required for Hsp70 degradation during stress recovery in vivo.

Several principles emerge from our results. First, CHIP-mediated Hsp70 turnover represents

a novel regulatory mechanism for Hsp70 in addition to HSF1-mediated transcriptional

regulation. Second, these data indicate that there are multiple coordinated steps by which the

chaperone and ubiquitin–proteasome systems interact to regulate the stress response.

Without appropriate CHIP function, there is impaired ability to induce Hsp70 during stress

and concomitantly a deficient buffering of misfolded proteins. At the same time, CHIP is

required for proteasome-dependent clearance of unfoldable proteins and the recovery from

the stress response by means of Hsp70 degradation. Finally, CHIP-mediated sequential

catalysis of the chaperone adaptor and substrate indicates an elegant and simple mechanism

to regulate the target specificity for a single ubiquitin ligase. In the multisubunit ubiquitin

ligases such as Skp1–Cdc53/ Cul1–F-box (SCF), the F-box adaptor targets a distinct array of

substrates for ubiquitination and proteasomal degradation22. Intriguingly, most F-box

adaptors in the SCF complex are labile proteins as a result of autocatalysis by the intrinsic

E3 activity23–25. In the case of CHIP, Hsp70 acts as an adaptor, or ‘F-box equivalent’, for

CHIP to ubiquitinate chaperone clients; degradation of Hsp70 may therefore be a substrate-

dependent variation on this autocatalytic mechanism.

Methods

Cell lines, plasmids and viruses

HEK-293 cells were maintained in DMEM medium containing 10% FBS. CHIP+/+ and

CHIP−/− cell lines were established from fibroblasts isolated from adult lungs of CHIP+/+

and CHIP−/− mice by transfection with SV40 large Tantigen (kindly provided by D. Ron).

The HSF1−/− murine embryonic fibroblast cell line was provided by I. Benjamin.

Mammalian expression vectors for β-Gal, cBSA, Hsp70, CHIP and CHIP(K30A) are based

on pcDNA3.1. Recombinant adenoviruses expressing CHIP, CHIP(K30A) or GFP have

been described previously15.

Antibodies and short interfering RNAs

Monoclonal anti-Hsp70 (SPA810), anti-Hsp90α (SPA845) and anti-Hsc70 (SPA815) were

purchased from Stressgen. Monoclonal anti-Grp78 antibody was from Santa Cruz.

Monoclonal anti-His antibody was from Qiagen. Monoclonal anti-β-actin was from Sigma.

Polyclonal anti-luciferase was from Promega. Double-stranded RNA for CHIP (target

sequence 5′-GGAGCAGGGCAAUCGUCUG-3′) and GFP (target sequence 5′-

AACGAGAAGCGCGAUCACAUG-3′) were synthesized by Dharmacon.
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Dual luciferase assay

A firefly luciferase gene under the control of the strictly stress-regulated human Hsp70B

promoter was used to assess HSF1 transcriptional activity. To control for the differences in

transfection efficiency and other effects, a Renilla luciferase gene driven by a

cytomegalovirus promoter was included in all transfections26. Reporter activity was

determined with a dual-luciferase reporter assay (Promega).

In vitro reconstitution assay

His-tagged CHIP, and UbcH5a, were produced in Escherichia coli BL21(DE3) followed by

purification with Ni2+-nitrilotriacetate agarose. In vitro ubiquitination assays were

performed in the presence of 0.1 μM purified rabbit E1 (BioMol), 2 μM UbcH5a, 3 μM

CHIP, 50 μM ubiquitin (Sigma), 1 mM dithiothreitol, 2 mM MgCl2 and 4 mM ATP. For in

vitro degradation assays, 50nM purified 26S proteasomes (BioMol) was included in the

reaction mixture. Reactions were performed at 37 °C, and samples were analysed by SDS–

PAGE and immunoblotting with appropriate antibodies. Heat treatment of firefly luciferase

was described elsewhere21. In brief, 0.5 μM luciferase was heated at 43 °C for 10 min with 1

μM Hsp70 and 1 μM Hdj2 on the presence of 4mM ATP in 50mM Tris-HCl pH7.5

containing 2mM MgCl2. After being heated, samples were quickly chilled in an ice bath.

Aliquots were incubated in the reaction mixture as indicated above.

Pulse–chase analysis

Cells were radiolabelled with [35S]Met (100 μCi) for the indicated durations. After washing

with PBS containing excess unlabelled Met (1 mg ml−1), cells were chased in the complete

DMEM for the indicated duration. Whole cell lysates were made in Tris-buffered saline

pH7.5 containing 1% Triton X-100 and 10 Uml−1 DNase A (Roche). Lysates were either

directly resolved by SDS–PAGE or used for immunoprecipitation with Protein G beads

coated in monoclonal anti-Hsp70 (SPA810).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. CHIP regulates Hsp70 availability
a, HEK-293 cells were transfected with plasmids as indicated with 0 μg (white bars), 0.1 μg

(grey bars) and 0.5 μg (black bars) per well in a six-well plate. HSF1 activity was measured

by dual luciferase reporter assay. Hsp70 levels were determined by immunoblotting. b,

HEK-293 cells were transfected with dsRNA as indicated. Both HSF1 activity and Hsp70

levels were determined. c, Immortalized CHIP+/+ and CHIP−/− cell lines were heat shocked

for 15 min at 42 °C (HS) and left to recover for 4 h at 37 °C. Cell lysates from before and

after heat shock were immunoblotted with Hsp70 antibody. d, HSF1−/− cells were infected

with AdV expressing CHIP or CHIP(K30A). Hsp70 levels were determined at different

times after infection by immunoblotting of whole cell lysates. e, AdV-infected HSF1−/− cells

were incubated at 41 °C for various durations and cell viability was measured. Triangles,

AdV/CHIP; squares, AdV/CHIP(K30A). Values are means ± s.d.
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Figure 2. Selective effects of CHIP on Hsp70 in vivo and in vitro
a, CHIP−/− cells were infected with AdV expressing GFP, CHIP or CHIP(K30A). Infected

cells were incubated for 30 min at 42 °C and left to recover for 6 h at 37 °C to induce Hsp

expression. Cycloheximide (CHX) was then added and cell aliquots were collected at the

times indicated. Whole cell lysates were immunoblotted with a panel of antibodies. The

effects of CHIP on Hsp levels were quantified by subtracting their turnover in the presence

of GFP. Squares, Hsp70; diamonds, Hsp90; triangles, Hsc70; circles, Grp78. Values are

means ± s.d. b, AdV-infected CHIP−/− cells were radiolabelled with [35S]methionine for 30

min at 3 h after heat shock and chased with unlabelled methionine for up to 8 h.

Immunoprecipitations were performed with monoclonal antibody against Hsp70 or Hsc70.

c, In vitro ubiquitination assays were performed by incubating equal amounts of Hsc70 and

Hsp70 in reactions containing E1, E2 (UbcH5a), CHIP, ubiquitin (Ub) and ATP. Purified

26S proteasomes were included in the reaction mixture for the coupled degradation assay.

Levels of Hsc70 (squares) and Hsp70 (diamonds) were determined by immunoblotting and

quantified by densitometry. Values are means ± s.d. d, In vitro ubiquitination assays were

performed with ubiquitin mutants bearing a single lysine as indicated, and the reaction was

stopped after 120 min incubation. WT, wild-type.
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Figure 3. Substrate-regulated Hsp70 turnover in vivo and in vitro
a, HEK-293 cells were co-transfected with plasmids expressing CHIP, Flag-Hsp70 and

cBSA (squares) orβ-Gal (diamonds). The turnover of Hsp70 was determined with the use of

a cycloheximide (CHX) chase followed by immunoblotting. ‘180 + ’ indicates the presence

of 20 μM MG132 during the chase. Values are means ± s.d. b, In vitro degradation assays

were performed with Hsp70 (open circles) and luciferase (Luc; filled circles) as substrates.

For heat-denatured luciferase, luciferase was heated at 43 °C for 10 min with Hsp70 and

Hdj2 (ref. 20). Both the luciferase and Hsp70 levels were determined in the same samples by

immunoblotting and quantified by densitometry. Values are means ± s.d.
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Figure 4. CHIP orchestrates both stress response and recovery processes
a, Mouse fibroblasts were heat shocked (HS) at 42 °C for 10 min, and aliquots were

collected every 4 h during recovery at 37 °C. Hsp70 levels were determined by

immunoblotting. Values are means ± s.d. b, CHIP−/− cells were infected with AdV

expressing GFP (squares), CHIP (diamonds) or CHIP(K30A) (triangles). Infected cells were

heat shocked at 42 °C for 10 min, and aliquots were collected every 2 h during recovery at

37 °C. Hsp70 levels were determined by immunoblotting and quantified by densitometry. c,

The same AdV-infected CHIP−/− cells as in b were heat shocked at 42 °C for 10 min, and

radiolabelled with [35S]methionine for 30 min at 3 h after HS and chased with unlabelled

methionine for up to 6 h. Immunoprecipitation was performed with a Hsp70-specific

antibody and quantified with a PhosphorImager. Symbols are as in b. Values are means ±

s.d. d, HEK-293 cells were transfected with plasmids as indicated with 0, 0.1 and 0.5 μg per

well in a six-well plate. Hsp70 levels were determined by immunoblotting. e, Transfected

HEK-293 cells were heat shocked 42 °C for 5 min, and aliquots were collected every 2 h

during recovery at 37 °C. Hsp70 levels were determined by immunoblotting.
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