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Abstract
Anthracyclines (doxorubicin, daunorubicin, and idarubicin) are very effective chemotherapeutic
drugs to treat many cancers; however, the development of multiple drug resistance (MDR) is one
of the major limitations for their clinical applications. Nano-delivery systems have emerged as the
novel cancer therapeutics to overcome MDR. Up until now, many anthracycline nano-delivery
systems have been developed and reported to effectively circumvent MDR both in-vitro and in-
vivo, and some of these systems have even advanced to clinical trials, such as the HPMA-
doxorubicin (HPMA-DOX) conjugate. Doxil, a DOX PEGylated liposome formulation, was
developed and approved by FDA in 1995. Unfortunately, this formulation does not address the
MDR problem. In this comprehensive review, more than ten types of developed anthracycline
nano-delivery systems to overcome MDR and their proposed mechanisms are covered and
discussed, including liposomes; polymeric micelles, conjugate and nanoparticles; peptide/protein
conjugates; solid-lipid, magnetic, gold, silica, and cyclodextrin nanoparticles; and carbon
nanotubes.
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1. Anthracyclines in Cancer Treatment
Anthracyclines are among the most effective and commonly used chemotherapeutic drugs
[1]. The mechanisms of antitumor activity of anthracyclines are well characterized and
documented, wherein anthracyclines are able to diffuse across the cell membrane, intercalate
between DNA base pairs, target topoisomerase II (TOPO II), and induce cell apoptosis [2].
The first anthracyclines of doxorubicin (DOX, Figure 1) and daunorubicin (DNR, Figure 1)
were isolated from the bacterium of Streptomyces peucetius, which could produce a red
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pigment and were found to have good activity against murine tumors back to the 1950s [3,
4]. DOX is widely used to treat various cancers, including leukemia, Hodgkin’s lymphoma,
bladder and breast cancers, etc., while DNR is used to treat some types of leukemias, such as
acute myeloid leukemia (AML) and acute lymphocytic leukemia (ALL). In order to find
better anthracyclines, a great deal of research has been conducted to establish the structure-
activity relationship of anthracyclines, and this research has guided identification and
synthesis of better anthracyclines. In last two decades there have been hundreds of DOX and
DNR analogs reported in different laboratories wherein there have been chemical
modifications of their tetracyclic ring, side chain, and/or aminosugar [5, 6]. However, only a
few of the analogs have been approved for clinic use and among them, idarubicin (IDA, 4-
demethoxydaunorubicin, Figure 1) is the most successful alternative to DNR [7]. Idarubicin
was approved by the US FDA in 1990 [4]. The absence of the methoxy group at position 4
of IDA results in significantly enhanced lipophilicity, which results in more rapid cellular
uptake, superior DNA-binding capacity, and consequently greater cytotoxicity as compared
to DOX and DNR [2]. The physicochemical properties of these three anthracyclines are
summarized in Table 1. For use in the clinic, they are formulated as hydrochloride salt forms
dissolved in an aqueous solution for intravenous injection.

Unfortunately, the clinical use of anthracyclines has been limited by their severe
cardiotoxicity and the development of multiple drug resistance (MDR) [8, 9]. In general,
many patients achieve a complete remission when initially treated with anthracyclines;
however, ~70% of the patients eventually experience a relapse of the disease, and the
treatment failure is mainly due to MDR. The MDR mechanisms of anthracyclines are
complicated and not fully understood. The most established mechanism of resistance is
over-expression of drug efflux proteins, particularly members of the ATP-binding cassette
(ABC) superfamily: P-glycoprotein (P-gp, MDR1), multidrug resistance protein 1 (MRP1),
and breast cancer resistance protein (BCRP). Anthracyclines are known to be efficient
substrates for ABC transporters. For example, P-gp, a membrane transporter encoded by
MDR1 gene, actively pumps anthracyclines out of the cells resulting in drug resistance [10,
11]. Baekelandt et al. reported the correlation of P-gp expression and response rate in a
study involving 73 patients with advanced ovarian cancer [12]. They found that P-gp
negative patients responded significantly better to chemotherapy (p <0.001), and the P-gp
expression was clearly a predictor of both overall (p = 0.045) and progression free (p =
0.006) survival, which indicated P-gp expression was a marker for chemotherapy resistance
and prognosis in advanced ovarian cancer. In addition to ABC transporters, other cellular
mechanisms of resistance have also been reported, such as alteration in TOPO II, free-
radical formation, up-regulation of B-cell lymphoma 2 (BCL-2) family members, down-
regulation of tumor suppressor protein p53, etc. [13–16].

Non-cellular resistance mechanisms have also proposed and are attributed to the unique
vasculatory of solid tumors [17–19]. The vasculature of solid tumors is characterized as
heterogeneous, where the blood vessels are dilated and tortuous. The interstitial fluid
pressure of solid tumors is increased than normal tissues, which is due to the higher vascular
permeability and the absence of lymphatic system. In addition, solid tumors have an acidic
environment and lack nutrients and oxygen, all of which help to induce resistance to
cytotoxic drugs.

Nanoparticle (NP) delivery systems have been shown to be promising carriers to improve
the therapeutic effect of anthracyclines mainly due to the enhanced permeability and
retention (EPR) effect in solid tumors, while they minimize systemic exposure, enhance
drug efficacy and reduce non-specific toxicity [20–22]. Nano-delivery systems have also
been shown to increase the circulation time of drugs in blood, thereby increasing the ability
of drugs to reach their sites of action. Doxil, a DOX-encapsulated polyethylene glycol
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(PEG)-coated liposome formulation with the particle size of ~100 nm, was approved in 1995
for the treatment of ovarian cancer, AIDS-related Kaposi’s sarcoma, and multiple myeloma.
The DOX PEGylated liposomes demonstrate slower plasma clearance rate, prolonged
circulation time in blood, and decreased volume of distribution than either traditional DOX
liposomes or free DOX. Importantly, Doxil was proved to have less cardiotoxicity as
compared to free DOX [23–25]. However, the liposome formulation has not addressed
MDR which continues to be a major hurdle in cancer therapy. In order to overcome MDR,
various nano-delivery systems have been developed and evaluated both in-vitro and in-vivo.
In this comprehensive review, different nano-delivery systems for the delivery of
anthracyclines as well as their mechanisms to overcome MDR are addressed (Table 2 and
Figure 2).

2. Anthracycline Nanoparticles to Overcome MDR
2.1 Liposomes

Thierry and his colleagues developed DOX-encapsulated liposomes with cardiolipin/
phosphatidylcholine/cholesterol (CL/PC/CHOL) and demonstrated that both DOX-
encapsulated liposomes and free DOX spiked into a suspension of empty liposomes could
reverse MDR and had comparable activity in MDR Chinese hamster LZ cells [26]. The
efficacy of free DOX spiked into a suspension of empty liposomes was probably due to the
high binding affinity (1.6 × 106 M−1) of positively-charged DOX to the negatively-charged
CL. However, neither pretreatment with empty liposomes before drug treatment nor the
combination of vincristine and empty liposomes could reverse MDR, which suggested DOX
must be incorporated or complexed with liposomes to overcome MDR. The authors
suggested the DOX in liposomes would alter intracytoplasmic vesicles to transport DOX in
MDR cells, and the modulation of MDR could be due to the increase of drug accumulation
or the intracellular drug redistribution in MDR cells. Rahman et al. prepared DOX-loaded
liposomes composed of CL/PC/CHOL (molar ratio 2:10:6.8) and compared the cytotoxicity
of the liposomes versus free DOX in P-gp resistant HL-60/VCR and its parental HL-60 cell
lines [27, 28]. The results showed that the IC50 values of free DOX (30 nM) and DOX
liposomes (20 nM) were comparable in HL-60 cells, while in HL-60/VCR cells the IC50
values of free DOX and DOX liposomes were 0.9 and 0.17 μM, respectively, which
indicated the liposome formulation was 5-fold more toxic than free DOX in HL-60/VCR
cells. The mechanisms of DOX liposomes to overcome MDR were investigated, and it was
concluded that the empty liposomes can directly interact with P-gp based on their
competitive inhibition of [3H]-vincristine binding to P-gp. In addition, the membrane
fluidity of the resistant cells was different from that of the sensitive cells. Therefore, it was
concluded that liposomes likely interact with and modify the environment of the plasma
membrane, resulting in more drug uptake in resistant cells. In contrast, Hu et al. formulated
three different DOX liposomes; however, none of them showed MDR circumvention in-
vitro in rat glioblastoma cells, and the empty liposomes were unable to inhibit [3H]-
azidopine binding to P-gp [29]. It was suggested that the different results were due to the
different compositions in the liposome formulations where they included lower amounts of
lipids and higher DOX/lipid molar ratios. In addition, the origin of the lipids in liposomes
was different. All of these may lead to avoidance of the interaction between lipids/liposomes
and cell plasma membrane. More recently, Riganti et al. formulated DOX-containing
anionic liposomes (Lipodox) and demonstrated that the Lipodox was significantly more
effective than free DOX in resistant HT29-dx cells [30]. The P-gp inhibition mechanisms of
Lipodox were summarized in two aspects: 1) indirect effect, which is due to the interaction
between liposomes and cell membrane (e.g. change in the composition of lipid rafts and P-
gp localization); 2) direct effect, which is due to the direct interaction between liposome and
P-gp (e.g. direct inhibition of ATPase activity).
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Co-delivery of DOX and a P-gp inhibitor was also reported to overcome MDR. Krishna et
al. developed DOX liposomes with 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and
CHOL at the lipid molar ratio of 55:45 [31]. The DOX liposomes or free DOX (i.v.) and P-
gp inhibitor PSC 833 (p.o.) were co-administered in normal BDF1 mice. It was found that
with p.o. administration of PSC 833, the maximum tolerated dose (MTD) was reduced by
2.5–3-fold with free drug while only 20% reduction for DOX liposomes compared to i.v.
alone. This suggested the DOX liposomes were less toxic than free DOX. Furthermore, in a
murine P388/ADR solid tumor model, the tumor inhibition of DOX liposomes combined
with PSC 833 was comparable to the sensitive P388/WT tumors, while a modest modulation
was observed for the co-administration of free DOX with PSC 833 at the MTD. It was also
confirmed that the antitumor efficacy was PSC 833 dependent because the DOX liposomes
alone provided significantly less activity. It should be noted that the DOX liposomes
demonstrated a comparable pharmacokinetic profile and tissue biodistribution with or
without PSC 833 p.o. administration, while free DOX altered pharmacokinetics in the
presence of PSC 833. Similarly, Wang et al. co-encapsulated DOX and another P-gp
inhibitor, verapamil, into stealth liposomes composed of egg phosphatidylcholine (EPC),
CHOL, and PEG2000-DSPE (molar ratio 50:45:5) [32]. The results showed the stealth
liposomes with DOX and verapamil overcame MDR in-vitro in both DOX-resistant rat
prostate cancer cell line Mat-LyLu-B2 and human uterus sarcoma MES-SA/DX5 cell line,
while the stealth liposomes with DOX alone were not effective enough to reverse MDR. To
further target the tumor cells, the Robert group synthesized transferrin immunoliposomes
encapsulating both DOX and verapamil (Tf-L-DOX/VER), and this formulation increased
the cytotoxicity by 5.2- and 2.8-fold over that of L-DOX/VER and Tf-L-DOX, respectively,
in DOX-resistant K562 leukemia cells [33].

Since the mechanisms of MDR are multifactorial, the ideal delivery system should address
different MDR pathways. In order to do so, the Minko group developed a complex liposome
system which included: 1) a chemotherapeutic drug of DOX; 2) antisense oligonucleotides
(ASOs) targeted to MDR1 mRNA; and 3) ASOs targeted to BCL-2 mRNA [34]. They
showed this complex system was more toxic in-vitro in resistant A2870/AD human ovarian
carcinoma cells when compared to free DOX, DOX liposomes, and DOX liposomes with
either one type of ASOs. In addition, the complex liposomes were shown to be internalized
into the cancer cells both in-vitro and in-vivo and even penetrated into the nucleus.
However, the mechanisms were not clear. It was also suggested that both membrane fusion
and endocytosis may be involved in liposome internalization into the tumor cells.
Subsequently, the Minko group successfully prepared a series of complex liposomes for co-
delivery of DOX and ASO targeted to hypoxia-inducible factor 1α (HIF1A) mRNA [35] or
siRNA targeted to MRP1 and BCL-2 mRNA [36]. All of the liposome systems with the
combination of DOX and ASO or siRNA showed enhanced chemotherapeutic efficacy in
resistant cells both in-vitro and in-vivo. Chen et al. developed even more complex DOX
liposome systems, namely cationic liposome-polycation-DNA (LPD) and anionic liposome-
polycation-DNA (LPD-II), and showed a significant antitumor inhibition in an NCI/ADR-
RES xenograft mouse model [37]. With their DOX liposome systems, they co-delivered the
following cargos to overcome MDR: 1) a guanidinium-containing cationic lipid, N,N-
distearyl-N-methyl-N-2-(N′-arginyl) aminoethyl ammonium chloride (DSAA), which could
induce reactive oxygen species (ROS), inhibit MDR transporters, and enhance DOX uptake
in NCI/ADR-RES cells; 2) a vascular endothelial growth factor (VEGF) siRNA, to increase
DOX uptake and therapeutic efficacy via targeting tumor vasculature, disrupting local blood
supply and blocking angiogenesis; 3) a therapeutic c-Myc siRNA, where the c-Myc is a
well-known oncogene and shown to positively control the expression of MDR. Thus, the
silencing of c-Myc may result in both a direct therapeutic effect and down-regulation of
MDR.
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2.2 Polymeric Nanoparticles
The Couvreur group entrapped DOX into biodegradable polyisobutylcyanoacrylate (PIBCA)
polymers to form DOX-PIBCA NPs and showed the complete reversion of drug resistance
in-vitro in several resistant cell lines [38]. The laser microspectrofluorometry technique was
utilized to investigate the mechanisms of the NPs to overcome MDR. It was proposed that
the DOX-PIBCA NPs entered the cells by endocytosis, and DOX was transported to the
lysosomes and released close to the nuclear membrane, followed by interaction with DNA.
It was also suggested that the DOX-PIBCA NPs bypassed the P-gp pump which was
probably due to the molecular structure or the ionic charge of the NPs. Interestingly, this
group suggested in another paper that the DOX-PIBCA NPs did not enter the cells by
endocytosis pathway at all [39]. In contrast, the results demonstrated that the NPs were first
adsorbed on the cell membrane, followed by the degradation of polymer close to cell
membrane, and the drug was then released and entered the cells by simple passive diffusion.
Compared to free DOX, the massive DOX concentration gradient from PIBCA NPs
saturated P-gp and its pharmacological function. It was also suggested that PIBCA or its
degradation products modified the cell membrane, which led to the permeation of more
DOX into cells. In addition to NP-cell direct interaction, another mechanism was proposed
wherein DOX formed ion pairs with the polyalkylcyanoacrylate (PACA) degradation
product of polycyanoacrylic acid. This DOX-polycyanoacrylic acid ion-pair complex
increased the apparent lipophilicity of DOX, and allowed the drug entering the cells bypass
the recognition of P-gp. It was concluded that the reversal of MDR with DOX-PACA NPs
was the result of both the adsorption of NPs on the cell surface and the formation of DOX-
polycyanoacrylic acid ion-pair complex at the plasma membrane [40].

Henry-Toulmé et al. demonstrated that DOX-polyisohexylcyanoacrylate (DOX-PIHCA)
NPs were not endocytosed by the cells, which supported the results from the Couvreur group
[41]. Barraud and colleagues also developed DOX-PIHCA NPs and compared their
antitumor efficacy versus free DOX both in-vitro and in-vivo in a resistant hepatocellular
carcinoma (HCC) model [42]. The IC50 of NPs was reduced by 1.5–4.5-fold in in-vitro
studies in several resistant HCC cells. In-vivo HCC transgenic mouse model, DOX-PIHCA
NPs had significantly improved tumor inhibitory effect compared to free DOX (p = 0.01).
The mechanisms by which DOX-PIHCA NPs bypass P-gp efflux were the same as DOX-
PIBCA NPs discussed above. In similar, the Robert group prepared DOX-PIHCA NPs and
showed complete reversal of MDR in resistant C6 0.001 cells [43]. It was found that only
drug tightly associated with DOX-PIHCA NPs overcame P-gp resistance but empty NPs did
not, while the empty liposomes alone blocked P-gp function, which indicated the different
mechanisms to overcome P-gp resistance between the nano-delivery systems. It was also
suggested that the mechanism by which DOX-PIHCA NPs bypassed P-gp rather than direct
inhibit P-gp. In order to investigate whether free DOX or DOX-PIHCA NPs used different
mechanisms to acquire MDR, two human tumor cell lines, K562 and MCF-7, were selected
and DOX concentration in both formulations was gradually increased. It was found that
DOX-PIHCA NPs were more difficult to generate resistant cell lines and P-gp expression
was consistently lower than that in free DOX-selected cells, while breast cancer resistance
protein (BCRP) expression was in a reverse order. These suggested different mechanisms
may be involved in the acquisition of drug resistance [44]. Soma et al. prepared PACA NPs
co-encapsulated of DOX and cyclosporine A (CyA, a P-gp inhibitor) and showed that the
NPs had the most effective cell growth inhibition compared to other combinations of both
drugs in solution or NPs with single drug alone in resistant P388/ADR cells [45, 46].

In addition to DOX-PACA NPs, Susa et al. successfully formulated DOX into a
stearylamine-modified dextran NPs and demonstrated enhanced drug accumulation in the
nucleus compared to free DOX in several resistant osteosarcoma cells [47]. It was found that
the fluorescence of free DOX was mainly in the nucleus in sensitive cells but mainly in the
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cytoplasm in resistant cells, while the drug distribution of NP formulation was mainly in the
nucleus even in resistant cells. This indicated that the NP formulations were able to deliver
DOX into the nucleus in resistant cells and the mechanisms may be due to bypassing of P-
gp. Khdair et al. co-delivered DOX and methylene blue into Aerosol OT (AOT)-alginate
NPs and this combination therapy significantly increased the in-vitro cytotoxicity in resistant
NCI/ADR-RES cells and improved tumor growth inhibition in-vivo [48, 49]. Methylene
blue is a photosensitizer and it is suggested to generate ROS and inhibit P-gp, although the
mechanism is not fully understood [50]. It was hypothesized the P-gp inhibition and induced
ROS of methylene blue increased the cytotoxicity of DOX in resistant cancer cells. Misra et
al. also proposed dual drugs of DOX and curcumin co-encapsulated into poly(lactic-co-
glycolic acid) (PLGA) NPs [51]. The application of curcumin helped the retention of DOX
in the nucleus, as well as down-regulated the expression of P-gp and BCL-2 in K562 cells.
The combination of both drugs in NP formulations had enhanced in-vitro cytotoxicity
compared to single drug alone in either solution or NP formulations. Lei developed non-
targeted and HER2 antibody conjugated DOX-loaded PLGA NPs and compared the cellular
uptake and cytotoxicity to free DOX in resistant ovarian SKOV-3 and uterine MES-SA/Dx5
cells [52]. The results showed higher cellular uptake of targeted NPs than both of free drug
or non-targeted NPs in SKOV-3 cells. It was suggested that the major mechanism of
targeted PLGA NPs was receptor-mediated endocytosis. Shieh et al. developed more
complex DOX NPs, where the chemotherapeutic agent DOX and a photosensitizer were co-
incorporated into 4-armed porphyrin-polylactide (PPLA) NPs with D-α-tocopheryl
polyethylene glycol 1000 succinate (TPGS, a P-gp inhibitor) coated on the NP surface [53].
It was concluded the combined agents showed a synergistic effect and increased DOX
delivery to the nucleus in resistant MCF-7/ADR cells.

2.3 Polymeric Micelles
Alakhov et al. demonstrated that DNR-loaded poly(oxyethylene-b-oxypropylene-b-
oxyethylene) (Pluronic P85) block copolymer micelles increased the cytotoxicity up to 3-
and 700-fold greater than free DNR in sensitive SKOV3 and resistant SKVLB cells,
respectively [54]. Based on the results from the cytotoxicity, influx and efflux, and drug-
copolymer binding studies, it was hypothesized that the copolymer affected P-gp function by
direct interaction with P-gp and/or changed the structure of the plasma membrane. In
addition, the copolymer may induce the permeability of cell membrane. Lee et al. developed
DOX-encapsulated poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-
PPO-PEO) micelles and the micelle formulation exhibited 15-fold greater cytotoxicity
compared to free DOX in MCF-7 cells [55]. The flow cytometry analysis and confocal
images suggested the micelles entered the cells via the endocytosis pathway. Once inside
cells, the micelles were initially localized in endosomes and DOX was then released in a
sustained manner in the cytosol. The copolymer itself may also contribute to sensitization of
cells and to the enhancement of DOX-induced cell apoptosis. Li and colleagues synthesized
poly(L-lactide)-vitamin E TPGS (PLA-TPGS) block copolymer and used this as the carrier
for DOX [56]. The results indicated that the PLA-TPGS micelles inhibited P-gp, enhanced
drug cellular uptake, and facilitated translocation of DOX into the nucleus, all of which were
responsible for MDR circumvention. Zhao and co-workers added TPGS into PLGA-PEG-
folate polymeric micelles and showed increased DOX cellular uptake compared to the
micelles without TPGS, which may be due to the P-gp inhibition of TPGS [57]. Other
possible mechanisms of TPGS to overcome MDR may include inhibition of efflux pump
ATPase and substrate binding, generation of ROS, and alteration of membrane fluidity [58–
61]. Zheng et al. synthesized pH-sensitive polymers by linking N,N-
diisopropylethylenediamine (DPA) onto the backbone of PEGylated polyphosphazene [62].
DOX was entrapped in the polymer to form self-assembled micelles and the IC50 value of
this formulation was 60-fold lower than free DOX against resistant MCF-7/ADR cells. The
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cellular uptake and intracellular distribution of DOX micelles were evaluated by confocal
microscopy, and it was found that much more DOX was in the nucleus compared to free
DOX and the majority of free DOX was entrapped in the intracellular compartments.
Furthermore, DND-26 (an acidic organelle-selective fluorescent probe) was incorporated
into the micelles to investigate whether the pH-sensitive polymeric micelles could help
DOX escape from endosomes and lysosomes. The results demonstrated the fluorescence of
DND-26 micelles was spread over the cells while free DND-26 was mainly located in the
endosomes and lysosomes. Pre-incubation of the polymer solution followed by the addition
of free DND-26 showed that the polymer and free DND-26 entered the cells via endocytosis
and passive diffusion pathways, respectively. All these suggested the pH-sensitive
polymeric micelles disrupted endosomes and released the drug after they were endocytosed
into the cells, and that the mechanisms may be due to the proton-sponge effect and/or
polymer-endosomal membrane interaction. Yuan et al. synthesized linoleic acid-grafted
chitosan oligosaccharide (CSO-LA) and incorporated DOX into CSO-LA micelles [63, 64].
The results demonstrated a significant enhancement in the internalization of the micelles in
both sensitive MCF-7 and K562 and their resistant cells compared to free DOX. In addition,
paclitaxel (PX) and DOX were successfully co-loaded in the stearic acid-grafted CSO
micelles and the results showed that this formulation was able to completely reverse MDR
in resistant cells [65]. The following mechanisms were proposed for the fatty acid-grafted
CSO micelles (CSO-FA) to overcome MDR: 1) positively-charged CSO-FA micelles
facilitate the interaction between micelles and negatively-charged cell membrane; 2) the
alkyl side chain on chitosan backbone favors its fusion and hydrophobic interactions with
cell membrane and this effect was alkyl chain dependent; 3) the fatty acid forms
hydrophobic microdomains near the surface of the micelle due to the stereo resistance effect,
which enhances the hydrophobicity of the micelle and further favor the internalization of
micelles into cells because of the lipophilic property of the cell membrane.

The Bae group developed DOX-loaded pH-sensitive polymeric micelles with folate (PHSM/
f), which was a mixture of two block copolymers of poly(L-histidine)(Mn: 5K)-b-PEG (Mn:
2K) (polyHis/PEG) or polyHis/PEG with folate (polyHis/PEG-folate) and poly(L-lactic
acid)(Mn: 3K)-b-PEG(Mn: 2K)-folate (pLLA/PEG-folate) [66–68]. The mixed copolymers
in the micelle formulation improved the micelle stability in pH 7.4 due to the hydrophobic
properties of pLLA [69]. This formulation overcame MDR both in-vitro and in-vivo in
several resistant cell models. The results showed that the micelles entered the cells via folate
receptor-mediated endocytosis pathway, and then DOX escaped from endosomes and was
released into the cytoplasma due to the positively-charged polyHis which fused and
destabilized the negatively-charged endosomal membrane at low pH of 6.5–7.2. To better
understand the mechanism of the micelles, FITC-pLLA/PEG with folate (FITC-pLLA/PEG-
folate) was synthesized as a pH-insensitive micelle control (PHIM/f). In contrast to PHSM/f,
PHIM/f was found to be mostly entrapped into sub-organelles, such as endosomes, and had
much less antitumor efficacy compared to PHSM/f. Taken together, the active folate
receptor-mediated endocytosis, triggered drug release at low pH, and the interaction between
polyHis group and endosomal membrane may be responsible for the MDR reversal effect.
Later on, it was noticed that a fraction of the loaded DOX was released in tumor
extracellular space (pH 6.5–7.2) before actively internalized into the cells. Therefore, the
released drug had the potential to be pumped out by P-gp and attenuated its efficacy. To
prevent DOX releasing in tumor extracellular space, L-phenylalanine (Phe) was introduced
to the copolymer of polyHis/PEG to form poly(His-co-Phe)/PEG [70, 71]. The Phe group in
the copolymers significantly dropped the pKa values and allowed the destabilization of
micelles at even the lower pH of 6 to avoid the tumor extracellular pH. The mixture of
poly(His-co-Phe)/PEG and pLLA/PEG-folate formed the second generation of pH-sensitive
micelles which precisely target the early endosomes at pH of 6.
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It has been shown that an NF- κB inhibitor enhanced tumor cell sensitivity of apoptosis
induced by chemotherapeutic agents, such as DOX and PX [72, 73]. Fan et al. co-loaded
DOX and pyrrolidinedithiocarbamate (PDTC, an NF- B inhibitor) in folate-chitosan (FA-
CS) polymeric micelles, and the micelles showed significantly lower IC50 values and
enhanced cellular uptake in resistant cells [74]. Lee et al. co-delivered human tumor necrosis
factor (TNF)-related apoptosis-inducing ligand (Apo2L/TRAIL) and DOX with self-
assembled micelles from cationic copolymer of poly{N-methyldietheneamine sebacate)-co-
[(cholesteryl oxocarbonylamido ethyl) methyl bis(ethylene) ammonium bromide] sebacate}
(P(MDS-co-CES)) [75]. It was demonstrated that the co-delivery of DOX and TRAIL in
P(MDS-co-CES) micelles entered the cells via receptor-mediated endocytosis and enhanced
the cytotoxicity against resistant tumor cells. Benoit et al. developed cationic micelles from
copolymers of poly(dimethylaminoethyl methacrylate) (pDMAEMA) and poly(butyl
methacrylate) (pDbB) [76]. DOX was loaded into the hydrophobic core of pDbB. An siRNA
against polo-like kinase 1 (PLK1), a gene up-regulated in many cancers and responsible for
cell cycle progression, was condensed with positively-charged pDMAEMA. A pH-sensitive
copolymer of poly(styrene-alt-maleic anhydride) (pSMA) was further complexed with
positively-charged PLK1 siRNA/DOX micelles to form a ternary complex for escape of the
drug from endosomes. The co-delivery of PLK1 siRNA and DOX using this ternary
complex system exhibited synergistic effect in resistant NCI/ADR-RES cells. Xiong et al.
constructed poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL) micelles for the
co-delivery of MDR1 siRNA and DOX [77]. Two ligands, integrin αvβ3-specific ligand
(RGD4C) and TAT peptide, were attached on the shell of the micelles for active targeting
and cell-penetration purpose, respectively. This multifunctional polymeric micellar system
was able to deliver both of DOX and MDR1 siRNA into intracellular compartments, and
overcame P-gp-mediated resistance in-vitro and targeted αvβ3-positive tumors in-vivo.
Nakanishi et al. prepared a polymeric micelle formulation of NK911 for DOX. NK911
consisted of block copolymers of PEG (Mw: 5K) and poly(aspartic acid) (~30 units) [78].
DOX was partially conjugated to the side chain of aspartic acid (~45%) to enhance the
hydrophobicity of the inner core of the micelles. Therefore, two types of DOX, i.e.
incorporated DOX and conjugated DOX, were in NK911 formulation. However, the
conjugated DOX did not show any antitumor activity. The preclinical studies demonstrated
much stronger tumor inhibitory effect against several tumor models compared to free DOX
and currently NK911 is in a phase I trial.

In order to better understand the mechanism of polymeric micelle mediated drug delivery,
Chen et al. investigated the cellular uptake of monomethoxy poly(ethylene glycol)-block-
poly(D,L-lactic acid) (PEG-PDLLA) micelles [79]. Fluorescein isothiocyanate (FITC) was
used to label micelle itself and 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine
perchlorate (DiIC18(3)) was used as a hydrophobic model molecule encapsulated in the
micelle. It was found that the cellular uptake of DiIC18(3) was much faster than that of FITC-
labeled PEG-PDLLA micelles, which indicated their different cell entry pathways.
Moreover, förster resonance energy transfer (FRET) imaging and spectroscopy were utilized
to monitor the cellular uptake of PEG-PDLLA micelles in real time loaded with a FRET pair
of DiIC18(3) and 3,3′-dioctadecyloxacarbocyanine perchlorate (DiOC18(3)). The FRET
results confirmed that both of the hydrophobic dyes were entrapped in the core of the
micelles and were subsequently released to the plasma membrane and then internalized by
the cells. PEG on the shell of the micelles facilitated the release of the dyes because of the
PEG-induced fusion to the cell membrane. In contrast, Allen et al. evaluated
polycaprolactone-block-poly(ethylene oxide) (PCL20-b-PEO44) copolymer micelles in PC12
cells and the results strongly suggested the micelles entered the cells via endocytosis
pathway based on a series of cellular uptake studies [80]. Savič et al. triple-labeled PCL-b-
PEO micelles, nucleus, and plasma membrane (or cytoplasmic organelles, such as
mitochondria, Golgi, etc.) and showed that the micelles were endocytosed into the cells and
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distributed into several cytoplasmic compartments, including mitochondria, Golgi apparatus,
but not the nucleus [81]. 5-dodecanoylaminofluorescein (DAF), a model molecule, was
incorporated into PCL-b-PEO micelles and the results suggested the micelle formulation
enhanced the delivery of the agent into the cells and increased its efficacy. Venne et al.
demonstrated that the DOX-loaded poly(oxypropylene)-poly(oxyethylene) block copolymer
pluronic L61 micelles enhanced by 290- and 700-fold the cytotoxicity in resistant CHRC5
and MCF-7/ADR cells, respectively, but were comparable with free DOX in their matched
sensitive cell lines [82]. The micelle formulation was found to shift the distribution of DOX
from the cytoplasmic compartment to the nucleus, and the copolymer increased the drug
uptake and inhibited the drug efflux. All of these contributed to the ability of pluronic L61
micelles to overcome MDR.

2.4 Polymer Conjugates
The Kopeček and Duncan groups collaboratively developed two N-(2-
hydroxypropyl)methacrylamide (HPMA)-DOX conjugates, namely PK1 and PK2, and both
of the conjugates were tested in phase I/II clinical trials [83]. The HPMA-DOX conjugates
had the following three components: 1) a water-soluble polymeric carrier of HPMA; 2) an
anticancer drug of DOX; 3) biodegradable polymer-drug linker. In the PK1 conjugate, the
linker was a tetrapeptide of GFLG, which was stable in the blood circulation but susceptible
to cleavage by enzymes in the lysosomes. In contrast, PK2 had additional galactose residues
that were recognized by the asialoglycoprotein receptor on hepatocytes for targeted therapy
of hepatocellular carcinoma. The IC50 value of HPMA-DOX conjugate in resistant A2780/
AD cells was only about 20% higher than in sensitive A2780 cells (the resistance index of
free DOX in A2780/AD cells: 40), which indicated that the conjugate formulation at least
partially overcame P-gp-mediated resistance. The analysis of P-gp gene expression showed
that free DOX at high doses induced P-gp expression in sensitive A2780 cell, while the
HPMA-DOX conjugate inhibited P-gp and β2-microglobulin (β2m) genes in resistant
A2780/AD cells.

The mechanisms of action of HPMA-DOX conjugates have been extensively studied and
well established [84–89]. The HPMA-DOX conjugates entered the cells via endocytosis
pathway and DOX was then released from the lysosomes in the perinuclear regions due to
the lysosomally-degradable spacer of GFLG between DOX and the polymer. Then, the
released DOX entered the nucleus and exerted its pharmacological function. The conjugates
demonstrated prolonged blood circulation in-vivo, and enhanced tumor-to-blood ratio as a
function of time, and enhanced Cmax at 48 h in tumors after i.v. administration. All three of
these parameters indicated that the conjugates passively accumulated in tumor tissues via the
EPR effect. It is important to note that the particle size of HPMA-DOX conjugates was less
than 10 nm. Interestingly, the concentration gradient of HPMA-DOX conjugates was found
to be decreased from the perinuclear region to the plasma membrane. In contrast, the
concentration gradient of free DOX was in the opposite direction, where it decreased from
the plasma membrane to the perinuclear region. Consequently, DOX in the conjugate
formulation had increased ability to interact with nuclear DNA and/or topoisomerase II. In
addition, free DOX up-regulated MDR genes such as MDR1 and MRP, while the conjugates
overcame MDR1 and down-regulated MRP. Free DOX also activated various cell
detoxification mechanisms, while HPMA-DOX conjugate down-regulated BCL-2, heat-
shock protein 70 (HSP-70), glutathione S-transferase π (GST-π), bilirubin uridine
diphosphate (BUDP) transferases, topoisomerase IIα and IIβ, and thymidine kinase 1 (TK1)
genes. With the exposure of HPMA-DOX conjugate, cell apoptosis, lipid peroxidation, and
DNA damage were significantly higher compared to free DOX. For more details on the
design, efficacy, safety, and mechanisms of action of HPMA-DOX conjugates, please refer
to referenced articles [84–89].

Ma and Mumper Page 9

Nano Today. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Omelyanenko et al. synthesized targetable HPMA-DOX conjugates containing N-acylated
galactosamine (GalN) or monoclonal OV-TL 16 antibodies (OV-TL 16 Ab) [90].
Fluorescence confocal microscopy studies demonstrated that both of the targeted conjugates
had a similar fate when incubated with the cells, where the conjugates were recognized and
internalized into the cells, localized in the lysosomes and DOX was then released from the
polymer and eventually diffused from the cytoplasma into the nucleus. Št’astný et al.
designed HPMA-DOX conjugates with different targeting moieties, including anti-CD71,
antithymocyte globulin, anti-CD4, and transferrin, and compared their ability to reverse
MDR in CEM/VLB cells [91]. Anti-CD4 targeted HPMA-DOX conjugate demonstrated the
weakest ability to overcome resistance and this was probably due to the poor internalization
of anti-CD4 molecule. It was hypothesized that receptor-mediated endocytosis was a very
important factor for the MDR reversal effect of HPMA-DOX targeted conjugates and this
effect was targeting moiety dependent. Nan et al. prepared targeted HPMA-DOX conjugates
containing a peptide sequence of WHYPWFQNWAMA, to bind surface-specific receptor of
Hsp47/CBP2 which was over-expressed in human squamous cell carcinoma of head and
neck (SCCHN) [92]. Interestingly, both targeted and non-targeted conjugates demonstrated
the less cellular uptake and lower cytotoxicity than free DOX in sensitive SCCHN cells.
This indicated the endocytosis process of the conjugates was slower than the rapid passive
diffusion of free DOX in sensitive SCCHN cells. In contrast, both targeted and non-targeted
conjugates exhibited significantly higher cellular uptake and more potent than free DOX in
resistant SCCHN cells. Moreover, targeted conjugates showed higher cellular uptake than
non-targeted conjugates. Taken together, all the studies suggested the targeted HPMA-DOX
conjugates had the potential to treat the resistant head and neck cancer. Bidwell et al.
developed a thermally targeted elastin-like polypeptide (ELP) DOX conjugate to overcome
MDR in resistant MES-SA/Dx5 and NCI/ADR-RES cells [93]. This DOX conjugate
contained four functional domains: 1) an anticancer agent of DOX; 2) GFLG, a tetrapeptide
linker, which could facilitate DOX release from lysosomes; 3) TAT, a cell penetrating
peptide; 4) ELP, a thermal-responsive polypeptide as the vehicle for DOX. It was found to
be beneficial to use ELP as a drug carrier compared to HPMA in PK1, based on the fact that
ELP macromolecules accumulated in tumors and this accumulation may be further enhanced
by thermal targeting.

In addition to HPMA-DOX conjugate, Kono et al. conjugated DOX to PEG modified
poly(amidoamine) dendrimers with either an amide or hydrazone linkage [94]. The results
demonstrated the acid-labile hydrazone linkage was very important to exhibit the antitumor
efficacy in resistant cells. It was hypothesized the DOX-dendrimer conjugate was taken up
into cells via endocytosis and entrapped into subcellular acidic compartments of endosomes
and lysosomes. The endosomes were ruptured by DOX-dendrimer via proton sponge effect,
and the hydrazone linkage was broken in acidic environment and DOX was then released
from the dendrimer to exert its pharmacological action.

The Fong group applied a Schiff base covalent bond formation strategy to synthesize
dextran-DOX conjugates [95–97]. Both free DOX and the conjugate were localized mainly
in cytoplasmic compartments in resistant KB-V1 cells but for different reasons. Free DOX
was difficult to diffuse into the nucleus due to the P-gp efflux, while the dextran-DOX
conjugate was excluded from the nucleus due to its large size. The P-gp seemed to be only
effective if the molecular weight of drug conjugates was less than 70 kDa. This was
consistent with the findings that the central pore size of P-gp was 5 nm, while the effective
size of 70 kDa dextran was ~5 nm [98]. Therefore, dextran-DOX conjugate larger than 70
kDa was not a good P-gp substrate and had better accumulation in the nucleus. Furthermore,
the critical size of dextran for DOX accumulation was calculated as 103 kDa based on the
relative cytotoxicity of dextran-DOX conjugate in sensitive and resistant KB cells. The
DOX coupled to 70 kDa dextran, i.e. dextran-DOX conjugate (AD-70, DOX-OXD), was
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tested in a phase I clinical trial and the MTD of the conjugate was found to be 40 mg DOX/
m2 [99].

2.5 Peptide/Protein Conjugates
Liang et al. synthesized a TAT-DOX conjugate and evaluated its cellular uptake and
intracellular distribution in MCF-7 cells [100]. Both the conjugate and free DOX were
transported into the cells but with different intracellular distribution, where free DOX was
mainly in the nucleus while the most of the conjugate was located in the perinuclear and
cytoplasmic regions. On the other hand, the cytotoxicity of the conjugate and free DOX was
comparable. This suggested DOX also have activity in cytoplasma. The research supported
that the activity of DOX was not only due to its inhibition of DNA synthesis, but also due to
its interaction with cytoplasmic components to cause cell apoptosis [101]. Importantly, the
cytotoxicity of the conjugate was about 8–10-fold higher than free DOX in both resistant
MCF-7/ADR and AT3B-1 cells. To understand the mechanisms of TAT-DOX conjugate to
overcome MDR, the intracellular DOX concentration was measured in sensitive and
resistant MCF-7 cells. About 90% of the free DOX accumulated in sensitive cells but
dropped to only 5% in resistant cells, indicating a strong P-gp efflux in resistant cells. In
contrast, the conjugate had 58.6% retention in resistant cells. In addition, neither the mixture
of DOX and TAT nor verapamil (a P-gp inhibitor) affected the cytotoxic properties of the
TAT-DOX conjugate, which suggested the MDR reversal of the conjugate was bypassed but
not inhibited. Aroui and colleagues designed three DOX-cell penetrating peptide (CPP)
conjugates, namely maurocalcine, penetratin, and TAT, and compared the cytotoxicity to
free DOX in different sensitive and resistant cells [102–104]. All three conjugates displayed
similar efficacy which was about 5-fold more cytotoxic than free DOX in resistant cells. In
general, CPPs are used as cell impermeable compounds, while the benefits of CPPs applied
to the cell membrane permeable compound DOX may be due to improved stability,
facilitated cell compartment targeting and DNA binding, alteration efflux pathways and
detoxification reactions of DOX. To understand the mechanisms, BCL-2 and BCL-XL
protein expressions were determined in the cells treated with DOX conjugates or free DOX
since anti-apoptotic BCL-2 family was known to control mitochondria membrane
permeability. However, the results showed no difference between the conjugate and free
DOX. To determine if other apoptotic pathways were responsible for mitochondrial
permeabilization, the DOX-CPP conjugates were studied in MDA-MB-231 cells over-
expressing of BCL-2. It was found that the DOX conjugate was 5-fold more toxic than free
DOX in resistant MDA-MB-231/BCL-2 cells, which indicated that the DOX-CPP conjugate
activated multiple apoptotic pathways other than mitochondrial events. It should be noted
that free DOX was mainly localized in the nucleus and the DOX conjugate was localized in
the cytosol. The alteration of intracellular distribution of DOX conjugate may contribute the
mitochondrial independent apoptotic pathways. Meyer-Losic et al. conjugated DOX to
another CPP, Vectocell, via different linkers [105]. This peptide originated from human
protein with 15–23 amino acid residues, and the studies showed it was internalized by
different mechanisms [106]. When chemically stable bonds were utilized to the conjugate
with Vectocell, e.g. at the C14 position of the thioether or the C3′ position of the amide
group of DOX, the in-vivo activity was minimal, which was probably due to inhibition of
the interaction between DOX and DNA caused by Vectocell. The best linker was found to
be at the C14 position of DOX with an ester bond, and this Vectocell-DOX conjugate had
significantly greater antitumor efficacy compared to free DOX both in-vitro and in-vivo in
colon and breast tumor models. The mechanism of the improved therapeutic index of
Vectocell-DOX conjugate was not clear. However, because the conjugate had lower charge-
to-mass ratio, it seemed to be different than other CPPs, such as TAT.
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Mazel et al. coupled DOX to two different peptides, namely penetratin or SynB1, to obtain
two different DOX-peptide conjugates [107]. The results demonstrated the IC50 value of the
conjugates was about 20-fold less than free DOX in resistant K652/ADR cells, and the
conjugates had similar cellular uptake in both sensitive and resistant cells. All of above
results suggested that conjugate entered the resistant cells in a way not recognized by P-gp,
although the mechanism was unknown. It was known that the amino group on DOX was an
important substrate group for P-gp recognition and since the coupling of DOX to peptide
was taken place at this amino position. Therefore, the conjugate may enter the resistant cells
bypass of P-gp efflux. Interestingly, the cytotoxicity of the conjugate was less than that of
free DOX in sensitive cells, indicating some loss of DOX activity which was probably due
to the covalent binding between DOX and peptide. It should be noted that the conjugates in
the studies were not susceptible to hydrolysis because succinate and thioether were used as
the linkers for SynB1 and penetratin, respectively. When substituted succinate linker to
disulfide, DOX-SynB1 conjugate was more potent. The DNA binding studies showed that
the conjugate intercalated with DNA. Other mechanisms, such as interaction between
conjugate and cell membrane, may be involved in the induction of the cell apoptosis by the
conjugate.

Fritzer et al. synthesized transferrin-DOX conjugate and demonstrated that it was much
more potent than free DOX in resistant K562/ADR, HL-60/ADR, KB-C1 and KB-V1 cells
[108, 109]. Since a Schiff based coupling strategy was utilized to prepare transferrin-DOX
conjugate, the conjugate did not undergo hydrolysis at acidic pH in the endocytic
compartment. It was stable at least for 2 weeks at 37°C at pH 3.0 without detectable free
DOX. The fluorescent microscope studies showed that the cell membrane, but not DNA,
was the target of the conjugate. The mechanisms of transferrin-DOX conjugate were
proposed where the conjugate slowly dissociated and released DOX in a sustained manner
after binding to cell membrane, which prolonged the effect of DOX on cell membrane and
caused membrane damage. In this way, P-gp was unable to circumvent the function of
transferrin-DOX conjugate. In contrast, Lai et al. suggested a different mechanism of
transferrin-DOX conjugate where the conjugate entered the cells and mainly localized in the
cytoplasma [110]. It was pointed out that the discrepancy may be due to the different
fluorescent labeling, where DOX fluorescence was quantified in Lai’s studies while
fluorescence-labeled transferrin was used for Fritzer’s study. The increased cytotoxicity of
transferrin-DOX conjugate over that of free DOX was partly explained by the conjugate bio-
reductive processes and ROS generation in cytoplasma. The ability of the transferrin-DOX
conjugate to overcome MDR was further confirmed by Łubgan, where the conjugate was 4-
and 200-fold more cytotoxic than free DOX in sensitive HL-60 and resistant HL-60/ADR
leukemia cells, respectively [111]. Interestingly, when Munns et al. investigated transferrin-
DOX conjugate in sensitive MGH-U1 and resistant MGH-U1R bladder cancer cell lines, it
was found that the conjugate did not overcome resistance [112]. It is worthy to mention that
the mass spectrometry data demonstrated that the conjugate did not dissociate at all. To
understand whether the integral conjugate form was active or not, transferrin-negative TRVb
and transferrin-positive TRVb-1 cells were utilized as the controls. The results showed
comparable cytotoxicity for the transferrin-DOX conjugate and free DOX, indicating that
both of the DOX forms were equally active. It is known that the lipid composition and
fluidity of cell membrane are different between resistant and sensitive cells, and this
membrane acquired drug resistance may explain the transferrin-DOX conjugate failing to
overcome resistance in MGH-U1R bladder cancer cells [113, 114].

Guillemard et al. linked DOX to a mAb specifically recognizing the type 1 insulin-like
growth factor receptor (IGF-1R) [115]. This IGF-1R-DOX conjugate had more than a 200-
fold enhanced therapeutic index compared to free DOX in-vitro in resistant KB-V cells, and
significantly reduced the tumor burden in-vivo in a KB-V xenograft mouse model. Unlike
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the transferrin-DOX conjugate, IGF-1R-DOX conjugate was internalized into cells via
receptor-mediated endocytosis and DOX was released into the perinuclear and cytoplasmic
regions farther away from the P-gp pump and therefore reducing the likelihood for efflux.
Again, the amino group on DOX was used to couple with mAb. Therefore, this conjugate
was able to escape P-gp recognition. Based on the fact that the luteinizing hormone-
releasing hormone receptor (LHRH-R) is found in >50% of human breast cancers, Bajo et
al. chemically coupled DOX to [D-Lys6]LHRH to generate a cytotoxic conjugate, called
AN-152 [116]. The AN-152 demonstrated significantly antitumor efficacy in-vivo compared
to other controls in a DOX-resistant MX-1 xenograft mouse model. The following
mechanisms of AN-152 were proposed to overcome resistance in MX-1 tumors: 1) AN-152
could significantly reduce HER2 and HER3 levels but not EGFR, while free DOX had no
effect on these receptors. Therefore, down-regulation of ErbB/HER receptor family
members may contribute to circumvent MDR; 2) the receptor-mediated endocytosis
pathway of the conjugate via targeting to LHRH-R may not be the reason of its escape from
the efflux pump because the resistance of DOX in MX-1 tumors is known not to be
mediated by the transport system; 3) AN-152 significantly decreased mRNA levels of Gα11
and Gα12 but free DOX did not [117]. Both of the above G-proteins are known to couple to
LHRH-R and regulate cell growth [118]. The disruption in G-protein signaling by AN-152
also contributed to circumvent MDR.

Ren et al. conjugated DOX to an antisense oligodeoxynucleotide (AS ODN, 5′-
TCCTCCATTGCGGTCCCCTT-3′) on its 3′-phosphate group [119, 120]. The conjugate
significantly enhanced the stability of both DOX and AS ODN in biological fluid in-vitro,
and increased binding affinity of AS ODN to its complementary sequence. The intracellular
accumulation of AS ODN was much higher in the conjugate form compared to free AS
ODN, which was mainly due to the improved lipophilicity of AS ODN in conjugate. This
AS ODN-DOX conjugate demonstrated significantly improved antitumor efficacy, and
markedly inhibited P-gp expression and mRNA levels compared to AS ODN or DOX alone
both in-vitro and in-vivo in a resistant KB-A-1 cell model.

The Ohkawa group developed a bovine serum albumin (BSA)-DOX conjugate and
investigated the conjugate both in-vitro and in-vivo in sensitive AH66P and resistant
AH66DR cells [121–124]. The results demonstrated the BSA-DOX conjugate had similar
cytotoxicity in-vitro in both AH66P and AH66DR cells, which indicated the complete
reversal of MDR (free DOX resistant index: 200). It was also found that DOX concentration
in the cell remained relatively high even after 36 h. The treatment of BSA-DOX conjugate
in rats in a resistant AH66DR model led to significantly prolonged survival compared to free
DOX. All the results indicated this BSA-DOX conjugate had the potential to overcome
MDR and it was suggested the conjugate entered the cells via endocytosis pathway and the
drug was then slowly released from lysosomes. Furthermore, both of the drug concentration
and molecular mass (Mr) of the internalized BSA-[14C]DOX conjugate in different
subcellular compartments (lysosomes, cytosol, nucleus, and mitochondria) were measured
by a liquid scintillation counter and HPLC gel filtration, respectively. Interestingly, the
accumulation of the conjugate markedly increased in lysosomes in resistant AH66DR cells
as a function of time up to 24 h, while significantly enhanced accumulation in mitochondria
but moderate increase in lysosomes and the nucleus was observed in sensitive AH66P cells.
In both of the cell lines, a total of three peaks with Mr from 3–70 kDa were identified in
lysosomes, one peak with Mr <2 kDa was in the nucleus and mitochondria, two peaks with
one <2 kDa and the other one >500 kDa were determined in the cytosol. No free DOX was
found in any compartments. The two peaks in the cytosol suggested that the smaller one (<2
kDa) may be the conjugate degradation product released from lysosomes, and the larger one
(>500 kDa) may be the complex of the BSA-DOX conjugate or its degradation product with
tubulin or other unknown proteins. It should be noted that the smaller peaks <2 kDa were
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found in the nucleus, mitochondria and cytosol. In addition, based on the fact that the
accumulation of the DOX BSA-[14C]DOX conjugate increased in lysosomes in AH66DR
cells, all of which indicated the BSA-DOX conjugate degraded in lysosomes and resultant
active adducts <2 kDa were responsible for the antitumor efficacy in resistant AH66DR
cells. To confirm the lysosomal degradation products from the conjugate exhibited cytotoxic
effect, poly-D-lysine-DOX and poly-L-lysine-DOX conjugates were tested. The cellular
uptake of both conjugate was similar, but only poly-L-lysine-DOX conjugate showed the
cytotoxicity because poly-L-lysine was digested by lysosomal enzymes but poly-D-lysine
did not [125]. Later on, four DOX-peptide conjugates with Mr <2 kDa, namely
glycylglycine (diGly), glycylglycylglycine (triGly), reduced glutathione (GSH), and
oxidized glutathione (GSSG), were synthesized and evaluated the cytotoxicity effect in both
AH66P and AH66DR cells. diGly-DOX and triGly-DOX demonstrated the same
cytotoxicity as free DOX in both of the cell lines, GSSG-DOX had the same cytotoxicity as
BSA-DOX conjugate in both cells, and GSH-DOX showed 9- and 7.5-fold more cytotoxic
activity than BSA-DOX conjugate against AH66P and AH66DR cells, respectively. The
highest cytotoxicity of GSH-DOX among all DOX conjugates was due to the rapid uptake
and high accumulation in resistant AH66DR cells.

2.6 Solid Lipid Nanoparticles
Kang et al. developed DOX-loaded solid lipid NPs (SLNs) with glyceryl caprate (Capmul
MCM C10) as the lipid core, polyethylene glycol 660 hydroxystearate (Solutol HS15) as the
surfactant, and curdlan as the shell forming material [126, 127]. The DOX SLNs enhanced
the cellular uptake to 17.1- and 21.6-fold at 1 and 2 h, respectively, and increased apoptotic
cell death determined by crystal violet staining assay, when compared to free DOX in
resistant MCF-7/ADR cells. In addition, the SLNs did not induce hemolytic activity in
human erythrocytes which indicated the safety of the formulation. It was concluded that the
DOX SLNs had the potential to overcome MDR. The Mumper group successfully prepared
DOX and IDA SLNs from warm microemulsion precursors using emulsifying wax as the oil
phase, and polyoxyl 20-stearyl ether (Brij 78) and TPGS as the co-surfactants [128–132].
Anionic ion-paring agents of sodium taurodeoxycholate (STDC) and sodium tetradecyl
sulfate (STS) were applied to neutralize the cationic anthracyclines and enhance the drug
entrapment in SLNs. The DOX SLNs had significantly improved antitumor efficacy than
free DOX both in-vitro and in-vivo in a resistant P388/ADR cell model, but IDA SLNs did
not demonstrate any benefit compared to free IDA, which may be due to the more lipophilic
property of IDA. The mechanisms of the DOX SLNs overcoming MDR were investigated
and it was concluded that the MDR reversal of SLNs may due to the P-gp inhibition by Brij
78 and TPGS, and ATP depletion by Brij 78 [133]. It is known that SLNs have some
potential limitations, such as low drug loading capacity, burst drug release behavior, and
potential drug expulsion upon storage. To avoid the above limitations, the incorporation of
liquid lipid to solid lipid, a second generation of SLN – nanostructured lipid carriers (NLC),
was developed and found to enhance imperfections of SLNs and achieved more space for
drug molecules, thus improved drug loading [134]. Zhang et al. applied monostearin as the
solid lipid and oleic acid as the liquid lipid to construct DOX NLC [135]. This DOX NLC
exhibited greater in-vitro cytotoxicity compared to free DOX in both resistant MCF-7/ADR
and SKOV3-TR30 cells. The high affinity between lipids or NLC and the cell membrane,
competitive inhibition of P-gp, all of above contributed the increased intracellular drug
concentration and overcame MDR.

Wong et al. developed a novel polymer-lipid hybrid DOX SLN system which was composed
of hydrolyzed polymer of epoxidized soybean oil (HPESO), stearic acid, pluronic F68, and
DOX [136]. HPESO was applied not only to achieve more uniform and spherical particles,
but also to enhance DOX partition in the SLN thereby increasing drug loading capacity. The
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cytotoxicity of DOX SLNs was evaluated in resistant MDA435/LCC6/MDR1 cells, and the
results showed SLNs were significantly more potent than free DOX. The mechanisms of
DOX SLNs were investigated and proposed as the follows: 1) DOX is released from DOX
SLNs outside the cells but the cytotoxicity is increased; 2) DOX-SLNs enter into the cells
and DOX is then released from SLNs inside the cells, resulting in higher cytotoxicity. In the
meanwhile, the following mechanisms were ruled out: 1) blank SLNs and/or excipients
inhibit or bypass the MDR proteins based on the fact that the combination of blank SLNs
and DOX or DOX-HPESO complex did not show significant cytotoxic effect in MDR cells;
2) the lipid components in the SLNs alter permeability of cell membrane. These two
findings are quite different compared to nano-delivery systems discussed previously, which
suggested the reversal of MDR activities was diversified and carrier dependent. Later,
endocytosis inhibition and fluorescent image studies of SLNs were performed to better
understand the mechanisms of the cellular drug uptake [137]. The results suggested the
phagocytosis pathway was involved in SLN internalization and DOX associated with SLN
bypassed the P-gp efflux in resistant cells. It was proposed that the DOX in SLNs probably
entered the cells with the combination of simple passive diffusion of released drug from the
carrier outside of cells and phagocytosis. The released drug outside of cells may in part be
effluxed by P-gp, however, DOX that entered cells via phagocytosis would be entrapped in
cells and difficult to be pumped out by P-gp. In another study, the co-delivery of DOX and
GG918 (Elacridar, a lipophilic and non-ionic P-gp inhibitor) in the SLNs showed enhanced
DOX cellular uptake than any forms of DOX/GG918 combination [138]. Shuhendler et al.
developed polymer-lipid hybrid SLN with myristic acid, HPESO, pluronic F68, PEG100SA,
PEG40SA, and both DOX and mitomycin C were simultaneously loaded in the SLNs [139].
The SLNs demonstrated to be 20–30-fold more toxic in resistant MB435/LCC6/MDR1 cells
compared to free DOX.

2.7 Magnetic Nanoparticles
Chen et al. investigated how Fe3O4 magnetic NPs facilitated DNR to overcome MDR in-
vitro in sensitive and resistant K562 cells [140]. To increase the interaction between NPs
and lipid portion of cell membrane, tetraheptylammonium (THA) was coated on the NPs.
Confocal fluorescence, atomic force microscope (AFM), and electrochemical studies were
performed to evaluate the synergistic effects of NPs on the uptake of DNR in K562 cells.
The observations confirmed the THA-coated Fe3O4 NPs interacted with cell membrane and
significantly enhanced the uptake of DNR in resistant K562 cells. The similar size of THA
capped Ni magnetic NPs were applied as a control, but the NPs showed much less efficacy
in terms of DNR cellular uptake in both sensitive and resistant cells, indicating the unique
property of THA capped Fe3O4 NPs to facilitate the DNR uptake. The following
mechanisms were proposed for THA capped Fe3O4 NPs to overcome MDR: 1) Fe3O4 NPs
may function as the inhibitor or competitive substrate for MDR associated proteins (e.g. P-
gp); 2) the interaction between THA capped Fe3O4 NPs and cell membrane. Later on, both
DOX and tetrandrine (Tet, a P-gp inhibitor) were loaded in Fe3O4 magnetic NPs and the
results suggested the synergetic reversal effect in resistant K562/A02 cells [141].
Interestingly, Tet-Fe3O4 NPs were able to decrease by 100-fold the MDR1 mRNA level but
could not reduce the total amount of P-gp, indicating P-gp function was blocked. The
activity of a modified Tet, 5-bromotetrandrine (BrTet), was also evaluated and it was
demonstrated to have better efficacy than Tet in resistant K562/A02 cells both in-vitro and
in-vivo [142–145]. The BrTet-Fe3O4 NPs demonstrated the ability to down-regulate MDR1
mRNA level and P-gp expression. The combination of DNR and BrTet-Fe3O4 NPs also had
significantly greater antitumor efficacy than any controls in-vitro in resistant K562/A02 cells
and in-vivo in xenograft nude mice. It was confirmed this NP system inhibited BCL-2
expression, up-regulated BCL-2-associated X protein (BAX), p53 and caspase-3 proteins in
resistant K562/A02 xenograft tumors, all of which contributed to synergetic effect of the
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NPs to overcome MDR. Furthermore, short hairpin RNA (shRNA) targeted the sequences of
3491–3509, 1539–1557, and 3103–3121 nucleotide of MDR1 mRNA was constructed [146].
The in-vitro data suggested the combination of MDR1 shRNA and Fe3O4 magnetic NPs was
more efficient to reverse MDR and less toxic in resistant K562/A02 cells. Similarly, DNR-
loaded ZnO NPs were shown to have greater cytotoxicity compared to free DNR in resistant
K562/A02 cells [147].

Kievit et al. developed a complex DOX NP formulation, where polyethylenimine (PEI)-
DOX was first constructed via a pH-sensitive hydrazone linkage and this PEI-DOX was then
conjugated to PEG-coated superparamagnetic iron oxide NPs [148]. PEI was used to serve
as a docking molecule for DOX to achieve high drug loading and help it escape from
endosomes. The results showed the complex NPs were rapidly taken up in both sensitive and
resistant rat glioma C6 cells, and significantly enhanced drug retention and greater
cytotoxicity compared to free DOX in resistant C6 cells. In addition, DOX had the fastest
release profile at acidic pH, which indicated the cleavage of hydrazone linkage. Taken
together, this DOX complex NPs overcame MDR in-vitro.

2.8 Gold Nanoparticles
Gold NPs (Au NPs) have been widely used as biomedical imaging and biosensors [149].
Because they are biocompatible, small size, high stability and tissue permeability, Au NPs
are also served as effective drug delivery carriers and drugs could be associated on the NPs
by physical adsorption, ionic bonding, and/or covalent bonding [150, 151]. Gu et al.
conjugated DOX onto PEGylated Au NPs via a disulfide bond (Au-PEG-SS-DOX), and the
NPs showed the greater intracellular drug uptake than free DOX in resistant HepG2-R cells,
which was confirmed by both confocal images and inductively coupled plasma mass
spectrometry (ICP-MS) [152]. Interestingly, the DOX was released from lysosomes and
reached the cytoplasma but not the nucleus, which implied that the cytotoxic function of Au-
PEG-SS-DOX was not through its interaction with nuclear DNA. It was suggested the
ability of NPs to overcome MDR may be related to the cell membrane properties, and NPs
may dysregulate mitochondrial function in cytoplasma thus inducing the cell apoptosis.
Zhang et al. linked DOX onto Au NPs via an amide bond to form DOX-Au NPs with
ultrasmall particle size of 2.7 nm [153]. The DOX-Au NPs were observed to be non-toxic
and expected to be cleared by kidney within hours. The DOX-Au NPs were internalized into
the cells and even entered into the nucleus as seen by confocal and electron microscopy,
which was probably due to its small size. The NPs were demonstrated to have about 20- and
6-fold greater cytotoxicity and faster action than free DOX, respectively, in resistant B16
melanoma cells. The DOX-Au NPs were also sensitive to resistant HeLa cells over-
expressing BCL-2, which was probably due to the entry of NPs into the nucleus and DNA
damage caused by released DOX. The Fu group developed 3-mercaptopropionic acid
capped Au NPs (MPA-capped Au NPs), and the NPs significantly facilitated DNR uptake
compared to free DNR in resistant K562/ADM cells and the enhanced intracellular DNR
fluorescence was mainly located on cell membrane [154, 155]. Interestingly, the Au NPs
without MPA functional group did not show facilitated effect, suggesting this functional
group played an important role in the enhanced DNR accumulation on cell membrane. It
was suggested that MPA-capped Au NPs and free DNR formed a complex via electrostatic
interaction thus facilitating drug penetration into the cells by simple diffusion and
phagocytosis. Au NPs may also interact with proteins or other components on the cell
membrane and circumvent MDR. Wang et al. conjugated DOX onto Au NPs via an acid-
labile hydrazone linker (DOX-Au Hyd NPs) and NPs were confirmed to enter the cells via
energy-dependent endocytosis, specifically, both caveolae- and clathrin-mediated
endocytosis, and DOX was then released from the NPs to cytoplasma and the nucleus [156].
The DOX-Au Hyd NPs had significantly enhanced intracellular drug uptake and less efflux,
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and dramatically increased cytotoxicity compared to free DOX in resistant MCF-7/ADR
cells. DOX-Au NPs with a carbamate linker was prepared as a control (DOX-Au Cbm NPs)
and the linkage was stable so that DOX was not released. In contrast, DOX-Au Cbm NPs
demonstrated similar cytotoxicity as free DOX in MCF-7/ADR cells, indicating that the
drug release from NPs was important to exert activity.

2.9 Silica Nanoparticles
Huang et al. covalently conjugated DOX onto mesoporous silica nanoparticles (MNSP) via
hydrazone linkage (DOX Hyd MNSP) [157]. The DOX Hyd MNSP demonstrated
significantly induced apoptosis both in-vitro and in-vivo in resistant MES-SA/Dx-5 cells
compared to the controls. It was suggested the MNSP entered the cells via endocytosis and
bypassed P-gp efflux pump. It was also claimed that this was the first report that MNSP
overcame MDR in-vivo. Meng et al. engineered MNSP to simultaneously deliver DOX and
MDR1 siRNA [158]. The surface of MNSP was functionalized with a phosphonate group
which allowed DOX binding inside the MNSP via electrostatic action and this functional
group coated with the cationic polymer of PEI which was further complexed with anionic
MDR1 siRNA. The dual delivery of DOX and MDR1 siRNA with MNSP significantly
enhanced intracellular and intranuclear DOX concentration compared to free DOX or DOX
MNSP without siRNA in resistant KB-V1 cells. It was suggested that the DOX was released
from lysosomes via proton sponge mechanism which was supported by the findings that the
addition of NH4Cl inhibited DOX release and entry into the nucleus. Shen et al. loaded
DOX in MNSP and this DOX MNSP showed 8-fold more potent and dramatically enhanced
drug intracellular uptake and nuclear accumulation than free DOX in resistant MCF-7/ADR
cells in-vitro [159]. The DOX concentration of DOX MNSP was 6.12- and 5.11-fold greater
than that of free DOX at 0.5 and 2 h, respectively, in xenograft MCF-7/ADR tumor-bearing
nude mice. It was the first report that the MNSP itself inhibited P-gp expression based on its
ability to down-regulate P-gp levels. The mechanism of MNSP entry into the cells was
through micropinocytosis pathway and once the NPs internalized into the cell, MNSP may
bypass P-gp because it was too large to be effluxed. All of the above probably contributed to
the MNSP ability to overcome MDR. Chen et al. co-delivered DOX and BCL-2 siRNA in
MNSP, where DOX was entrapped inside the pore of the MNSP and BCL-2 siRNA was
complexed with MNSP modified polyamidoamine dendrimers [160]. The results
demonstrated that the MNSPs enhanced drug cytotoxicity by up to 132-fold greater than that
of free DOX in resistant A2780/AD human ovarian cancer cells, and that the significantly
increased antitumor efficacy was probably due to the suppression of BCL-2 mRNA and
perinuclear localization of DOX via MNSP delivery carrier.

2.10 Carbon Nanotubes
Li et al. coupled a P-gp antibody to functionalized carbon nanotubes via a diimide-activated
amidation reaction for targeting purpose, and then loaded DOX on the remaining surface of
the carbon nanotubes via physical adsorption [161]. The physical adsorption between DOX
and nanotubes maximally preserved the molecule integrity because of the chemical bond
avoidance. In addition, the release of DOX from nanotubes improved in a controlled manner
upon exposure of DOX nanotubes under near-infrared radiation. It was proposed that the
controllable and sustained release of DOX by near-infrared radiation and specific P-gp
targeting were the main reasons that the nanotube overcame MDR in resistant human
leukemia K562R cells. It was also suggested that the P-gp antibody conjugated on the
nanotubes provided huge stereohindrance for P-gp recognition of DOX thus suppressed the
efflux of DOX by P-gp.
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2.11 Cyclodextrin Nanoparticles
Qiu and co-workers designed a delivery system of novel β-CD-centered star-shaped
amphiphilic polymers (sPEL/CD) for DOX [162]. To construct the sPEL/CD complex,
mPEG and PLA were reacted to form linear mPEG-PLA (mPEL) as the arms, and then β-
CD served as the core to obtain sPEL/CD by an arm-first method. The drug loading of DOX
was as high as 18% with an entrapment efficiency of 84%, which was probably due to the
presence of PLA to increase hydrophobic interaction between polymer and drug as well as
enlarge β-CD interspaces to accommodate more DOX. The DOX-loaded sPEL/CD had 3-
fold decreased IC50 compared to free DOX in resistant MCF-7/ADR cells. Because it was
reported that pluronic block copolymers were able to prevent MDR in cancer cells, it was
hypothesized the mPEG-PLA block segment in sPEL/CD complex had similar effect due to
its structural similarity to pluronic [163]. The interaction between polymer and P-gp may be
another explanation of sPEL/CD system to reverse MDR.

3. Conclusions and Future Perspective
Anthracyclines are very effective chemotherapeutic drugs to treat various cancers. However,
severe cardiotoxicity and the development of MDR are the major limitations for the
application of anthracyclines in clinic.

Nano-delivery systems have emerged as the novel cancer therapeutics to overcome some of
the limitations of anthracyclines. With the optimal particle sizes and surface properties, NPs
may be able to passively target anthracyclines into the tumor tissues via the EPR effect,
escape from RES recognition, prolong circulation time in blood, and improve the drug
distribution in the body. Doxil, a DOX PEGylated liposome formulation, was approved in
1995. This formulation demonstrated slower plasma clearance, enhanced circulation and
half-life, decreased cardiotoxicity compared to free DOX. However, it does not address
MDR issue. To date, many nano-delivery systems have been developed and reported, such
as liposome formulations, polymeric NPs, solid lipid NPs, mesoporous silica NPs, magnetic
NPs, polymer-drug conjugates, to effectively circumvent MDR both in-vitro and in-vivo.
Some of these systems have even been advanced to clinical trials, for example the HPMA-
DOX conjugate. However, MDR is very complicated and multifactorial. In addition, the
MDR mechanisms are not fully understood. Therefore, it is better to address different MDR
pathways in the nano-delivery systems. For a given particular NP system, ideally it not only
inhibits or bypasses efflux pump resistance, such as P-gp, BCRP and MRP1, but also
circumvents non-pump resistance, such as BCL-2, p53, etc. Moreover, in addition to the
passively targeting, the active targeting using ligands may further improve the anticancer
efficacy in resistant tumors while decrease the toxicity in normal tissues.

Although nano-delivery systems are promising in cancer therapy, there remain many
challenges for these systems. Notably, it is difficult to characterize nano-delivery systems
in-vivo. As a consequence, there continues to be a lack of understanding of in-vivo NP
stability and in-vivo drug release mechanisms. Also, the EPR effect is likely exaggerated in
humans. However, nano-delivery systems with particle sizes as small as <40 nm may have a
better chance to passively accumulate into tumors. Furthermore, the long-term toxicity of
nano-materials is largely unknown. Nevertheless, the future of nano-delivery systems
remains exciting and will certainly advance to address MDR in cancer therapy.
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List of Abbreviations and Symbols

Ab antibody

ABC ATP-binding cassette

AFM atomic force microscope

ALL acute lymphocytic leukemia

AML acute myeloid leukemia

AOT Aerosol OT™

AS ODN antisense oligodeoxynucleotide

ASO antisense oligonucleotides

ATP adenosine triphosphate

Au NPs gold nanoparticles

AUC area under the curve

BAX BCL-2-associated X protein

BCL-2 B-cell lymphoma 2

BCRP breast cancer resistance protein

Brij 78 polyoxyl 20-stearyl ether

BrTet 5-bromotetrandrine

BSA bovine serum albumin

BUDP bilirubin uridine diphosphate

Cbm carbamate

CHOL cholesterol

CL cardiolipin

Cmax maximum concentration

c-Myc v-myc myelocytomatosis viral oncogene homolog

CNT carbon nanotubes

CPP cell penetrating peptide

CSO chitosan oligosaccharide

CyA cyclosporine A

DAF 5-dodecanoylaminofluorescein

DiIC18(3) 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate

diGly glycylglycine

DiOC18(3) 3,3′-dioctadecyloxacarbocyanine perchlorate

DNA deoxyribonucleic acid

DNR daunorubicin

DOPA 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine

DOTAP N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethyl-ammonium
methylsulfate
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DOX doxorubicin

DPA N,N-diisopropylethylenediamine

DPPC dipalmitoyl-phosphatidylcholine

DPPG 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol

DSAA N,N-distearyl-N-methyl-N-2-(N′-arginyl) aminoethyl ammonium
chloride

DSPC 1,2-distearoyl-sn-glycero-3-phosphocholine

EGFR epidermal growth factor receptor

ELP elastin-like polypeptide

EPC egg phosphatidylcholine

EPR enhanced permeability and retention

E-wax emulsifying wax

FA fatty acid

FA-CS folate-chitosan

FITC fluorescein isothiocyanate

FRET förster resonance energy transfer

GalN N-acylated galactosamine

GSH reduced glutathione

GSSG oxidized glutathione

GST glutathione S-transferase

h hour

HCC hepatocellular carcinoma

HER2 human epidermal growth factor receptor 2

HIF1A hypoxia-inducible factor 1α

HPESO hydrolyzed polymer of epoxidized soybean oil

HPLC high-performance liquid chromatography

HPMA N-(2-hydroxypropyl)methacrylamide

HSP heat-shock protein

IC50 half maximal inhibitory concentration

ICP-MS inductively coupled plasma mass spectrometry

IDA idarubicin

IGF-1R type 1 insulin-like growth factor receptor

i.v intravenous

kg kilogram

LA linoleic acid

LHRH-R luteinizing hormone-releasing hormone receptor
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LPD cationic liposome-polycation-DNA

LPD-II anionic liposome-polycation-DNA

mAb monoclonal antibody

MAL maleimide

MDR multiple drug resistance

mg milligram

min minute

mL milliliter

MNSP mesoporous silica nanoparticles

MPA mercaptopropionic acid

mPEG methoxy poly(ethylene glycol)

Mr molecular mass

mRNA messenger RNA

MRP multidrug resistant protein

MTD maximum tolerated dose

NC nanocapsule

ng nanogram

NLC nanostructured lipid carriers

NP nanoparticle

PACA poly(alkyl cyanoacrylate)

PC phosphatidylcholine

PCL poly(ε-caprolactone)

PCL-b-PEO polycaprolactone-block-poly(ethylene oxide)

pDbB poly(butyl methacrylate)

PDLLA poly(D,L-lactic acid)

pDMAEMA poly(dimethylaminoethyl methacrylate)

PDTC pyrrolidinedithiocarbamate

PEG poly(ethylene glycol)

PEG-DSPE polyethylene glycol-distearoylphosphatidylethanolamine

PEG-PDLLA monomethoxy poly(ethylene glycol)-block-poly(D,L-lactic acid)

PEI polyethylenimine

PEO-b-PCL poly(ethylene oxide)-block-poly(ε-caprolactone)

PEO-PPO-
PEO

poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)

P-gp P-glycoprotein

Phe L-phenylalanine
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PHIM/f pH insensitive micelles with folate

PHSM/f pH sensitive micelles with folate

PIBCA polyisobutylcyanoacrylate

PIHCA polyisohexylcyanoacrylate

PLA-TPGS poly(L-lactide)-vitamin E TPGS

PLGA poly(lactic-co-glycolic acid)

PLK1 polo-like kinase 1

pLLA/PEG poly(L-lactic acid)-b-PEG

Pluronic P85 poly(oxyethylene-b-oxypropylene-b-oxyethylene)

P(MDS-co-
CES)

poly{N-methyldietheneamine sebacate)-co-[(cholesteryl
oxocarbonylamido ethyl) methyl bis(ethylene) ammonium bromide]
sebacate}

p.o per os

polyHis/PEG poly(L-histidine)-b-PEG

PPLA 4-armed porphyrin-polylactide

pSMA poly(styrene-alt-maleic anhydride)

PVA poly(vinyl alcohol)

PX paclitaxel

Ref reference

RES reticuloendothelial system

RGD4C integrin αvβ3-specific ligand

RNA ribonucleic acid

ROS reactive oxygen species

SA stearic acid

s.c subcutaneous

SCCHN squamous cell carcinoma of head and neck

shRNA short hairpin RNA

siRNA small interfering RNA

SLN solid lipid nanoparticle

Solutol HS15 polyethylene glycol 660 hydroxystearate

STDC sodium taurodeoxycholate

STS sodium tetradecyl sulfate

t1/2 half-life

Tet tetrandrine

THA tetraheptylammonium

TK1 thymidine kinase 1
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TLC thin layer chromatography

TNF tumor necrosis factor

Topo topoisomerase

TPGS D-α-tocopheryl polyethylene glycol 1000 succinate

TRAIL TNF-related apoptosis-inducing ligand

triGly glycylglycylglycine

μg microgram

μL microliter

VEGF vascular endothelial growth factor

VIP vasoactive intestinal peptide

β2m β2-microglobulin
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Highlights

• The most comprehensive review to discuss anthracycline nano-delivery systems
to overcome multiple drug resistance (MDR).

• More than ten types of developed anthracycline nano-delivery systems to
overcome MDR are discussed.

• More than ten proposed cellular mechanisms of developed anthracycline nano-
delivery systems to overcome MDR are discussed.

• Provides a useful guidance for further nanoparticle formulation development to
overcome MDR.
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Figure 1.
Chemical Structures of DOX, DNR and IDA.
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Figure 2. Summary of the Proposed Cellular Mechanisms of Anthracycline NPs to Overcome
MDR
(1) NPs interact with or modify plasma membrane and therefore change the membrane
structure and induce membrane permeability; (2) NPs do not enter cells; instead free drugs
are released to plasma membrane and then diffuse into cells; (3) NPs directly interact with
and inhibit P-gp; (4) NPs bypass, but do not inhibit P-gp; (5) NPs enter into cells via
receptor-mediated endocytosis; (6) NPs enter into cells via endocytosis, phagocytosis, or
micropinocytosis; (7) NPs down-regulate P-gp, MRP, BCL-2, and HSP-70; (8) NPs up-
regulate BAX, p53, and caspase-3; (9) NPs generate ROS; (10) NPs deplete ATP; (11) Very
small NPs enter into the nucleus; (12) NPs dysregulate mitochondrial function or activate
mitochondrial independent apoptotic pathways.
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Table 1

Physicochemical Properties of DOX, DNR, and IDA.

DOX DNR IDA

Formula C27H29NO11 C27H29NO10 C26H27NO9

Molecular Weight (g/mol) 543.52 527.52 497.49

Water Solubility (mg/mL) 92.8 39.2 35.6

Log P 1.27 1.68 2.10

pKa ~8.4 10.3 8.5

Melting Point (°C) 204–205 208–209 173–174

Half-life (h) 55 18.5 22

Protein Binding (%) 70 97 97
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Table 2

Summary of the Proposed Mechanisms of Anthracycline NPs to Overcome MDR.

Platform Composition Mechanism Status Ref.

Liposome

CL, PC, CHOL interact with P-gp
modify plasma membrane

in-vitro [27, 28]

CL, PC, CHOL increase drug accumulation
intracellular drug redistribution

in-vitro [26]

DSPE-PEG, CHOL, DPPC,
DPPG

direct inhibit ATPase
alter raft lipid composition
reduce lipid raft-associated P-gp

in-vitro [30]

DSPC, CHOL PSC 833 (P-gp inhibitor) in-vivo [31]

EPC, CHOL, PEG- DSPE verapamil (P-gp inhibitor) in-vitro [32]

EPC, CHOL, mPEG-DSPE,
MAL-PEG-DSPE

verapamil (P-gp inhibitor)
transferrin (targeting)

in-vitro [33]

EPC, CHOL, DSPE-PEG,
DPPC

MDR1 ASO
BCL-2 ASO
endocytosis
membrane fusion

in-vivo [34]

DOTAP MRP1 siRNA
BCL-2 siRNA

in-vitro [36]

DSAA, DOTAP, DOPA,
CHOL, DSPE-PEG, DSPE-
PEG-AA

DSAA (induce ROS, inhibit MDR transporters,
enhance drug uptake)
VEGF siRNA (increase drug uptake and
targeting)
c-Myc siRNA (improve therapeutic effect and
down- regulate MDR)

in-vivo [37]

Polymeric NP

PIBCA PIBCA and its degradation products change or
modify cell membrane
massive drug diffusion from NPs saturates P-gp
NPs do not enter the cells

in-vitro [39]

PACA NP-cell interaction on cell surface
form drug-polycyanoacrylic acid ion-pair
complex
cyclosporine A (P-gp inhibitor)

in-vitro [40, 45, 46]

PIHCA bypass but not direct inhibit P-gp in-vitro [42, 43]

AOT-alginate methylene blue (inhibit P-gp and generate ROS) in-vitro [48, 49]

PPLA porphyrin (photosensitizer)
TPGS (P-gp inhibitor)

in-vitro [53]

stearyl-modified dextran bypass P-gp in-vitro [47]

PLAG curcumin (increase drug retention in the
nucleus; down-regulate P-gp and BCL-2)

in-vitro [51]

PLGA receptor-mediated endocytosis (HER2) in-vitro [52]

Polymeric Micelles

pluronic P85 interact with P-gp
change cell membrane structure
induce cell membrane permeability

in-vitro [54]

PEO-PPO-PEO endocytosis
sensitize cells

in-vitro [55]

PLA-TPGS inhibit P-gp
enhance drug cellular uptake
promote drug to translocate into the nucleus

in-vitro [56]

PLGA-PEG-folate TPGS (P-gp inhibitor) in-vitro [57]

PEG- polyphosphazene endocytosis in-vitro [62]
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Platform Composition Mechanism Status Ref.

pH-sensitive polymer (disrupt endosomes by
proton- sponge effect and/or interact between
polymer and endosome membrane)

CSO-FA interact with cell membrane
alkyl side chain on chitosan introduces
perturbation effect
fatty acids form hydrophobic microdomains
near shell surface

in-vitro [63–65]

polyHis/PEG (or polyHis/PEG-
folate), pLLA/PEG- folate

receptor-mediated endocytosis (folate)
trigger drug release at low pH (pH-sensitive)
interact between polyHis group of the micelle
and endosome membrane

in-vivo [66–69]

PEO-b-PCL RGD4C (targeting)
TAT (cell-penetration peptide)
MDR1 siRNA

in-vivo [77]

PEG-PDLLA drug released to plasma membrane and then
internalized into cells
PEG-induced fusion to cell membrane

in-vitro [79]

PCL-PEO endocytosis in-vitro [80, 81]

pluronic L61 facilitate drug entry into the nucleus
increase drug cellular uptake
inhibit drug efflux

in-vitro [82]

Polymer Conjugate

HPMA inhibit P-gp and β2m
lysosomally degradable linker (GFLG)
endocytosis
down-regulate P-gp, MRP, BCL-2, HSP-70, etc.

phase I/II [83–89]

dextran endocytosis
bypass P-gp

phase I [95–97]

PEG-modified dendrimer endocytosis
rupture endosomes (proton-sponge effect)

in-vitro [94]

Magnetic NP

Fe3O4, ZnO P-gp inhibitor or competitive P-gp substrate
(Fe3O4)
interact between NPs and cell membrane
tetrandrine (P-gp inhibitor)
up-regulate BAX, p53, caspase-3
inhibit BCL-2, down-regulate P-gp
shRNA (targeting)

in-vivo [140–147]

Carbon Nanotube — controllable and sustained drug release
P-gp antibody (targeting)

in-vitro [161]

CD NP — interaction between polymer and P-gp
inhibit P-gp

in-vitro [162]

Peptide/ Protein Conjugate

TAT bypass but not inhibit P-gp in-vitro [100, 101]

maurocalcine, penetratin, TAT active mitochondrial independent apoptotic
pathways

in-vitro [102–104]

Vectocell internalization in-vitro [105, 106]

penetratin, SynB1 bypass P-gp
interact between conjugate and cell membrane

in-vitro [107]

transferrin bypass P-gp (conjugate slowly dissociates after
binding to cell membrane)
receptor-mediated endocytosis
interact between conjugate and DNA

in-vitro [108, 109]

IGF-1R mAb receptor-mediated endocytosis
escape P-gp recognition

in-vivo [115]

[D-Lys6]LHRH not by receptor-mediated endocytosis
down-regulate ErbB/HER receptors
disrupt G-protein signaling

in-vivo [116–118]
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Platform Composition Mechanism Status Ref.

AS-ODN high drug accumulation
inhibit P-gp (AS-ODN)

in-vivo [119, 120]

BSA endocytosis
conjugate degrades in lysosomes

in-vivo [121–123]

diGly, triGly, GSH, GSSG rapid drug uptake
high drug accumulation

in-vitro [124]

poly-D-Lysine, poly-L-Lysine endocytosis
poly-L-Lysine digested by lysosomes

in-vitro [125]

SLNs

emulsifying wax, Brij 78, TPGS inhibit P-gp, deplete ATP, increase drug
retention

in-vivo [128, 133]

monostearin, oleic acid inhibit P-gp
high affinity between lipids or NLC and cell
membrane

in-vitro [135]

stearic acid, Pluronic F68,
HPESO

not inhibit or bypass P-gp
not alter cell membrane permeability
drug released from outside of cell and then
simple passive diffusion
phagocytosis
GG918 (P-gp inhibitor)

in-vitro [136–138]

Gold NP

— change or modify cell membrane properties
dysregulate mitochondrial function

in-vitro [152]

— internalization
NPs even enter the nucleus

in-vitro [153]

— drug-NP complex formation
phagocytosis
simple diffusion

in-vitro [154, 155]

Silica NP

— endocytosis
bypass P-gp

in-vivo [157]

— PEI (proton sponge effect)
P-gp siRNA

in-vitro [158]

— inhibit P-gp
micropinocytosis

in-vivo [159]

— perinuclear localization
BCL-2 siRNA

in-vitro [160]
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