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Abstract

In this Letter, we varied targeting ligand density of an EGFR binding affibody on the surface of 

two different hydrogel PRINT nanoparticles (80 nm × 320 and 55 nm × 60 nm) and monitored 

effects on target-cell association, off-target phagocytic uptake, biodistribution, and tumor 

accumulation. Interestingly, variations in ligand density only significantly altered in vitro 

internalization rates for the 80 nm × 320 nm particle. However, in vivo, both particle sizes 

experienced significant changes in biodistribution and pharmacokinetics as a function of ligand 

density. Overall, nanoparticle size and passive accumulation were the dominant factors eliciting 

tumor sequestration.
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Passive targeting continues to be the crux of nanoparticle-mediated drug delivery to solid 

tumors. Improved efficacy typically associated with particulate carrier systems is dependent 

on an improved pharmacokinetic profile compared to the native therapeutic, as well as 

preferential accumulation of the carrier within the tumor tissue due to the discontinuous and 

irregular tumor vasculature.1,3 This superior accumulation is known as the enhanced 

permeation and retention (EPR) effect, as coined by Maeda and Matsumura in the late 

1980s.2 By reducing the carrier size to sub-100 nm dimensions and by enhancing plasma 

retention, neoplastic delivery can be augmented drastically due to improved interstitial 

diffusivity and probability of accretion, respectively.3 In order to extend circulation time, the 

carrier must exhibit a neutral or slightly negative surface potential to avoid nonspecific cell 

association and surface chemistry adept at evading the mononuclear phagocytic system 

(MPS).4–9 Carrier shape is another parameter that should be controlled. While NPs are 

typically spherical, recent literature has demonstrated that rod-shaped carriers have 

enhanced cellular internalization both in vitro and in vivo as well as greater extravasation 

into and accumulation within diseased tissue.10–12 Beyond passive targeting, actively 

targeted nanoparticulate systems can further enhance therapeutic effect by preferentially 

targeting overexpressed cellular receptors on cancerous tissue.13–16

A distinct advantage offered with particulate-based active targeting is establishing 

multivalent interactions between the carrier and target cell.17 Achieving this multivalent 

effect is highly dependent on ligand size, surface pinning density, length and flexibility of 

the ligand tether, and the packing structure of the ligand.22,41–44 Once achieved, 

multivalency can lead to enhanced avidity to target cells with traditional low-affinity 

ligands; therefore, the ligand library is greatly expanded when coupled with a particle 

carrier.18,25 In addition, multivalent interactions can enhance cell binding several orders of 

magnitude over the unbound ligand yielding dramatically improved payload delivery and 

tumor reduction.19 Furthermore, particle shape and size have also been shown to vary the 

multivalency effect.20,39 With these benefits, multivalency also comes with a cost of 
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complexity and can lead to significant changes in vitro and in vivo from the untargeted 

counterpart. It is well documented that increasing surface ligand density results in enhanced 

in vitro cellular internalization.37,45,46 However, decorating the surface of the nanoparticle 

carrier with biologics often leads to enhanced in vivo MPS clearance.44,46,47 Therefore, 

determining the ideal density of targeting ligand to optimize multivalent effects while 

maintaining stealth properties remains an arduous task, and having the capability to finely 

control ligand surface density cannot be understated. As such, variation in surface ligand 

density has been shown to impact particle toxicity, binding coefficient to the target receptor, 

and tumor accumulation.15,18,21–23 While actively targeting these complex particulate 

systems has become an intense area of research, off-targeting effects associated with ligand 

density have yet to be fully understood. Depending on the nanoparticle fabrication technique 

utilized, controlling all of the outlined parameters (surface chemistry, shape, size, etc.) 

simultaneously is a challenging if not altogether unobtainable objective.

To this aim, we investigated the effects of nanoparticle size, shape, and targeting ligand 

density in vitro and in vivo. Passive accumulation in tumor tissue was assessed with sphere-

like and rod-shaped hydrogel PRINT particles to determine the role of NP size and shape. 

Using a FITC-labeled ZEGFR affibody, we exquisitely controlled ligand density 

functionalized to both particles. Particle shape and size effects on receptor-mediated 

endocytosis and nonspecific uptake were observed as ligand density was held constant 

between both NPs. Biodistribution and pharmacokinetics were observed as a function of 

nanoparticle shape, size, and ligand density. Overall, passive targeting was the dominant 

factor influencing tumor accumulation, while changes in ligand density dramatically shifted 

in vitro and in vivo particle behavior.

Calibration-quality hydrogel nanoparticles were synthesized at two sizes: 55 × 60 nm and 80 

× 320 nm (Figure 1 and Table 1). Using a continuous roll-to-roll fabrication system, PRINT 

particles were rapidly fabricated at 72 and 360 mg/h for the 55 × 60 nm and 80 × 320 nm 

particles, respectively. The particle composition consisted of UV-cured acrylate based 

monomers. A fluorescent marker was included for in vitro (Dylight 488) and in vivo 

(Dylight 650/680) studies in addition to the other acrylate polymeric components. The 

particle matrix mainly comprised an HP4A monomer coupled with PEG700DA cross-linker, 

yielding a PEG-based nanoparticle that aids in immune system evasion when administered 

in vivo.5,8,24,28 An amino functional monomer was incorporated to allow for facile 

postfunctionalization chemistry. For these studies the primary amine was reacted through 

NHS (N-hydroxysuccinimide) chemistry to either a monofunctional or bifunctional PEG, for 

either passive or active tumor accumulation studies. The mass of either mono- or 

bifunctional terminated PEG charged to the hydrogel particles resulted in a surface density 

of PEG sufficient to inhibit macrophage uptake and protein opsonization while extending 

circulation times in vivo.28 Residual amine groups post-PEGylation were converted to inert 

acetyl groups resulting in a negative NP surface charge, further decreasing undesired cellular 

uptake when administered IV.28 As discussed in previous accounts, fabrication by PRINT 

continued to yield calibration-quality nanoparticles that exhibited narrow poly-dispersity 

postfunctionalization.10,21,27,28,34–36,60
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Nanoparticle size is arguably the most significant factor dictating the success of a nanobased 

cancer therapy, as passive tumor accumulation is largely regulated by carrier size.30 To this 

end, reducing NP size to sub-100 nm has recurrently shown greater accumulation, efficacy, 

and tumor uptake than larger analogues.31–33 Yet, previous work from the DeSimone lab has 

demonstrated remarkable efficacy with 80 × 320 nm docetaxel loaded poly(lactic-co-

glycolic acid) NPs in tumor-bearing mouse models.34–36 To this aim, we wanted to elucidate 

what particle-parameters influenced efficacious accumulation in cancerous tissue. 

Biodistribution of non-targeted 55 × 60 nm and 80 × 320 nm hydrogel particles in A431 

tumor-bearing mice (Figure 2) were conducted in an effort to determine the size/shape 

effects on MPS organ accumulation and passive tumor accumulation. The percentage of 

accumulation for each organ was calculated by dividing collected fluorescence from each 

tissue by the total sum fluorescence of all excised tissues. In these studies, the 55 × 60 nm 

particle exhibited a 2-fold greater accumulation in the liver (42 ± 5%), as compared to the 80 

× 320 nm particle (18 ± 7%). However, the inverse was observed in the spleen: the 80 × 320 

nm particle displayed a greater than 2-fold increase in accumulation (72 ± 7%) over the 

smaller 55 × 60 nm particle (30 ± 7%). Blood retention at 24 h was statistically the same 

between both NP types, while the smaller particle dramatically enhanced tumor 

accumulation (over 5-fold; 9.1 ± 2.5%) compared to the larger particle (1.7 ± 0.7%). These 

findings coincided with literature, as size reduction typically results in more dispersed 

distribution throughout all tissues.38 The noteworthy improvement in tumor accretion 

reflects the general trend of enhanced tumor penetration with NP size reduction as 

previously mentioned. This hypothesis is further confirmed as both particles exhibited 

similar blood circulation profiles at 24 h; therefore, each NP type exhibits equal exposure to 

the tumor vasculature and equal chance to permeate into the diseased tissue.

Fabricating actively targeted nanocarriers has shown great precedence in improving tumor 

delivery and efficacy.13–16 Yet, as previously discussed, the optimal ligand density for a 

particle platform is reliant on many factors including particle size and shape. Additionally, 

changing the targeting density may result in major shifts in biodistribution and PK, possibly 

rendering an advantageous nanotherapy ineffective.15,23 In an effort to preserve the 

improved biological profile gained by PEG density optimization, it was of great importance 

to study ligand density variation on hydrogel NPs.28 To this end, a highly tunable and 

precisely controlled ligand quantitation scheme was developed to exquisitely control 

targeting density on both particle types.

The targeting conjugation scheme utilized an anti-EGFR affibody, which is selective to the 

extracellular domain of the EGFR surface glycoprotein.26 This affibody was precisely 

conjugated to the NP surface at several ligand densities (Scheme 1). After PEGylating with a 

thiol-reactive maleimide-PEG5k-SCM and subsequent acetylation, FITC-labeled affibody 

functionalized with a nonstructural cysteine group was reacted to the NP surface allowing 

detection of ligand to subnanomolar concentrations, exceeding colorimetric assays 

traditionally used for biological detection on particulates. Surface modification concluded 

with addition of mPEG1k-thiol to quench residual maleimide groups with an inert methoxy-

functionality. Affibody was charged at various amounts to both particle types, and the 

targeting ligand density (LG/nm2) was quantified by fluorescence methods similar to those 
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previously described for quantifying PEG density.28 Due to the fine control exhibited, we 

were able to maintain similar ligand density between the two particle sizes at three separate 

densities. For the 80 × 320 nm particle, targeting ligand density was calculated to be 0.65, 

1.1, 1.8, 3.3, and 4.5 (×10−3) ligands/nm2 corresponding to ~100, 170, 280, 560, and 700 

ligands/NP, respectively. For the 55 × 60 nm particle, densities of 1.2, 2.0, and 3.0 (×10−3) 

ligands/nm2 were calculated corresponding to ~20, 30, and 40 ligands/NP, respectively 

(Supplemental Figure 1). For in vitro and in vivo studies, the FITC-labeled ligand was 

replaced with an unlabeled analogue to reduce possibility of immune recognition. Upon 

dynamic light scattering and zeta-potential analyses, size and PDI were observed to increase 

slightly for the 80 × 320 nm particle as a function of targeting ligand density, while surface 

charge neutralized. However, with the 55 × 60 nm particle, no distinct trend was observed 

for size, PDI, or surface charge (Supplemental Table 1).

In vitro studies were conducted with 488 Dylight labeled 55 × 60 nm and 80 × 320 nm 

particles to determine ligand density and NP shape/size effects. In these studies, EGFR-

over-expressing epidermoid carcinoma (A431) and alveolar macrophage (MH-S) cells were 

used to conduct targeted cell association and nonspecific uptake experiments, respectively. 

Trypan Blue (TB) typically used as a live/dead stain, was repurposed to determine if 

nanoparticles were membrane bound or internalized by cells. This simple technique has been 

used throughout literature to distinguish between intracellular and extracellular presence of 

both biological and nano-particulate matter.10,57–59 If nanoparticles are membrane bound, 

the Dylight 488 (from the nanoparticle) forms a FRET pair with the TB, shifting the λem of 

the particle (λem ≈ 580 nm). However, since TB cannot penetrate through the plasma 

membrane, upon NP internalization, a FRET pair is not formed and the λem remains at ~520 

nm. In all, four scenarios exist between the cell and the dye-labeled particle upon cell sorting 

and bivariate analysis: no-association, membrane bound only, membrane bound and 

internalized, and internalized only.

For targeting experimentation, a direct correlation was observed between ligand density and 

cellular association (nanoparticles bound to outer membrane and internalized) for both set of 

NPs (Figure 3 and Supplemental Figure 3). The percentage of particle sequestration in each 

cell population was calculated by dividing collected fluorescence from the individual 

subpopulation by total sum fluorescence of all cell populations. For the rod-shaped particle, 

an optimum ligand density was observed at approximately 1.8 × 10−3 LG/nm2 in the cell 

population that only exhibited internalized NPs (Figure 3b), and with a further increase in 

ligand density, the majority of cells displayed NPs both internalized and bound to the outer 

membrane (Figure 3a.). Several reports have also observed optimal cellular internalization at 

intermediate ligand densities, and above this ligand density cellular internalization was not 

improved.46–48 One possible explanation for this is that the rod-shaped particles decorated at 

high ligand density are competing for receptors, and due to the large contact area of the rod-

shaped particle with the cell, there is a depletion of available receptors to fully wrap the 

nanoparticles on the cell membrane, and therefore, endocytosis is decreased.49 This 

phenomenon is also observed in thermodynamic models, which predict that when ligand 

density increases beyond the optimal value, cellular uptake is decreased due to the adhesion 

strength between nanoparticles and cells.50 The 55 × 60 nm type, however, displayed 
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cellular association independent of ligand density for both cell populations internalized and 

bound to the outer membrane (Figure 3c) and internalized only (Figure 3d). This may be 

attributed to the particle size, as there are multiple accounts stating that optimal particle 

diameter for receptor mediate endocytosis is 50 nm.50–53 To confirm particle association 

observed was due to EGFR-mediated endocytosis, a competition study was completed. A 

distinct trend was observed upon which an increase of free affibody concentration in cell 

culture led to a precipitous reduction in particle association indicating a direct dependence 

on the receptor-mediated endocytosis pathway for particle internalization (Figure 4). It is 

important to point out that cellular association is also dependent on particle dosage and that, 

upon increasing particle dosage with the 80 × 320 nm type, an enhancement in association 

was observed in all cell populations regardless of ligand density (Supplemental Figure 2) 

while negative controls, PEG and wild-type affibody, displayed limited association and 

uptake with both particle types. These results seem to indicate a limit in receptor-mediated 

endocytosis at a specific time point, particle dosage, and ligand density. As well, particle 

multivalency was shown to be a key factor improving cellular internalization, and ligand 

functionalization to the nanoparticle was imperative for any significant cell association.

Nonspecific uptake studies were conducted to further examine the mechanism of particle 

internalization as a function of targeting density. In general, nonspecific uptake with 

alveolar murine macrophage studies displayed negligible association with either set of 

particles, however, a significant boost in association was found at the highest ligand density 

for 80 × 320 nm particles (Figure 5). Additionally, mean fluorescence intensity increased 

with respect to ligand density for the rod-shaped NP, further indicating that a correlation 

exists between ligand density and nonspecific macrophage interaction with rod-shaped NPs 

(Supplemental Figure 4). Since ligand density was held roughly constant, these results 

suggest increased nonspecific uptake with rod-shaped 80 × 320 nm particles compared to 

sphere-like 55 × 60 nm particles. Similar to previous accounts, an increase in nonspecific 

association trended with ligand density, alluding to enhanced opsonization from deshielding 

of the PEG coating by proteins in media.23 In all in vitro experiments, cationic nanoparticles 

(nonfunctionalized particles), serving as a positive control, displayed near complete cellular 

association, which is expected due to the strong interaction between the negatively charged 

cellular membrane and the positive surface charge of amine-functional NPs; this interaction 

also falls in line with previous literature accounts.5 The PEG and wild-type, serving as 

negative controls, showed limited interaction with the EGFR-overexpressing cell-line. Based 

on these in vitro findings, it was clear that alterations in ligand density led to significant 

changes in target (A431) and phagocytic cellular interactions. Murine biodistribution studies 

were then conducted to elucidate how these in vitro results translate to in vivo behavior.

Biodistribution and blood pharmacokinetics were monitored as a function of targeting ligand 

density on the 80 × 320 nm hydrogel particle. In general, all study groups with targeted NPs 

displayed worse pharmacokinetic behavior in comparison to the nontargeted PEG control 

(Supplemental Table 2 and Supplemental Figure 5). The change in PK profiles was in direct 

correlation with targeting ligand density, as circulation half-life decreased from 11.2 h with 

the PEG control to 3.9, 3.3, and 0.7 h with increasing ligand density.29 The observed area-

under-the-curve (AUC) showed substantial reductions over the PEGylated control, with 5- 
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and 28-fold AUC reductions at the lowest and highest ligand densities, respectively. 

Clearance rates were drastically increased over the PEG control with 5- and 30-fold 

increases for the lowest and highest ligand densities, respectively. These findings 

corroborated with previous accounts in literature that describe enhanced nonspecific protein 

adsorption with ligand density increase potentially leading to subsequent opsonization and 

expedited blood clearance.23,46,47 Based upon these PK profiles, the targeting ligand density 

was optimized for biodistribution studies in A431-tumor bearing mice (Supplemental Figure 

6). Specifically, targeting density at 4.5 × 10−3 LG/nm2 was not pursued due to the 

precipitous reduction in blood PK. A 24 h biodistribution study revealed vast differences in 

particle sequestration as a function of targeting ligand density. A shift from spleen to liver 

deposition was observed with targeting density enhancement, which could be due to innate 

high expression of EGFR in liver tissue.40 As observed with blood PK analysis targeting 

density greatly impacted blood retention; yet, even with the mitigated blood retention, tumor 

accumulation improved as a function of ligand density indicating possible multivalent 

effects toward the high-expression EGFR cell-line. From these results it was clear targeting 

density had a significant impact on in vivo outcomes. In order to further enhance tumor 

accumulation, we underwent a similar biodistribution study with the smaller 55 × 60 nm, as 

they exhibited superior passive tumor accumulation.

Biodistribution of 55 × 60 nm hydrogel was conducted as a function of targeting ligand 

density in an effort to further enhance tumor accumulation (Figure 6A,B). All of the 55 × 60 

nm particles (targeted and nontargeted) exhibited considerably improved tumor 

accumulation over any of the 80 × 320 nm particles due to the major increase in passive 

accumulation. Again, all targeted NPs shifted deposition from spleen to liver in comparison 

to the nontargeted counterparts; however, unlike the larger particle, no discernible difference 

was observed in liver and spleen as a function of ligand density. In tumor tissue, the highest 

targeting ligand density demonstrated the best accumulation that was statistically similar to 

the nontargeted PEG control. At time points beyond 24 h, however, it is likely that the 

PEGylated particles would continue to accumulate in the tumor mass due to the enhanced 

blood circulation profile over the targeted counterparts. Even with the improved blood 

retention and probable boost in tumor accumulation beyond 24 h, the ZEGFR affibody 

particles have a significantly greater chance of binding and subsequently internalizing within 

diseased cell, as previously shown in vitro. In order to account for residual blood 

sequestration in the neo-plastic tissue, tumor/blood (T/B) ratios were calculated and a 

notable trend was observed (Figure 7). A direct relationship was seen between ligand 

density and (T/B) ratio, leading to statistically significant improvements in the targeted 

particle study groups over the nontargeted NPs. Similar to the higher aspect ratio particles, 

increasing targeting ligand density seemed to improve tumor accumulation while 

simultaneously sacrificing blood retention.

Majority of previous accounts have explored the in vitro or in vivo effects of either 

modulating ligand density over a specific particle size/shape or a specific ligand density over 

different particle sizes/shapes.15,22,45,46,54–56 There are very few instances of evaluating 

how changes in ligand density over different particle sizes/shapes affects both in vitro 

cellular uptake and in vivo biodistribution. In this account, we have fabricated calibration-
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quality hydrogel nanoparticles using the PRINT technique at two distinct sizes and shapes. 

Even though remarkable efficacy has been previously established with the rod-shaped 80 × 

320 nm particle, we found significantly improved passive accumulation with a 55 × 60 nm 

particle lending to potential improvement in future efficacy studies.35,36 In effort to retain 

improvements in macrophage inhibition, protein resistance, and extended PK profiles 

previously established with optimized poly(ethylene glycol) surface modulation, we 

developed a method to finely control the surface ligand density of an EGFR-binding 

affibody on two different PRINT particles.28 With the addition of targeting ligand, in vitro 

analysis yielded rapid association in epidermoid carcinoma cell-line that was dependent on 

EGFR receptor-mediated endocytosis; however, nonspecific uptake was observed in 

alveolar macrophage with the rod-shaped particle type at high ligand densities. In previous 

studies, an increase in nonspecific macrophage uptake correlated with a stark reduction in 

circulation persistence, which may help explain the drastic inverse correlation observed 

between ligand density and blood circulation with the 80 × 320 nm particle.28 However, 

even with the mitigated blood retention; targeting density had a direct relationship to tumor 

accumulation at 24 h. Upon targeting the sphere-like 55 × 60 nm particle, the PEGylated 

control and highly targeted counterpart exhibited statistically similar tumor accumulation; 

however, upon accounting for residual blood within the tumor a distinct trend was observed 

that displayed a direct correlation between increased ligand density and tumor accumulation. 

While passive accumulation remains the major factor dictating neoplastic delivery, we 

established that careful control over ligand density, as well as nanoparticle size and shape, is 

paramount when developing an effective delivery vehicle toward cancer.
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Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

PRINT Particle Replication in Nonwetting Templates

NP nanoparticle

EPR enhanced permeation and retention

MPS macrophage phagocytic system

FITC fluorescein isothiocyanate
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PEG polyethylene glycol

NHS N-hydroxysuccinimide

UV ultraviolet

IV intravenous

EGFR epidermal growth factor receptor

LG ligand

TB trypan blue

FRET fluorescence resonance energy transfer

PK pharmacokinetics

AUC area-under-curve
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Figure 1. 
Scanning electron micrograph of 80 × 320 nm (A) and 55 × 60 nm (B) hydrogel PRINT 

nanoparticles.
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Figure 2. 
Biodistribution of PEGylated 80 × 320 nm and 55 × 60 nm NPs at 24 h in A431 tumor-

bearing mice (inset: enhanced view of blood, tumor, kidney, and lung at 24 h; N = 4). *, P < 

0.05. The percentage of recovered fluorescence per gram of tissue for each organ was 

calculated by dividing collected fluorescence from each tissue by the total sum fluorescence 

of all excised tissues.

Reuter et al. Page 13

Nano Lett. Author manuscript; available in PMC 2016 October 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
In vitro association of A431 cells with targeted 80 × 320 nm (A,B) and 55 × 60 nm NPs 

(C,D) was assessed via flow cytometry. Two cell populations are shown, the percentage was 

calculated by dividing the number of cells in the specific population by the total sum, one 

with NPs both bound to the outer cell membrane and internalized (A,C) and a second 

population with NPs only internalized (B,D). Negative controls, PEGylated and wild-type 

functionalized NPs, and positive control, cationic NPs, were also examined (N = 3).
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Figure 4. 
A431 cell association of 80 × 320 nm particles (ligand density = 1.1 × 10−3 LG/nm2) with 

predose of free affibody administered at five different concentrations 30 min prior to particle 

addition (N = 3).
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Figure 5. 
Percent association of alveolar macrophage cells (MH-S) with targeted 80 × 320 nm (A) and 

55 × 60 nm (B) at three distinct ligand densities (N = 3).
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Figure 6. 
Biodistribution (A) and sample IVIS images of harvested tissues (B) with 55 × 60 nm NPs at 

24 h (N = 4). PEGylated (PEG) and Taq polymerase binder (NEG), a bacterial-binding 

protein, NPs were used as controls [Low LG = 1.2 × 10−3 LG/nm2; Med LG = 2.0 × 10−3 

LG/nm2; High LG = 3.0 × 10−3 LG/nm2; LG = ligand]. **, P < 0.01.
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Figure 7. 
Ratio of targeted 50 nm × 60 nm particles between harvested tumor tissue and whole blood 

at 24 h (N = 4). PEGylated and Taq polymerase binder, a bacterial-binding protein, NPs 

were used as controls [Low LG = 1.2 × 10−3 LG/nm2; Med LG = 2.0 × 10−3 LG/nm2; High 

LG = 3.0 × 10−3 LG/nm2; LG = ligand]. **, P < 0.01; ***, P < 0.001.
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Scheme 1. Conjugation of PRINT NPs to Targeting Ligand
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Table 1

Nanoparticle Characterization via Dynamic Light Scattering

type (nm) surface modification Dh (nm) PdI ζ (mV)

55 × 60 n/a 126.8 ± 4.0 0.130 ± 0.01 +38.0 ± 1.1

mPEG/acetylation 126.7 ± 2.4 0.095 ± 0.01 −16.7 ± 1.1

80 × 320 n/a 276.6 ± 2.4 0.034 ± 0.01 +35.1 ± 0.9

mPEG/acetylation 257.3 ± 2.1 0.008 ± 0.01 −19.0 ± 1.1
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