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Introduction

The Collaborative Cross (CC) and the complementary Diversity Outbred (DO) population 

were conceived as a platform for the next generation of studies of the genetic basis for 

complex traits in mouse (Churchill et al. 2004). The CC promised to combine the strengths 

of existing panels of recombinant inbred (RI) lines [e.g., BXD (Taylor et al. 1973), LXS 

(Williams et al. 2004)] and inbred strains (Ghazalpour et al. 2012)—phenotypic variation, 

replication, and integration of multiple phenotypes—with the genetic randomization and 

absence of population structure provided by populations such as the heterogeneous stock 

(Valdar et al. 2006b). This was to be accomplished by performing many iterations of the 

“funnel” breeding scheme illustrated in Fig. 1: three generations of outcrossing followed by 

sibling mating to create RI lines with contributions from all eight founder strains. Because of 

the large number of novel pairwise and higher order allele combinations generated by the 

factorial breeding scheme and the genetic diversity of the founder strains, phenotypic 

variability in the resulting set of RI lines was expected to span and exceed that in the 

founder strains.

Simulations (Valdar et al. 2006a) suggested that 500 lines would be required to achieve 

good resolution in haplotype association-mapping studies. But widespread genomic 

incompatibility—the biological basis for which remains mostly unexplored—has limited the 

number of extant lines to ~150 at time of writing. Nonetheless, the CC has begun to fulfill 

Catherine E. Welsh welshc@rhodes.edu. 

URLs
BAGPIPE. http://valdarlab.unc.edu/software/bagpipe
BAGPHENOTYPE. http://valdarlab.unc.edu/bagphenotype.html
Collaborative Cross Status website. http://www.csbio.unc.edu/CCstatus/
Collaborative Cross Viewer. http://www.csbio.unc.edu/CCstatus/index.py?run=CCV
DOQTL. http://www.bioconductor.org/packages/release/bioc/html/DOQTL.html
GECCO gene expression browser. http://csbio.unc.edu/gecco/
MDA genotypes for 100 inbred strains. http://cgd.jax.org/datasets/popgen/diversityarray/yang2011.shtml
MegaMUGA genotypes for CC founder strains. http://csbio.unc.edu/CCstatus/index.py?run=GeneseekMM
modtools + lapels + suspenders pipeline. http://www.csbio.unc.edu/CCstatus/index.py?run=Pseudo
Mouse Imputation Resource. http://csbio.unc.edu/imputation/
Mouse Phylogeny Viewer. http://msub.csbio.unc.edu/
Sanger Mouse Genomes Project. http://www.sanger.ac.uk/resources/mouse/genomes/
Searchable index of sequencing reads from CC founder strains. http://www.csbio.unc.edu/CEGSseq/index.py?run=MsbwtTools
Seqnature. https://github.com/jaxcs/Seqnature

HHS Public Access
Author manuscript
Mamm Genome. Author manuscript; available in PMC 2016 October 01.

Published in final edited form as:
Mamm Genome. 2015 October ; 26(0): 521–539. doi:10.1007/s00335-015-9581-z.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://valdarlab.unc.edu/software/bagpipe
http://valdarlab.unc.edu/bagphenotype.html
http://www.csbio.unc.edu/CCstatus/
http://www.csbio.unc.edu/CCstatus/index.py?run=CCV
http://www.bioconductor.org/packages/release/bioc/html/DOQTL.html
http://csbio.unc.edu/gecco/
http://cgd.jax.org/datasets/popgen/diversityarray/yang2011.shtml
http://csbio.unc.edu/CCstatus/index.py?run=GeneseekMM
http://www.csbio.unc.edu/CCstatus/index.py?run=Pseudo
http://csbio.unc.edu/imputation/
http://msub.csbio.unc.edu/
http://www.sanger.ac.uk/resources/mouse/genomes/
http://www.csbio.unc.edu/CEGSseq/index.py?run=MsbwtTools
http://https://github.com/jaxcs/Seqnature


its promise as a source of extreme phenotypic variability and associated candidate loci (Iraqi 

et al. 2014). Within just the past year, CC lines have been shown to be highly variable for 

traits related to both normal physiology and disease, including gene expression in healthy 

liver (Aylor et al. 2011; Weiser et al. 2014), allergic airway inflammation (Kelada et al. 

2014), lymphocyte counts (Phillippi et al. 2014), susceptibility to melanoma (Ferguson et al. 

2014), and susceptibility to viral pathogens including influenza (Ferris et al. 2013) and 

Ebola virus (Rasmussen et al. 2014). Some phenotypic outliers constitute new disease 

models on their own: CC011/Unc, for example, is the first mouse line to spontaneously 

develop inflammatory bowel disease in the absence of chemical treatment or infection 

(Rogala et al. 2014). Up-to-date information on the status of the CC population is available 

at http://www.csbio.unc.edu/CCstatus/.

The CC and DO (discussed further in the article by Bogue et al. in this issue) clearly provide 

an exciting avenue for dissecting the genetic and molecular networks underlying of complex 

traits such as behavior (Chesler et al. 2014). The ultimate goal of genetic mapping is to 

identify the sequence variants (or combinations thereof) which are causative for variation in 

the trait of interest. In this article, we review databases, analysis tools, and other informatics 

resources relevant to this goal. The genomes of CC and DO mice can be expressed, to a very 

good approximation, as mosaics of segments inherited from these founders. Founder strains 

were chosen to span most of the pool of standing genetic variation available within 

laboratory strains and represent all three subspecies of the house mouse, M. m. domesticus, 

M. m. musculus, and M. m. castaneus (Fig. 1b). Five (A/J, C57BL/6J, 129S1/SvImJ, NOD/

ShiLtJ, NZO/HILtJ) are so-called “classical laboratory strains.” classical laboratory strains 

are descended from a small population of “fancy mice” of European and Japanese origin 

within the last 100 years (Wade et al. 2002; Petkov et al. 2004; Yang et al. 2007, 2011; 

Didion et al. 2013). They are all relatively closely related and share long tracts of pairwise 

identity by descent (IBD; see Appendix), but these patterns of relatedness are not consistent 

across the genome as a result of the strains’ somewhat convoluted ancestry. More than 90 % 

of the genomes of classical laboratory strains are of M. m. domesticus descent; the remainder 

is mostly of M. m. musculus origin with a smaller contribution from M. m. castaneus. The 

remaining three founder strains—CAST/EiJ (M. m. castaneus), PWK/PhJ (M. m. musculus), 

and WSB/EiJ (M. m. domesticus)—are “wild-derived.” These strains are descended from 

wild-caught mice by repeated back-crossing or sibling mating. They are genetically distinct 

from classical laboratory mice, although it is now well-known that, due to both introgression 

(see Appendix) in the wild and contamination in the laboratory, not all wild-derived strains 

are “pure” representatives of their respective subspecies (Yang et al. 2011). Most 

segregating variation in the CC and DO, both within and across subspecies, is contributed by 

the wild-derived strains.

All pairs of CC lines or DO individuals are expected to be equally related at the genome-

wide level. Local relatedness may deviate from the genome-wide expectation due to 

sampling effects, breeding errors, and the complex patterns of kinship and admixture among 

the founder strains (see Appendix). Key to understanding fine-scale genetic variation in 

these populations, then, is a deep characterization of the founder genomes. The resources 

presented in this review first place genetic variation in the founder strains of the CC in the 
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context of the phylogeny of the mouse at three scales: variation between subspecies, 

variation within populations, and variation between sister strains or within inbred lines. We 

then discuss computational tools developed for the analysis of CC and DO genomes and for 

genetic mapping in these populations. Together, these databases and tools provide an 

integrated and comprehensive view of the polymorphisms segregating in the CC and DO.

Primary data sources

The resources discussed in this review are derived from three large primary datasets: whole-

genome resequencing data for 17 mouse strains from the Sanger Mouse Genomes Project; 

genotypes from the 600,000-marker Mouse Diversity Array (MDA)(Yang et al. 2009) for 

198 strains and 273 incipient CC lines; and genotypes from the 77808-marker Mega Mouse 

Universal Genotyping Array (MegaMUGA, discussed later), for 2–8 obligate ancestors of 

each of 69 available CC lines. The MDA platform was itself designed on the basis of a prior 

study which identified variants in 11 strains using sequencing-by-hybridization (Frazer et al. 

2007). Likewise, the MegaMUGA platform was designed mostly using information from the 

MDA dataset and the Sanger Mouse Genomes Project. The relationships between these 

primary datasets and the resources derived from them are illustrated in Fig. 2. We describe 

the Sanger and MDA datasets in more detail below.

Sanger Mouse Genomes Project

The most comprehensive available catalog of sequence variation in laboratory mice is the 

Wellcome Trust Sanger Institute’s Mouse Genomes Project (Keane et al. 2011). The Sanger 

Institute performed deep whole-genome sequencing on the Illumina platform of 17 

commonly used mouse strains, including all eight CC founder strains and SPRET/EiJ (of 

Mus spretus origin), and identified 57 million segregating SNPs, 9 million indels, and 0.3 

million structural variants relative to the C57BL/6J reference genome (build GRCm38). 

Since the initial release in 2011, Sanger scientists have continued to update the database as 

variant-calling methods improve and more sequence data become available. As of June 

2015, alignments and variant calls from 11 more classical laboratory strains and two more 

wild-derived strains (ZALENDE/EiJ and LEWES/EiJ) have been made available.

Mouse Diversity Array dataset

The first high-density genotyping array developed for mouse was the MDA (Yang et al. 

2009). This array, developed on the Affymetrix platform, queried 623,124 SNPs selected to 

capture the full spectrum of genetic diversity present in current stocks of laboratory mice, 

including both classical laboratory and wild-derived inbred strains. MDA also contains 

916,269 invariant genomic probes selected to tag functional elements of the genome and 

detect copy-number differences. A total of 100 classical laboratory strains, 62 wild-derived 

strains, and 36 wild mice were genotyped on MDA at the Jackson Laboratory and the 

University of North Carolina at Chapel Hill to characterize patterns of haplotype diversity in 

Mus musculus (Yang et al. 2011; Didion et al. 2012). Those genotypes are now available for 

public browsing and download at http://cgd.jax.org/datasets/popgen/diversityarray/

yang2011.shtml. The MDA was also applied to incipient CC lines. First, 474 mice from the 

third generation of the CC breeding scheme (denoted G2:F1, Fig. 1), the first generation at 
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which alleles from all eight founders are represented in single genomes, were genotyped in 

order to construct a new standard recombination map (Liu et al. 2014) which guided the 

design of future marker panels. Second, more than 300 incipient CC lines (the “pre-CC” 

population) were genotyped for a group of proof-of-principle studies which demonstrated 

the utility of the CC for high-resolution genetic mapping (Aylor et al. 2011; Kelada et al. 

2012; Ferris et al. 2013).

Microarray genotypes necessarily have lower resolution than whole-genome sequence and 

are subject to ascertainment bias (Clark et al. 2005)—in the case of MDA, undersampling of 

minor alleles from M. m. musculus and M. m. castaneus (Yang et al. 2007, 2009). However, 

the broad scope of the MDA dataset makes it an extremely valuable resource for 

understanding both broad and fine-scale patterns of diversity in mouse.

We emphasize that all of these resources ultimately depend on the mouse reference genome 

assembly (Waterston et al. 2002) and both automatic [GENCODE, (Harrow et al. 2006)] and 

manual [HAVANA, (Wilming et al. 2008)] sequence annotations. The genome assembly 

and annotations are made available to the community via many online genome browsers, the 

most popular of which are hosted by the University of California at Santa Cruz [UCSC, 

(Karolchik et al. 2014)] and Ensembl (Flicek et al. 2013). Use of a single haploid reference 

sequence as an anchor for all studies of genetic variation in mouse offers many practical 

advantages. But the dependency on a reference genome requires several assumptions about 

the nature of genetic variation which may be violated in practice—the strongest of which is 

that of genomic collinearity (i.e., conserved marker order) between strains. We consider the 

implications of these assumptions in the Discussion section.

Databases of genetic variation in founder strains

Sanger Mouse SNP/Indel Viewer

All SNP, indel, and structural variants (including copy-number variants) from the Sanger 

Mouse Genomes Project are publicly available at http://www.sanger.ac.uk/resources/mouse/

genomes/. SNPs and small indels were annotated for predicted functional consequences 

using the Ensembl Variant Effect Predictor (McLaren et al. 2010). Users can search for 

variants by genomic coordinate, gene, strain of origin, variant type, and predicted functional 

consequence. As of June 2015, search results are linked directly to a viewer for the 

underlying read alignments. The complete dataset—including read alignments (BAM 

format) and variant calls (VCF format)—is available for download for computational users.

Mouse Phenome Database

The Jackson Laboratory’s Mouse Phenome Database provides a web interface to several 

catalogs of sequence variation in inbred strains, including the Sanger dataset and the Jax-

UNC MDA dataset (http://phenome.jax.org/db/q?rtn=snp/home). Several additional CNV 

datasets besides the Sanger structural variant calls are available. Users can query by region, 

by gene, or by strain, and can filter results according to polymorphism in strains of interest.
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Mouse Phylogeny Viewer

The Jax-UNC MDA dataset provides a rich resource for understanding high-level patterns of 

relatedness among laboratory mice. The time to the most recent common ancestor (MRCA) 

of a pair of haplotypes originating in different M. musculus subspecies is approximately 

500,000 years ago (Boursot et al. 1993; Geraldes et al. 2008), on the same order as the 

divergence time between human and chimp. Much polymorphism in mouse thus segregates 

between, not within, subspecies. Using wild-caught mice from the home ranges of each of 

the three M. musculus subspecies, Yang et al. trained a model to classify genomic segments 

according to subspecies of origin in 162 laboratory strains (Yang et al. 2011). Subspecific 

origin assignment confirmed the presumed ancestry of most wild-derived strains (including 

CC founders) but also revealed the existence of widespread inter-subspecific introgression 

(see Appendix) in both classical laboratory and wild-derived strains. This has important 

implications for the CC and DO: even for loci at which all eight founder alleles (i.e., all 

three subspecies) are nominally present, genetic diversity may be lower than expected in the 

presence of introgression. An example is the middle of chr2 (Fig. 3): due to the introgression 

of a M. m. domesticus segment into CAST/EiJ, no M. m. castaneus haplotype is present at 

this locus in the CC. Subspecific origin tracks are browsable at http://msub.csbio.unc.edu/.

Mouse Imputation Resource

In contrast to wild-derived strains, classical inbred strains are descended from a small 

founder population in the recent past. The genomes of individuals in such a population are 

related chiefly by recombination, with little contribution from mutation: each individual’s 

genome is a mosaic of segments sampled from a pool of founder haplotypes. At this scale, 

the natural unit of genetic analysis is the haplotype block, the minimal segment which is 

inherited unbroken by recombination (see Appendix). Yang et al. applied the four-gamete 

test (Hudson et al. 1985; see Appendix) to MDA genotypes from 100 classical laboratory 

strains to demarcate haplotype blocks in M. m. domesticus (Wang et al. 2010; Yang et al. 

2011). The median number of haplotypes at a given locus is only 5, and 97 % of loci can be 

mapped onto ten or fewer haplotypes. Wang et al. combined these haplotype blocks with 

whole-genome resequencing data from 12 strains to generate high-confidence imputed 

genotypes at 12 million loci (Wang et al. 2012a, b). Haplotype blocks and imputation results 

are available for browsing and download at http://msub.csbio.unc.edu/ and http://

csbio.unc.edu/imputation/, respectively.

An important observation from the MDA studies was that the genetic diversity available 

within classical inbred strains of mice is not uniformly distributed across the genome. Local 

patterns of haplotype sharing between strains may depart from global estimates of their 

relatedness (i.e., from their genealogy). The effective number of independent haplotypes 

among the five classical laboratory strains in the CC varies from 1 (i.e., regions of IBD) to 

five along the genome (CCC et al. 2012) (Fig. 3). This information is critical for 

interpretation of QTL-mapping studies. First, haplotype blocks inform expectations of allele 

effects at QTL. Second, accurate identification of candidate causative variants depends on 

knowledge of local haplotype structure: if two founder strains share a haplotype at a QTL 

peak but their respective alleles have opposing effects at that QTL, the number of candidate 

Morgan and Welsh Page 5

Mamm Genome. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://msub.csbio.unc.edu/
http://msub.csbio.unc.edu/
http://csbio.unc.edu/imputation/
http://csbio.unc.edu/imputation/


causative variants is immediately reduced. Finally, patterns of haplotype sharing between 

CC and non-CC strains aid in rational comparison of results from CC and non-CC crosses.

Genotyping and haplotype inference

A critical step in any genetic mapping study is to express the genotypes of individuals in the 

mapping population as mosaics of parental haplotypes. This requires obtaining genotypes at 

informative markers spaced along the genome at adequate density to capture most of the 

recombination events between founder chromosomes which have accumulated during 

breeding. Traditional experimental designs such as the F2 intercross comprise only two 

parental genotypes and a single generation of informative meioses; for practical sample 

sizes, the number of recombinations is small enough that panels of hundreds to a few 

thousand markers are sufficient to reconstruct progeny haplotypes with little uncertainty. 

Multiparental populations such as the CC and DO pose two challenges for genotyping: first, 

the highly recombinant structure of chromosomes in later generations requires a much 

denser marker panel; and second, the presence of more than two parental haplotypes means 

that multiple biallelic markers are required to discriminate between parents at a given locus. 

A custom genotyping platform, the MegaMUGA, was designed to address these challenges 

in the CC. Probabilistic methods based on hidden Markov models can be applied to these 

genotypes to recover the mosaic structure of the genome in a CC or DO individual. The 

resulting haplotype probabilities (or “dosages”) are used as input to association-mapping 

software.

MegaMUGA

The MegaMUGA is a custom Illumina Infinium genotyping microarray designed 

specifically to support the Collaborative Cross (CCC et al. 2012). Its content, which we 

describe in detail below, is optimized for the identification of founder contribution and 

detection of residual heterozygosity among CC strains at any stage of inbreeding.

The vast majority of the 77,808 oligonucleotide probes on MegaMUGA were designed to 

assay traditional biallelic SNPs. Target SNPs were selected to be distributed across the 

entire genome, including the mitochondria and the Y chromosome, with an average physical 

spacing of 33 kbp. For the autosomes, these probes were distributed as evenly as possible 

across a new sex-averaged linkage map (Liu et al. 2014) for the mouse with a slight excess 

of probes in the telomeric regions to facilitate detection of recombination events in the distal 

chromosomes. The majority of target SNPs, about 65,000, were chosen because they were 

maximally informative—that is, had high minor-allele frequencies and covered many strain 

distribution patterns—in the CC and DO. An additional 14,000 were chosen to assay 

variants segregating in wild mice of all three subspecies (M. m. domesticus, M. m. musculus, 

M. m. castaneus); 750 were chosen that segregate within Mus spretus-derived strains; 150 

were chosen to differentiate between C57BL/6J and C57BL/6N; 102 were selected for 

detecting transgenes and other engineered constructs; and a final subset of about 100 were 

designed to target specific loci of experimental interest, such as the X-chromosome 

controlling element (Xce) locus (Calaway et al. 2013). The genomic distribution of 

MegaMUGA markers is shown in Fig. 4.
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Standard genotype-calling methods for microarrays such as MegaMUGA are designed for 

biallelic markers and attempt to classify each sample as belonging to one of four states 

(reference allele, alternate allele, heterozygous, or missing/“no-call”) based on probe 

hybridization intensity signals (Fig. 5). For truly biallelic markers with no off-target 

variation within the probe sequence (Fig. 5a), this classification recovers all available 

information. Illumina’s proprietary calling algorithm cannot accommodate multiallelic 

markers (Fig. 5b) or marker-sample combinations for which the genotype state is uncertain 

(Fig. 5c, d). At such markers the continuous hybridization intensity values capture more 

information than the discrete genotype calls. Several tools for exploring MegaMUGA 

genotypes are hosted by the CC Status website (http://csbio.unc.edu/CCstatus/). Discrete 

genotype calls, either from the standard Illumina algorithm or a more flexible algorithm 

which accommodates multiallelic markers, can be downloaded by genomic region and by 

sample via Dump Genotypes. The Cluster Browser displays 2D hybridization intensity 

signals at specific markers similar to the plots shown in Fig. 5. The PCA Tool performs 

principal components analysis over hybridization intensities from multiple markers to reveal 

local haplotype clusters even in the absence of confident genotype calls at any single 

marker.

The MegaMUGA platform will be succeeded in July 2015 by a new array, GigaMUGA, also 

available through Neogen Inc. GigaMUGA will offer approximately double the marker 

density of MegaMUGA (~143,000 markers, including 66,000 markers carried over from 

MegaMUGA) for equal or lesser cost per sample. Like its predecessor, GigaMUGA is 

designed to be maximally informative in crosses derived from the CC founder strains, but 

will also include markers designed to discriminate between closely related laboratory strains 

(de Villena, personal communication).

Haplotype reconstructions for CC lines

Formally, the genome of an individual from an admixed population is a mosaic of segments 

inherited from its ancestors. Ancestry inference on such an admixed individual refers to the 

problem of partitioning the individual’s genome into haplotype blocks labeled with the 

contributing ancestor (see Appendix). We call the most likely representation of this ancestry 

mosaic an individual’s haplotype reconstruction or haplotype mosaic. For the CC, the pool 

of ancestral haplotypes is restricted to the eight founder strains—in contrast to natural 

populations, in which the pool of founder haplotypes is not known a priori. Figure 6 shows 

an example haplotype reconstruction for line CC011/Unc. Segments are colored according 

to their founder strain of origin. Since haplotype blocks are, by definition, the minimal 

segments of the genome inherited without recombination, they represent the fundamental 

unit for genetic mapping: at most one independent test of genotype–phenotype association 

can be performed per haplotype block. Obtaining haplotype reconstructions is thus the first 

analysis step in QTL-mapping studies in the CC and DO.

There are numerous methods for inferring ancestor mosaics given the genotypes of an 

individual and a set of ancestral haplotypes. In this review, we restrict our attention to 

methods designed to take genotyping microarray data as input. All use a hidden Markov 

model (HMM; see Appendix) approach to estimate probability of descent from each 
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ancestor at each locus along the genome given observed genotype data (Fig. 6a). The first 

such algorithm for inferring ancestry in outbred model organism populations with known 

ancestors was HAPPY (Mott et al. 2000), a package for QTL mapping designed for mouse 

outbred stocks. Improved methods for ancestry inference in recombinant inbred strains have 

been designed for the Collaborative Cross; in particular GAIN (Liu et al. 2010), which 

combines the HMM framework with knowledge of the pedigree to efficiently infer ancestry 

probabilities.

An important assumption of HAPPY, GAIN, and other existing methods is that genotype 

calls have little error: low-performing markers and markers with off-target variation must be 

excluded from the input data. This assumption has two important disadvantages. First, it 

requires filtering out a substantial fraction of markers; and second, it ignores the extra 

information content of multiallelic markers. Therefore, Fu et al. (2012) developed an HMM-

based method for inferring ancestry without first converting the probe intensity data into 

genotype calls (Fig. 5). This method works by minimizing the distance, in the 2D intensity 

space, between a target individual and one or more of its ancestors. Markers with poor 

discrimination between alleles (as in Fig. 5d) need not be excluded; uncertainty in genotype 

is accommodated naturally by the probabilistic framework of the HMM. The extra 

information provided by multiallelic markers is rescued, reducing ascertainment bias 

(Didion et al. 2012).

The ancestry-inference procedure for CC and DO samples models the underlying diploid 

genotype of a sample as one of 36 possible states: eight homozygous states and 28 

(unphased) heterozygous states. The distinction regarding phase is important: transition 

penalties in the HMMs of Fu et al. (2012) and HAPPY (Mott et al. 2000) suppress gratuitous 

haplotype switching, but do not explicitly account for phase. Switch errors are possible in 

intervals over which both of a sample’s chromosomes are recombinant. In general, some 

pedigree information is required to avoid switch errors, as in GAIN (Liu et al. 2010). At 

each locus along the genome, the model estimates the posterior probability of each state 

given marker information. This allows for explicit representation of both heterozygosity and 

uncertainty in ancestry: for instance, having the (129S1/SvImJ)/(C57BL6/J) heterozygous 

genotype with probability 0.98 is not the same as having the 129/129 or B6/B6 state each 

with probability 0.49.

Haplotype reconstructions for CC lines are available for browsing and download via the CC 

viewer (Fig. 6c) (http://www.csbio.unc.edu/CCstatus/index.py?run=CCV). Thirty-six-state 

haplotype probabilities suitable for genetic mapping are available for download at http://

www.csbio.unc.edu/CCstatus/index.py?run=AvailableLines: use check-boxes to select lines 

of interest, and click “More info” to see a table with links to haplotype probabilities as well 

as breeding performance and pedigree information. A complete data package containing 36-

state haplotype probabilities (intensity-based) and consensus genotype calls (from the 

Illumina calling software) from the MegaMUGA array for all CC lines in distribution is 

available for download at http://csbio.unc.edu/CCstatus/gstemp/

AllImageHapAndGenotypeFiles.zip.
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Haplotype reconstruction is unambiguous for a single sample but more complicated for a 

(incompletely inbred) CC line. The probabilistic reconstructions reported for CC lines 

represent an average across 2–8 obligate ancestors of that line, and genotype calls at the link 

above represent the consensus call across the obligate ancestors.

Genetic mapping in the CC and DO

Statistical methods for genetic mapping in traditional designs such as the backcross or F2 

intercross, in which all members of the mapping population are equally related, are well 

established. The simplest model, known as Haley–Knott regression (Haley et al. 1992), 

amounts to regression of the phenotype value on genotype probabilities (“dosages”) at each 

locus. In this and related methods, genotype is modeled as a fixed effect and residual 

variation is assumed to be independent across individuals and across loci—that is, 

phenotype values are assumed to be uncorrelated across individuals conditional on genotype 

at a QTL. Because many more loci are typically tested than there are individuals in the 

mapping population (an “n ⪢ p problem”), only a limited number of QTL can be identified 

with any certainty. An appropriate statistical significance threshold is established either via a 

multiple-testing correction (e.g., Benjamini et al. 1995) or by permutation (Churchill et al. 

1994).

Mapping in multiparental populations such as the CC is complicated by two factors. First, 

the presence of eight possible alleles at any locus (instead of two) increases the difficulty of 

assigning paternal haplotype and leads to a very large parameter space (eight possible 

homozygous plus 28 possible heterozygous states, ignoring phase) which cannot be 

exhaustively explored in samples of practical size. For genome-wide association scans, it is 

only statistically practical to model additive effects of the eight founder alleles.

Second, relatedness between individuals in a multiparental population typically varies. 

Although the population structure in the CC (CCC et al. 2012) and DO (Svenson et al. 2012) 

is in principle much weaker than, for example, in the Hybrid Mouse Diversity Panel 

(Bennett et al. 2010), residual correlation between unlinked loci (often termed “long-range” 

linkage disequilibrium) is an inevitable result of breeding in relatively small closed 

populations (see Appendix). These correlations may give rise to false-positive associations 

between genotype and phenotype when a simple statistical model which ignores relatedness 

is used (Valdar et al. 2009).

The most popular methods for mapping in such populations extend the simple linear model 

described previously by adding a random effect whose covariance across individuals is 

parameterized by the observed (from genotype data) or expected (from pedigree) kinship 

structure in the population (Kang et al. 2008; Lippert et al. 2011; see also Appendix); these 

have been reviewed by Gonzales et al. (2014). An alternative method, proposed by Valdar et 

al. (2009), uses bootstrapping and resample model averaging in the context of a fixed-effects 

model to control false-positive rate in QTL mapping in the presence of population structure.

Below we discuss software available for QTL mapping in the CC, DO, and related 

experimental designs. Importantly, all of these require, as input, haplotype probabilities 

derived from a platform such as MegaMUGA.
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QTL mapping in the CC

Two software packages have been applied to map QTL in the pre-CC and CC: BAGPIPE 

and BAGPHENOTYPE. They implement a fixed-effects model based on HAPPY (Mott et 

al. 2000) in which the phenotype value is regressed on a vector of haplotype probabilities for 

each of the eight founders, and can model both additive and dominance effects. 

Experimental (e.g., batch) and biological (e.g., sex) covariates can be modeled as either 

fixed or random effects. Significance levels are estimated by unrestricted permutation 

(Churchill et al. 1994). BAGPIPE (http://valdarlab.unc.edu/software/bagpipe) is suitable for 

single-locus mapping for normally distributed traits in the absence of gross population 

structure. BAGPHENOTYPE (http://valdarlab.unc.edu/bagphenotype.html) implements 

resample model averaging and model selection for multiple-locus models described in 

Valdar et al. (2009). It also allows the mapping of traits with a non-normal distribution (for 

instance, binary traits) via the generalized linear model. Although BAGPHENOTYPE is no 

longer under active development, its features are being merged into BAGPIPE. Both 

packages are written in R and Perl and run from a command line.

Penalized and Bayesian alternatives

The statistical models described so far model genotype–phenotype association at each locus 

(or small group of loci) independently and apply post hoc criteria to control false-positive 

rate. An alternative family of models instead fits a single model for all loci simultaneously, 

using a penalized regression method—e.g., LASSO or ridge regression—to limit the number 

of spurious associations identified. Such methods, although widely used in agricultural 

genetics under the guise of “genomic prediction” (recently reviewed in Daetwyler et al. 

(2013)), have not yet been applied to the CC or DO. Penalized regression can be framed as a 

partially Bayesian approach (Gelman et al. 2007). A fully Bayesian method applicable to 

multiparental populations, dubbed Diplo effect, was recently proposed by Zhang et al. 

(2014). The Bayesian hierarchical framework flexibly and intuitively models dependencies 

between (possibly many) model parameters as well as uncertainty in their values. Diplo 

effect explicitly models uncertainty in haplotype reconstruction and uses shrinkage to 

achieve well-behaved estimates of non-additive allele effects. The model was shown to 

outperform methods similar to BAGPIPE in the presence of uncertainty in founder 

haplotype assignment. However, this advantage comes at a cost of greatly increased 

computation time.

QTL mapping in the DO

The DOQTL package for R (Gatti et al. 2014), incorporates both HMM-based haplotype 

reconstruction (from Mega-MUGA genotypes) and QTL mapping. DOQTL implements a 

mixed-effects model with a kinship matrix estimated from reconstructed haplotype 

probabilities. Assuming that sequencing data are available for founders of the population, 

such as the Sanger Mouse Genomes Project mentioned above, DOQTL is also able to 

impute the genomes of the DO or other outbred sample, and use this imputed genome to 

conduct single-marker association mapping in the style of human GWAS. This R package 

and its reference manual are available publically at http://www.bioconductor.org/packages/

release/bioc/html/DOQTL.html.
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Other experimental designs

As CC lines with extreme phenotypes are identified, the most efficient experimental designs 

for follow-up studies will be intercrosses or backcrosses between lines at phenotypic 

extremes, or between lines and founder strains. An early example is a study by Rogala et al. 

(2014), in which a CC line which develops an autoimmune colitis (CC011/Unc) was 

backcrossed to a colitis-resistant strain (C57BL/6J) to map loci associated with colitis 

susceptibility. Using MegaMUGA genotypes from CC founders (publicly available at http://

csbio.unc.edu/CCstatus/index.py?run=GeneseekMM) in combination with the haplotype 

reconstruction for CC011/Unc, a subset of non-redundant MegaMUGA markers was 

identified which was expected to be informative in the cross. The experiment was then 

analyzed as a standard backcross using R/qtl (Broman et al. 2003) to successfully identify 

three QTL with both additive and epistatic effects. We expect that this approach will be 

broadly applicable to CC-derived backcrosses or intercrosses.

An important design consideration for such studies is which CC strains and/or founder 

strains to choose. The choice depends both on the phenotype distribution among potential 

parental strains and on the genetic architecture of the trait. One means for identifying useful 

strain combinations is to survey several F1 crosses, potentially including reciprocal crosses. 

This design can be expressed as an incomplete (“sparse”) diallel. A Bayesian method for 

analysis of diallel experiments has recently been published by Lenarcic et al. (2012). The 

model estimates the broad-sense heritability of the trait of interest, and decomposes that 

heritability into strain-specific (i.e., additive, dominance), cross-specific (i.e., non-additive), 

and parent-of-origin components. These estimates can be used to inform the design of 

downstream experiments.

Resources for next-generation sequencing

The first analysis step in most next-generation sequencing experiments—whether for 

quantification (e.g., mRNA-seq, CHIP-seq) or variant discovery (DNA-seq)—is alignment 

of reads to a (haploid) reference sequence. Fidelity and efficiency of read alignment 

decrease with increasing genetic distance between the sequenced organism and the reference 

genome. This biases analysis of heterozygous samples: reads from the more divergent 

haplotype are more likely to be lost than reads from the less divergent haplotype. The ideal 

alignment reference is thus one which incorporates as much prior knowledge about the 

sequenced template as possible, including its ploidy. Conveniently, alignment to a diploid 

reference is implicitly allele specific. Divergence between the two parental haplotypes 

which introduces bias in the case of naive haploid alignment instead increases power for 

allele-specific diploid alignment.

Software for allele-specific read alignment

Two software pipelines have been developed specifically to mitigate alignment bias in the 

CC and DO. Both take as input a reference genome and an individual-specific list of known 

variant sites relative to that reference to produce an improved, imputed, diploid reference 

sequence which we term a pseudogenome. Reads are then aligned to the pseudogenome 

rather than the off-the-shelf reference (Fig. 7a). Post-processing steps can take advantage of 
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both the improved overall alignment quality and allele specificity. The principal challenge to 

pseudogenome alignment is maintaining a common coordinate system across 

pseudogenomes, since inclusion of indels in pseudogenomes breaks one-to-one 

correspondence between base pairs (Fig. 7a).

The first software suite for this purpose (in mouse), developed in the McMillan group at the 

University of North Carolina, is modtools + lapels + suspenders (Huang et al. 2014) (http://

www.csbio.unc.edu/CCstatus/index.py?run=Pseudo). Known variant sites are preprocessed 

from variant call format (VCF) to a list of atomic “sequence edit” instructions (represented 

in a MOD file), from which a pseudogenome is constructed by modtools. Alignments to one 

(in the haploid or inbred case) or more (in the diploid case) pseudogenomes are first 

processed by lapels, which annotates each read with the “sequence edit” instructions it 

overlaps and projects it back into the reference coordinate system. Then suspenders uses 

these tags to assign each read to zero or more pseudogenomes. Allele-specific quantification 

by counting of reads which may overlap multiple variant sites provides greatly improved 

accuracy and precision versus counting aligned bases over single variant sites (Baker et al. 

2015; Crowley et al. 2015). The Seqnature suite (Munger et al. 2014) (https://github.com/

jaxcs/Seqnature) developed in the Churchill group at the Jackson Laboratory is similar, and 

is tailored to RNA-seq in the DO.

Construction of an individualized pseudogenome for a sample requires prior knowledge of 

variant sites in that sample’s genome. In, for instance, an F1 cross between strains for which 

whole-genome sequencing data are available, imputing the pseudogenome is trivial. 

Genomes of recombinant individuals (e.g., CC or DO) can be expressed as mosaics of 

founder haplotypes on the basis of genotyping (discussed previously), and a pseudogenome 

stitched together accordingly. However, the sequencing data itself are likely to contain 

information sufficient to recover the founder mosaic without preliminary genotyping. If 

reads are aligned not to an individualized diploid pseudogenome but instead to haploid 

pseudogenomes of all eight possible founders, a probabilistic algorithm could in principle be 

used to simultaneously estimate the probability of descent from each founder at each locus, 

and provide allele-specific read quantification.

Imputed genomes for founder strains and CC lines

MOD files and pseudogenomes for the 17 strains resequenced by the Sanger Mouse 

Genomes Project, including the eight founders of the CC and DO, are available for 

download at http://www.csbio.unc.edu/CCstatus/index.py?run=Pseudo. Pseudogenomes for 

all 69 available CC lines have also been constructed on the basis of haplotype mosaics 

derived from microarray genotyping, as discussed previously. Imputation has been 

performed for both the NCBI build 37 and GRCm38 reference assemblies.

Allele-specific gene expression in CC founders

In order to explore variation in regulation of gene expression among CC founders, the 

Center for Integrated Systems Genetics at the University of North Carolina profiled gene 

expression in four tissues in a full diallel cross between CAST/EiJ, PWK/PhJ and WSB/EiJ. 

Expression was measured by very deep RNA-seq in whole brain, and by microarray in 
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brain, lung, liver, and kidney (Crowley et al. 2015). The lapels + suspenders pipeline was 

used for allele-specific read alignment. The diallel design allows simultaneous estimation of 

additive, dominant, parent-of-origin, and sex effects on both total and allele-specific gene 

expression (Fig. 7a). Gene-wise results for 31,259 genes are browsable and searchable by 

gene name or Ensembl ID via the GECCO (Gene Expression in the Collaborative Cross) 

viewer at http://csbio.unc.edu/gecco/.

Tools for alignment-free analyses of sequencing data

The vast majority of next-generation sequencing experiments in mouse have read alignment 

to a reference genome as their first step. However, the primary data from any sequencing 

experiment are the reads themselves. Recognition that the raw reads are information-rich has 

led to the development of alignment-free algorithms for error correction (among many 

others, Chaisson and Pevzner 2008), abundance estimation (Patro et al. 2014), and de novo 

assembly (for example, Grabherr et al. 2011). Alignment-free approaches invert the usual 

approach to a sequencing experiment: rather than interpreting the reads through the lens of 

the reference genome (after alignment), the reference genome is interpreted through the lens 

of the reads. These approaches attempt to exploit the information present in short reads 

without making any claim about the specific position in the template genome from which 

the reads originated—an important distinction for reads which cannot be mapped uniquely 

in the reference assembly.

Holt and McMillan have recently extended a data structure for string compression, the 

multi-string Burrows–Wheeler transform (msBWT) (Bauer et al. 2013), to next-generation 

sequencing data (Holt et al. 2014). A msBWT is a compressed, indexed representation of 

raw, unaligned sequence reads which allows fast queries for specific sequences over very 

large datasets (Fig. 7b). Whole-genome resequencing reads from the Sanger Mouse 

Genomes Project plus RNA-seq reads from the diallel experiment have been converted to 

msBWT for public access at http://www.csbio.unc.edu/CEGSseq/index.py?

run=MsbwtTools. Users can query the datasets for the presence of specific sequences, and 

retrieve the raw reads containing those sequences (Fig. 7c). For instance, to demonstrate the 

expression of a gene of interest, a user could count how many reads contain subsequences 

unique to that transcript, such as a subsequence spanning a splice junction.

The msBWT and its associated FM-index also have straightforward extensions to targeted 

de novo assembly via de Bruijn graphs, and this application is an area of active research.

Discussion and outlook

The approximately 150 Collaborative Cross lines extant in colonies at Tel Aviv University 

(Tel Aviv, Israel), Geniad Llc (Perth, Australia), and the University of North Carolina 

(Chapel Hill, NC, USA) are the fruits of a 12-year collaboration between dozens of 

scientists, students, staff and institutions worldwide. The scale and complexity of the project 

motivated the development of a suite of informatics resources and experimental tools which 

are now widely applicable to the CC, its sister population the Diversity Outbred, and other 

mouse populations. The tools and databases discussed in this review characterize the genetic 

diversity in the CC, DO, and their founder strains at several evolutionary scales by 
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integrating data from many sources. The Mouse Phylogeny Viewer provides a detailed view 

of fine-scale patterns of both relatively distant (subspecies of origin within M. musculus) and 

relatively recent (haplotype blocks passing the four-gamete test within M. m. domesticus) 

ancestry and population structure in inbred strains and wild mice. Although not per se a CC 

resource, the Sanger Mouse Genomes Project provides a deep catalog of nucleotide-level 

variation between the CC founder strains. The CC Viewer allows exploration of local 

similarity within the CC population by expressing the genomes of CC lines as mosaics of 

founder haplotypes.

These haplotype mosaics form the basis of genetic analysis and data integration in the CC 

and DO. In contrast to natural or commercial outbred populations, the founder haplotypes of 

these multiparental populations (and similar populations in other model organisms) are 

known and well characterized by sequencing. This presents a tremendous advantage in the 

search for causal variants of complex traits: provided a genomic segment in an experimental 

animal can be assigned to a founder haplotype using a few tagging markers, the remaining 

known variants can be imputed with essentially complete certainty. Annotations such as 

inferred subspecies ancestry can likewise be projected onto CC and DO genomes once the 

haplotype mosaic is known. Two software packages, Seqnature and modtools + lapels + 

suspenders, combine haplotype mosaics with the Sanger variant catalog to perform allele-

specific read alignment in next-generation sequencing experiments. A growing list of tools 

for genetic mapping, including BAGPIPE and DOQTL, takes haplotype mosaics as input in 

order to map quantitative traits in a fixed-effects or mixed-effects framework.

It is therefore important to understand the relationship between the “average genome” of a 

CC line, as reflected in its haplotype reconstruction, and the genomes of individual members 

of that CC line. Although all CC lines assigned “distributable” status have reached >90 % 

homozygosity, a line remains a dynamic entity. The haplotype reconstructions available in 

the CC Viewer are averages over a group of individuals who were obligate ancestors 

(MRCAs) of a line, and represent a snapshot of the line at some point in time between 1 and 

5 years (median 3 years) in the past. Present-day CC mice will be more homozygous than 

the line’s haplotype reconstruction reflects simply due to additional generations of 

inbreeding and drift accumulated since the MRCAs. Some portion of the regions which were 

segregating in the MRCAs are almost certain to have fixed during subsequent generations. 

In this sense, the haplotype reconstruction for a CC line represents a worst-case estimate of 

residual heterozygosity: it indicates which regions may still be segregating in the line, not 

which regions are segregating in a group of individuals sampled from that line in the present 

day. Continued inbreeding will mitigate the impact of residual heterozygosity. However, 

severe bottleneck events, such as re-derivation of a line in a new facility or initiation of a 

new breeding colony from a small number of breeding pairs, may create distinct sub-lines 

which have fixed different alleles at loci which were segregating in the MRCAs. This is no 

different than the process of sub-line divergence within widely used strains such as the 129 

(Cook et al. 2002) or NOD (Simecek et al. 2015) strain groups. Bottlenecks within (nearly) 

inbred strains can have important phenotypic consequences if they affect causal loci (Rogala 

et al. 2014; Simecek et al. 2015). Users of the CC should be aware of these considerations 

when designing experiments and interpreting results.
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Although the final number of CC lines is far short of the total envisioned in early 

discussions (Churchill et al. 2004; Valdar et al. 2006a), the massive extinction during 

inbreeding provides a unique opportunity to study the mechanisms of intra-genomic 

incompatibility resulting from admixture between three subspecies along a gradient of 

genetic isolation. Existing studies of inter-subspecific incompatibility in mouse have so far 

been limited to pairwise comparisons between M. m. musculus and M. m. domesticus (Forejt 

et al. 1974; Good et al. 2008) or M. m. castaneus and M. m. domesticus (Orth et al. 1998), 

either in wild individuals or simple F2 or backcross designs. The CC is the first population 

of mice in which alleles from all three subspecies may each be present, in homozygosity, 

over a large fraction within the same genome. As a result of the CC’s balanced factorial 

breeding scheme such heterosubspecific combinations are expected to be distributed almost 

uniformly across the genome. The CC thus provides a unique platform for exploring the 

space of Bateson–Dobzhansky–Muller incompatibilities (Dobzhansky et al. 1936) in mouse. 

Detailed knowledge of the subspecies contributions to CC genomes, obtained by integrating 

CC lines’ haplotype mosaics with data from the Mouse Phylogeny Viewer, will be critical to 

this effort.

Most of the resources discussed in this review ultimately depend on the mouse reference 

genome. A high-quality, well-annotated reference assembly for any model organism is 

extremely valuable for the research community. In addition to the genomic sequence itself, a 

reference genome provides a backbone for annotation and a common coordinate system to 

anchor genetic maps. Population surveys by microarray genotyping and next-generation 

sequencing project all genetic variation back onto the reference genome. Predictions about 

the molecular and organismal phenotypic consequences of genetic variants are likewise 

based on an annotation derived from the reference sequence. The assumption that most 

genetic variation can be discovered and defined against a fixed, haploid reference sequence 

is convenient—and practically useful—but comes at a price. First, large-scale differences in 

genome content, such as large copy-number variants, are difficult to reconcile to the 

reference genome. Despite being the most variable fraction of mammalian genomes (Bailey 

et al. 2002, 2004; She et al. 2008), such variants are highly underrepresented relative to 

SNPs and small indels in the databases listed in this review. A dramatic example is the male-

specific region of the Y chromosome, which differs in size by hundreds of kilobases 

between inbred strains (Soh et al. 2014). Second, variation in repetitive sequence, including 

microsatellites, transposable elements, and centromeric sequences, is difficult or impossible 

to characterize by microarray or short-read sequencing. The Sanger Mouse Genomes Project 

reported that 13–23 % of the genome is “inaccessible” for SNP and small indel discovery 

(Keane et al. 2011) by next-generation sequencing with standard methods in any given 

strain. Finally, differences in sequence organization such as inversions and translocations 

break collinearity between the genome of an individual and the reference assembly. 

However, the algorithms underlying many of the databases in this review, including HMMs 

used for haplotype reconstruction in CC lines, assume collinearity with the reference.

The shortcomings of a single, linear reference genome per species are well appreciated, and 

richer reference data structures are an active area of research (Church et al. 2015). An 

alternative is de novo assembly of the genomes of commonly used strains. The Sanger 
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Mouse Genomes Project is using a combination of long-insert “jumping” libraries and 

optical mapping to build de novo assemblies for 18 laboratory strains including the CC 

founders. Assembled full-length chromosomes are available on pre-publication release as of 

June 2015 (ftp://ftp-mouse.sanger.ac.uk/REL-1504-Assembly/). Comparison of strain-

specific assemblies to each other and to the reference assembly will provide a much fuller 

picture of large-scale structural variation between strains. Ab initio gene prediction, 

integrating both genomic and transcriptome sequence to build strain-specific gene models, is 

on the horizon. The use of true strain-specific genomes for read alignment, rather than the 

reference genome or imputed pseudogenomes, will pose new analytical challenges. It will 

also offer the opportunity to capture biological signals which are not apparent in the present 

framework.

One remaining gap in the CC infrastructure is the lack of a centralized, public platform for 

sharing and integrating phenotype data on CC lines. The Mouse Phenome Database (http://

phenome.jax.org/) (Grubb et al. 2014) serves this purpose for the strains in the Hybrid 

Mouse Diversity Panel, and GeneNetwork (http://www.genenetwork.org/webqtl/) provides 

access to an extensive catalog of phenotypes for more than a dozen advanced intercross and 

recombinant inbred panels (Williams et al. 2001). These sites have become mainstays in the 

mouse genetics community and now provide both access to raw data and browser-based 

tools for data exploration. Accumulation of phenotype data across experiments was a major 

goal of the original CC design (Churchill et al. 2004); we encourage the CC user community 

to establish a central “data hub” for this purpose. The Mouse Phenome Database would be a 

natural choice: it already provides a controlled vocabulary for representing phenotype 

measurements and enforces correct strain nomenclature to facilitate accurate comparisons 

across studies. Effective integration of phenotypic and genetic data, facilitated by the 

databases and analytical tools presented in this review, is critical to realizing the promise of 

the CC as it exists today.
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Appendix: terms and definitions

Relatedness

Relatedness in the genetic sense refers to the proportion of alleles shared between two 

individuals. The degree to which two individuals are genetically related depends on the 

number of common ancestors they share and the number of generations which have elapsed 
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since they shared them. A pedigree describes the expected relatedness between individuals: 

first-degree relatives (parents or siblings) share, on average, half of their alleles; second-

degree relatives (grandparents) one-fourth; and so on. With dense genotype data, we can 

instead compute realized relatedness as the proportion of shared, unlinked alleles.

Using dense genotypes, we can define relatedness both at the genome-wide and at the local 

scale. In the presence of admixture or introgression (see below), local relatedness in 

different regions of the genome may deviate from the genome-wide average.

Population structure

A population is “structured” when it has experienced deviations from random mating, or 

equivalently, when it is divided into subpopulations with restricted genetic exchange 

between them. In a structured population, some groups of individuals are more closely 

related to (share more alleles with) each other than with other groups. Geography and 

mating behavior generate at least some degree of structure in most natural populations. 

Population structure in laboratory mouse strains is widespread: for instance, the 129 and 

C57BL strain groups form a genetic cluster distinct from so-called “Swiss mice” including 

FVB/NJ, the NOD substrains, and ICR outbred stock (Beck et al. 2000). Failure to account 

for population structure can lead to false-positive QTL in genetic mapping of complex traits.

Linkage disequilibrium (LD)

Two loci are said to be in LD if the frequencies of pairwise genotypes depart from those 

expected if alleles were sampled randomly at each locus. LD is decreased by recombination, 

and therefore generally decreases with time and with physical distance between loci. 

Unlinked markers are expected to be in linkage equilibrium, but non-random mating can 

produce “long-range” LD between unlinked loci in structured populations.

Haplotype block

A haplotype block is a chromosomal segment in which there is no evidence for 

recombination during the history of a sample of individuals. Within a block, individuals in a 

population can be collapsed into one of a small (relative to the population size) number of 

ancestral haplotypes (Wall et al. 2003). LD is relatively high between loci within a block, 

but relatively low between loci in adjacent blocks.

Although many schemes have been proposed for defining haplotype blocks, the one 

discussed in this review is the four-gamete test (Hudson et al. 1985). Consider two loci A 

and B with alleles A,a and B,b, respectively. There are four possible haploid genotypes 

(gametes)—AB, aB, Ab, and ab—and if all four are observed in a sample, recombination 

between A and B must have occurred at least once in the past.

Haplotype blocks are a useful means of investigating patterns of genetic diversity at 

intermediate timescales since a common ancestor, such as among classical inbred strains of 

mice (Yang et al. 2011). But because recombination events accumulate and LD decreases 

with time, haplotype blocks shared between two individuals with a common ancestor far in 
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the past—for example, a wild-derived inbred strain and a classical laboratory strain—will be 

very short. For this reason, haplotype blocks were not inferred for the wild mice and wild-

derived strains in Yang et al. (2011).

Identity by descent (IBD)

A chromosomal segment is shared identical-by-descent between two individuals if it was 

inherited from their common ancestor without recombination. The notion of IBD is closely 

related to the haplotype block.

Admixture

Admixture refers to inter-breeding between individuals from populations which were 

previously genetically isolated from one another. Admixture facilitates gene flow between 

populations, and in the process creates heterogeneity of relatedness across the genome.

Introgression

Introgression refers to the introduction of a chromosomal segment from one population into 

a separate, genetically distinct population. It is often used to describe gene flow between 

species or subspecies which can still form fertile hybrids. Unlike admixture, which describes 

ongoing inter-breeding, introgression describes events which are episodic in nature. In this 

review, we refer to genetic exchange between mouse subspecies, which do not interbreed in 

the wild except at narrow hybrid zones (Ursin 1952), as introgression.

Ancestry inference

Broadly speaking, an ancestry-inference procedure steps along the genome of an individual 

and attempts to assign each segment to one of a few ancestral clusters. These clusters may 

represent ancestral population groups, for samples from natural populations, or founder 

haplotypes in laboratory populations. Examples of ancestry inference discussed in this 

review include assignment of subspecific origin in wild mice (Yang et al. 2011), which 

labels genomic regions with one of three subspecies; and haplotype reconstruction on the 

CC and DO (Fu et al. 2012), which assigns genomic regions to one of those populations’ 8 

founder strains.

Hidden Markov model (HMM)

A hidden Markov model is a probabilistic model which describes how an observed sequence 

can be generated from an underlying, unknown sequence of “hidden states” (Baum and 

Petrie 1966; Rabiner 1989). Efficient algorithms can be used to “decode” the sequence of 

hidden states given an observed sequence. In this review, we discuss HMMs in which the 

observed sequences are genotypes along a chromosome, and the hidden states are founder 

haplotypes.

Morgan and Welsh Page 18

Mamm Genome. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

Aylor DL, Valdar W, Foulds-Mathes W, et al. Genetic analysis of complex traits in the emerging 
Collaborative Cross. Genome Res. 2011; 21:1213–1222. doi:10.1101/gr.111310.110. [PubMed: 
21406540] 

Bailey JA, Gu Z, Clark RA, et al. Recent segmental duplications in the human genome. Science. 2002; 
297:1003–1007. doi:10.1126/science.1072047. [PubMed: 12169732] 

Bailey JA, Baertsch R, Kent WJ, et al. Hotspots of mammalian chromosomal evolution. Genome Biol. 
2004; 5:R23. doi:10.1186/gb-2004-5-4-r23. [PubMed: 15059256] 

Baker CL, Kajita S, Walker M, et al. PRDM9 drives evolutionary erosion of hotspots in Mus musculus 
through haplotype-specific initiation of meiotic recombination. PLoS Genet. 2015; 11:e1004916. 
doi:10.1371/journal.pgen.1004916. [PubMed: 25568937] 

Bauer MJ, Cox AJ, Rosone G, et al. Lightweight algorithms for constructing and inverting the BWT of 
string collections. Theor Comput Sci. 2013; 483:134–148. doi:10.1016/j.tcs.2012.02.002. 

Baum LE, Petrie T. Statistical inference for probabilistic functions of finite state Markov chains. Ann 
Math Stat. 1966; 37:1554–1563.

Beck JA, Lloyd S, Hafezparast M, et al. Genealogies of mouse inbred strains. Nat Genet. 2000; 24:23–
25. doi:10.1038/71641. [PubMed: 10615122] 

Benjamini Y, Hochberg Y, et al. Controlling the false-discovery rate: a practical and powerful 
approach to multiple testing. J R Stat Soc B. 1995; 57:289–300.

Bennett BJ, Farber CR, Orozco L, et al. A high-resolution association mapping panel for the dissection 
of complex traits in mice. Genome Res. 2010; 20:281–290. doi:10.1101/gr.099234.109. [PubMed: 
20054062] 

Boursot P, Auffray JC, Britton-Davidian J, Bonhomme F, et al. The evolution of house mice. Annu 
Rev Ecol Syst. 1993; 24:119–152.

Broman KW, Wu H, Sen S, Churchill GA, et al. R/qtl: QTL mapping in experimental crosses. 
Bioinformatics. 2003; 19:889–890. [PubMed: 12724300] 

Calaway JD, Lenarcic AB, Didion JP, et al. Genetic architecture of skewed X inactivation in the 
laboratory mouse. PLoS Genet. 2013; 9:e1003853. doi:10.1371/journal.pgen.1003853. [PubMed: 
24098153] 

CCC. et al. The genome architecture of the Collaborative Cross mouse genetic reference population. 
Genetics. 2012; 190:389–401. doi:10.1534/genetics.111.132639. [PubMed: 22345608] 

Chaisson MJ, Pevzner PA. Short read fragment assembly of bacterial genomes. Genome Res. 2008; 
18:324–330. doi:10.1101/gr.7088808. [PubMed: 18083777] 

Chesler EJ, et al. Out of the bottleneck: the Diversity Outcross and Collaborative Cross mouse 
populations in behavioral genetics research. Mamm Genome. 2014; 25:3–11. doi:10.1007/
s00335-013-9492-9. [PubMed: 24272351] 

Church DM, Schneider VA, Steinberg KM, et al. Extending reference assembly models. Genome Biol. 
2015; 16:13. doi:10.1186/s13059-015-0587-3. [PubMed: 25651527] 

Churchill GA, Doerge RW, et al. Empirical threshold values for quantitative trait mapping. Genetics. 
1994; 138:963–971. [PubMed: 7851788] 

Churchill GA, Airey DC, Allayee H, et al. The Collaborative Cross, a community resource for the 
genetic analysis of complex traits. Nat Genet. 2004; 36:1133–1137. doi:10.1038/ng1104-1133. 
[PubMed: 15514660] 

Clark AG, Hubisz MJ, Bustamante CD, et al. Ascertainment bias in studies of human genome-wide 
polymorphism. Genome Res. 2005; 15:1496–1502. doi:10.1101/gr.4107905. [PubMed: 16251459] 

Cook MN, Bolivar V, McFadyen MP, Flaherty L, et al. Behavioral differences among 129 substrains: 
implications for knockout and transgenic mice. BehavNeurosci. 2002; 116:600–611. doi:
10.1037/0735-7044.116.4.600. 

Crowley JJ, Zhabotynsky V, Sun W, et al. Analyses of allele-specific gene expression in highly 
divergent mouse crosses identifies pervasive allelic imbalance. Nat Genet. 2015 doi:10.1038/ng.
3222. 

Morgan and Welsh Page 19

Mamm Genome. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Daetwyler HD, Calus MPL, Pong-Wong R, et al. Genomic prediction in animals and plants: simulation 
of data, validation, reporting, and benchmarking. Genetics. 2013; 193:347–365. doi:10.1534/
genetics.112.147983. [PubMed: 23222650] 

Didion JP, Yang H, Sheppard K, et al. Discovery of novel variants in genotyping arrays improves 
genotype retention and reduces ascertainment bias. BMC Genom. 2012; 13:34. doi:
10.1186/1471-2164-13-34. 

Didion JP, de Villena FP-M, et al. Deconstructing Mus gemischus: advances in understanding 
ancestry, structure, and variation in the genome of the laboratory mouse. Mamm Genome. 2013; 
24:1–20. doi:10.1007/s00335-012-9441-z. [PubMed: 23223940] 

Dobzhansky T, et al. Studies on hybrid sterility. II Localization of sterility factors in Drosophila 
pseudoobscura hybrids. Genetics. 1936; 21:113–135. [PubMed: 17246786] 

Ferguson B, Ram R, Handoko HY, et al. Melanoma susceptibility as a complex trait: genetic variation 
controls all stages of tumor progression. Oncogene. 2014 doi:10.1038/onc.2014.227. 

Ferris MT, Aylor DL, Bottomly D, et al. Modeling host genetic regulation of influenza pathogenesis in 
the Collaborative Cross. PLoS Pathog. 2013; 9:e1003196. doi:10.1371/journal.ppat.1003196. 
[PubMed: 23468633] 

Flicek P, Ahmed I, Amode MR, et al. Ensembl 2013. Nucleic Acids Res. 2013; 41:D48–D55. doi:
10.1093/nar/gks1236. [PubMed: 23203987] 

Forejt J, Ivanyi P, et al. Genetic studies on male sterility of hybrids between laboratory and wild mice 
(Mus musculus L.). Genet Res. 1974; 24:189–206. [PubMed: 4452481] 

Frazer KA, Eskin E, Kang HM, et al. A sequence-based variation map of 8.27 million SNPs in inbred 
mouse strains. Nature. 2007; 448:1050–1053. doi:10.1038/nature06067. [PubMed: 17660834] 

Fu, C-P.; Welsh, CE.; de Villena, FP-M.; McMillan, L., et al. Inferring ancestry in admixed 
populations using microarray probe intensities. Proceedings of the ACM conference on 
bioinformatics, computational biology and biomedicine—bCB’12; New York. ACM Press; 2012. 
p. 105-112.

Gatti DM, Svenson KL, Shabalin A, et al. Quantitative trait locus mapping methods for Diversity 
Outbred mice. 2014; G3(4):1623–1633. doi:10.1534/g3.114.013748. 

Gelman, A.; Hill, J., et al. Data analysis using regression and multilevel/hierarchical models. 
Cambridge University Press; Cambridge: 2007. 

Geraldes A, Basset P, Gibson B, et al. Inferring the history of speciation in house mice from 
autosomal, X-linked, Y-linked and mitochondrial genes. Mol Ecol. 2008; 17:5349–5363. doi:
10.1111/j.1365-294X.2008.04005.x. [PubMed: 19121002] 

Ghazalpour A, Rau CD, Farber CR, et al. Hybrid Mouse Diversity Panel: a panel of inbred mouse 
strains suitable for analysis of complex genetic traits. Mamm Genome. 2012; 23:680–692. doi:
10.1007/s00335-012-9411-5. [PubMed: 22892838] 

Gonzales NM, Palmer AA, et al. Fine-mapping QTLs in advanced intercross lines and other outbred 
populations. Mamm Genome. 2014; 25:271–292. doi:10.1007/s00335-014-9523-1. [PubMed: 
24906874] 

Good JM, Dean MD, Nachman MW, et al. A complex genetic basis to X-linked hybrid male sterility 
between two species of house mice. Genetics. 2008; 179:2213–2228. doi:10.1534/genetics.
107.085340. [PubMed: 18689897] 

Grabherr MG, Haas BJ, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data 
without a reference genome. Nat Biotechnol. 2011; 29:644–652. doi:10.1038/nbt.1883. [PubMed: 
21572440] 

Grubb SC, Bult CJ, Bogue MA, et al. Mouse phenome database. Nucleic Acids Res. 2014; 42:D825–
D834. doi:10.1093/nar/gkt1159. [PubMed: 24243846] 

Haley CS, Knott SA, et al. A simple regression method for mapping quantitative trait loci in line 
crosses using flanking markers. Heredity. 1992; 69:315–324. doi:10.1038/hdy.1992.131. 
[PubMed: 16718932] 

Harrow J, Denoeud F, Frankish A, et al. GENCODE: producing a reference annotation for ENCODE. 
Genome Biol. 2006; 7(Suppl 1):S41–S49. doi:10.1186/gb-2006-7-s1-s4. 

Holt J, McMillan L, et al. Merging of multi-string BWTs with applications. Bioinformatics. 2014; 
30:3524–3531. doi:10.1093/bioinformatics/btu584. [PubMed: 25172922] 

Morgan and Welsh Page 20

Mamm Genome. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Huang S, Holt J, Kao C-Y, et al. A novel multi-alignment pipeline for high-throughput sequencing 
data. Database. 2014; 2014:bau057. doi:10.1093/database/bau057. [PubMed: 24948510] 

Hudson RR, Kaplan NL, et al. Statistical properties of the number of recombination events in the 
history of a sample of DNA sequences. Genetics. 1985; 111:147–164. [PubMed: 4029609] 

Iraqi FA, Athamni H, Dorman A, et al. Heritability and coefficient of genetic variation analyses of 
phenotypic traits provide strong basis for high-resolution QTL mapping in the Collaborative Cross 
mouse genetic reference population. Mamm Genome. 2014; 25:109–119. doi:10.1007/
s00335-014-9503-5. [PubMed: 24445421] 

Kang HM, Zaitlen NA, Wade CM, et al. Efficient control of population structure in model organism 
association mapping. Genetics. 2008; 178:1709–1723. doi:10.1534/genetics.107.080101. 
[PubMed: 18385116] 

Karolchik D, Barber GP, Casper J, et al. The UCSC genome browser database: 2014 update. Nucleic 
Acids Res. 2014; 42:D764–D770. doi:10.1093/nar/gkt1168. [PubMed: 24270787] 

Keane TM, Goodstadt L, Danecek P, et al. Mouse genomic variation and its effect on phenotypes and 
gene regulation. Nature. 2011; 477:289–294. doi:10.1038/nature10413. [PubMed: 21921910] 

Kelada SNP, Aylor DL, Peck BCE, et al. Genetic analysis of hematological parameters in incipient 
lines of the Collaborative Cross. 2012; G3 2:157–165. doi:10.1534/g3.111.001776. 

Kelada SNP, Carpenter DE, Aylor DL, et al. Integrative genetic analysis of allergic inflammation in 
the murine lung. Am J Respir Cell Mol Biol. 2014; 51:436–445. doi:10.1165/rcmb.2013-0501OC. 
[PubMed: 24693920] 

Lenarcic AB, Svenson KL, Churchill GA, Valdar W, et al. A general Bayesian approach to analyzing 
diallel crosses of inbred strains. Genetics. 2012; 190:413–435. doi:10.1534/genetics.111.132563. 
[PubMed: 22345610] 

Lippert C, Listgarten J, Liu Y, et al. FaST linear mixed models for genome-wide association studies. 
Nat Methods. 2011; 8:833–835. doi:10.1038/nmeth.1681. [PubMed: 21892150] 

Liu EY, Zhang Q, McMillan L, et al. Efficient genome ancestry inference in complex pedigrees with 
inbreeding. Bioinformatics. 2010; 26:i199–i207. doi:10.1093/bioinformatics/btq187. [PubMed: 
20529906] 

Liu EY, Morgan AP, Chesler EJ, et al. High-resolution sexspecific linkage maps of the mouse reveal 
polarized distribution of crossovers in male germline. Genetics. 2014; 197:91–106. doi:10.1534/
genetics.114.161653. [PubMed: 24578350] 

McLaren W, Pritchard B, Rios D, et al. Deriving the consequences of genomic variants with the 
Ensembl API and SNP effect predictor. Bioinformatics. 2010; 26:2069–2070. doi:10.1093/
bioinformatics/btq330. [PubMed: 20562413] 

Mott R, Talbot CJ, Turri MG, et al. A method for fine mapping quantitative trait loci in outbred animal 
stocks. Proc Natl Acad Sci USA. 2000; 97:12649–12654. doi:10.1073/pnas.230304397. [PubMed: 
11050180] 

Munger SC, Raghupathy N, Choi K, et al. RNA-seq alignment to individualized genomes improves 
transcript abundance estimates in multiparent populations. Genetics. 2014; 198:59–73. doi:
10.1534/genetics.114.165886. [PubMed: 25236449] 

Orth A, Adama T, Din W, Bonhomme F, et al. Natural hybridization between two subspecies of the 
house mouse, Mus musculus domesticus and Mus musculus castaneus, near Lake Casitas, 
California. Genome. 1998; 41:104–110. [PubMed: 9549063] 

Patro R, Mount SM, Kingsford C. Sailfish enables alignment-free isoform quantification from RNA-
seq reads using lightweight algorithms. Nat Biotechnol. 2014; 32:462–646. doi:10.1038/nbt. 2862. 
[PubMed: 24752080] 

Petkov PM, Ding Y, Cassell MA, et al. An efficient SNP system for mouse genome scanning and 
elucidating strain relationships. Genome Res. 2004; 14:1806–1811. doi:10.1101/gr.2825804. 
[PubMed: 15342563] 

Phillippi J, Xie Y, Miller DR, et al. Using the emerging Collaborative Cross to probe the immune 
system. Genes Immun. 2014; 15:38–46. doi:10.1038/gene.2013.59. [PubMed: 24195963] 

Rabiner LR. A tutorial on hidden Markov models and selected applications in speech recognition. Proc 
IEEE. 1989; 77:257–286.

Morgan and Welsh Page 21

Mamm Genome. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Rasmussen AL, Okumura A, Ferris MT, et al. Host genetic diversity enables Ebola hemorrhagic fever 
pathogenesis and resistance. Science. 2014 doi:10.1126/science.1259595. 

Rogala AR, Morgan AP, Christensen AM, et al. The Collaborative Cross as a resource for modeling 
human disease: CC011/Unc, a new mouse model for spontaneous colitis. Mamm Genome. 2014; 
25:95–108. doi:10.1007/s00335-013-9499-2. [PubMed: 24487921] 

She X, Cheng Z, Zöllner S, et al. Mouse segmental duplication and copy number variation. Nat Genet. 
2008; 40:909–914. doi:10.1038/ng.172. [PubMed: 18500340] 

Simecek P, Churchill GA, Yang H, et al. Genetic analysis of substrain divergence in NOD mice. 2015; 
G3(5):771–775. doi:10.1534/g3.115.017046. 

Soh YQS, Alföldi J, Pyntikova T, et al. Sequencing the mouse Y chromosome reveals convergent gene 
acquisition and amplification on both sex chromosomes. Cell. 2014; 159:800–813. doi:10.1016/
j.cell.2014.09.052. [PubMed: 25417157] 

Svenson KL, Gatti DM, Valdar W, et al. High-resolution genetic mapping using the mouse Diversity 
Outbred population. Genetics. 2012; 190:437–447. doi:10.1534/genetics.111.132597. [PubMed: 
22345611] 

Taylor BA, Heiniger HJ, Meier H, et al. Genetic analysis of resistance to cadmium-induced testicular 
damage in mice. Proc Soc Exp Biol Med. 1973; 143:629–633. [PubMed: 4719448] 

Ursin E. Occurrence of voles, mice, and rats (Muridae) in Denmark, with a special note on a zone of 
intergradation between two subspecies of the house mouse (Mus musculus L.). Vid Medd Dansk 
Naturhist Foren. 1952; 114:217–244.

Valdar W, Flint J, Mott R, et al. Simulating the Collaborative Cross: power of quantitative trait loci 
detection and mapping resolution in large sets of recombinant inbred strains of mice. Genetics. 
2006a; 172:1783–1797. doi:10.1534/genetics.104.039313. [PubMed: 16361245] 

Valdar W, Solberg LC, Gauguier D, et al. Genome-wide genetic association of complex traits in 
heterogeneous stock mice. Nat Genet. 2006b; 38:879–887. doi:10.1038/ng1840. [PubMed: 
16832355] 

Valdar W, Holmes CC, Mott R, Flint J, et al. Mapping in structured populations by resample model 
averaging. Genetics. 2009; 182:1263–1277. doi:10.1534/genetics.109.100727. [PubMed: 
19474203] 

Wade CM, Kulbokas EJ, Kirby AW, et al. The mosaic structure of variation in the laboratory mouse 
genome. Nature. 2002; 420:574–578. doi:10.1038/nature01252. [PubMed: 12466852] 

Wall JD, Pritchard JK, et al. Haplotype blocks and linkage disequilibrium in the human genome. Nat 
Rev Genet. 2003; 4:587–597. doi:10.1038/nrg1123. [PubMed: 12897771] 

Wang, J.; Moore, KJ.; Zhang, Q., et al. Genome-wide compatible SNP intervals and their properties. 
Proceedings of the first aCM international conference on bioinformatics and computational 
biology—bCB’10; New York. ACM Press; 2010. p. 43

Wang JR, de Villena FP-M, Lawson HA, et al. Imputation of single-nucleotide polymorphisms in 
inbred mice using local phylogeny. Genetics. 2012a; 190:449–458. doi:10.1534/genetics.
111.132381. [PubMed: 22345612] 

Wang JR, de Villena FP-M, McMillan L, et al. Comparative analysis and visualization of multiple 
collinear genomes. BMC Bioinform. 2012b; 13(Suppl 3):S13. doi:10.1186/1471-2105-13-S3-S13. 

Waterston RH, Lindblad-Toh K, Birney E, et al. Initial sequencing and comparative analysis of the 
mouse genome. Nature. 2002; 420:520–562. doi:10.1038/nature01262. [PubMed: 12466850] 

Weiser M, Mukherjee S, Furey TS, et al. Novel distal eQTL analysis demonstrates effect of population 
genetic architecture on detecting and interpreting associations. Genetics. 2014; 198:879–893. doi:
10.1534/genetics.114.167791. [PubMed: 25230953] 

Williams RW, Gu J, Qi S, Lu L, et al. The genetic structure of recombinant inbred mice: high-
resolution consensus maps for complex trait analysis. Genome Biol. 2001; 2:46. doi:10.1186/
gb-2001-2-11-research0046. 

Williams RW, Bennett B, Lu L, et al. Genetic structure of the LXS panel of recombinant inbred mouse 
strains: a powerful resource for complex trait analysis. Mamm Genome. 2004; 15:637–647. doi:
10.1007/s00335-004-2380-6. [PubMed: 15457343] 

Wilming LG, Gilbert JGR, Howe K, et al. The vertebrate genome annotation (Vega) database. Nucleic 
Acids Res. 2008; 36:D753–D760. doi:10.1093/nar/gkm987. [PubMed: 18003653] 

Morgan and Welsh Page 22

Mamm Genome. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Yang H, Bell TA, Churchill GA, de Villena FPM, et al. On the subspecific origin of the laboratory 
mouse. Nat Genet. 2007; 39:1100–1107. doi:10.1038/ng2087. [PubMed: 17660819] 

Yang H, Ding Y, Hutchins LN, et al. A customized and versatile high-density genotyping array for the 
mouse. Nat Methods. 2009; 6:663–666. doi:10.1038/nmeth.1359. [PubMed: 19668205] 

Yang H, Wang JR, Didion JP, et al. Subspecific origin and haplotype diversity in the laboratory 
mouse. Nat Genet. 2011; 43:648–655. doi:10.1038/ng.847. [PubMed: 21623374] 

Zhang Z, Wang W, Valdar W, et al. Bayesian modeling of haplotype effects in multiparent 
populations. Genetics. 2014; 198:139–156. doi:10.1534/genetics.114.166249. [PubMed: 
25236455] 

Morgan and Welsh Page 23

Mamm Genome. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Breeding scheme of the Collaborative Cross (CC) and phylogenetic relationships between 

founder strains. a A representative CC breeding funnel. In each mating, the dam is shown on 

the left and the sire on the right. Because the positions in the funnel are non-exchangeable, 

each ordering of founder strains at the G0 generation defines a unique realization of the 

breeding scheme for the autosomes (marked “A”). The origin of the uniparentally inherited, 

non-recombining Y chromosome and mitochondrial genome (marked “M”) can always be 

predicted from the funnel order. Founder strains in this and other figures in the article are 

denoted by single-letter codes and by a color code. b Schematic phylogeny of the eight CC 

founder strains, with color key. The three M. musculus subspecies began to diverge 

approximately 0.5 million years ago (Mya); their branching order is not well resolved. The 

five classical inbred strains are primarily of M. m. domesticus origin, as is the wild-derived 

WSB/EiJ. M. m. musculus and M. m. castaneus are represented by PWK/PhJ and CAST/EiJ, 

respectively. Mus spretus, represented here by the inbred strain SPRET/EiJ, diverged from 

M. musculus approximately 2 Mya and is shown only as an outgroup; it is not a founder 

strain of the CC
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Fig. 2. 
Primary datasets and informatics resources derived from them. Solid lines indicate direct 

analyses; dashed lines indicate information propagated from one experiment to the design of 

another experiment or assay. Mouse silhouettes (from http://phylopic.org/) indicate input of 

mouse samples of known or unknown ancestry. Derived informatics resources are boxed in 

gray. Note the dependency of most of these resources on the reference genome assembly
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Fig. 3. 
Exploring local haplotype diversity in the Collaborative Cross founder strains. a Subspecific 

origin tracks from the Mouse Phylogeny Viewer for a five Mbp interval on chromosome 2. 

Segments are colored according to the subspecies from which they were most likely 

inherited: blue for M. m. domesticus, red for M. m. musculus, and green for M. m. castaneus. 

As expected, the five classical laboratory strains are of mostly M. m. domesticus ancestry, 

but an introgression tract (see Appendix), from M. m. musculus into the classical strain 

NZO/HILtJ, is visible in the distal portion of the interval. b Fine-scale haplotype block maps 

for the five classical laboratory strains. (The three wild-derived founder strains are excluded 

from this analysis because each has a private haplotype, shared with none of the other 

founder strains, in almost every genomic interval. See Appendix.) Strains with the same 

haplotype at a given position are assigned the same color, but colors are recycled along the 

length of the window. c Local phylogenetic trees reflect the varying ancestry of the CC 

founder strains along the genome. From left: an interval in which all five classical strains 

share a haplotype identical-by-descent (IBD, see Appendix); an interval in which CAST/EiJ 

clusters within a class of classical inbred strains, reflecting introgression (probably due to 

breeding errors in the laboratory); and an interval whose phylogeny is consistent with the 

genome-wide expected relationship between strains (see Fig. 1).In the absence of epistasis, 

allele effects at a QTL should be concordant with the local phylogenetic tree: for instance, in 

the middle interval, the effect of the PWK/PhJ allele should differ from that of any of the 

other seven alleles, and the effects of the other seven should be similar to each other
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Fig. 4. 
The MegaMUGA genotyping array. a Genomic distribution of 77,808 probes, represented as 

density. Gray, all probes; blue, red, and green, probes diagnostic for M. m. domesticus, M. 

m. musculus, or M. m. castaneus ancestry, respectively. Probes for the mitochondria and for 

the male-specific region of the Y chromosome are displayed in the inset. b Median, inner 

interquartile range (25th–75th percentile), and outer interquartile range (5th–95th percentile) 

of probe density in 1 Mbp windows, per chromosome. c Distribution of physical distance 

between probes on the same chromosome (mean 33 kbp, median 23 kbp). d Distribution of 

genetic distance between probes on the same chromosome (mean 0.0019 cM, median 0.0063 

cM). e A key measure of performance of a genotyping array in the CC is the resolution at 

which it can identify crossover events between founder strain haplotypes; that is, the number 

of markers required to confidently detect a transition from one haplotype to another. The 

distribution of uncertainty in crossover point for 9424 accumulated recombination events in 

69 CC lines is shown (mean 35.8 kbp, median 26.7 kbp)
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Fig. 5. 
Interpretation of genotyping array data in the CC. Four markers, all designed to probe 

biallelic SNPs, are shown. Samples are either inbred CC founder strains (colored points) or 

F1s between founder strains (gray points). Open shapes indicate samples flagged as “no-

call” (missing) by the Illumina software. a A marker which performs as designed: 

homozygous samples fall in two clusters representing the two possible homozygous states 

(A;A) and (B;B), while samples heterozygous (A;B) for the target SNP fall in an 

intermediate cluster. Homozygotes (filled squares) and heterozygotes (filled circles) are both 

called correctly by the Illumina software. b A multiallelic marker: homozygous samples fall 

in three clusters representing three homozygous states (A;A), (B;B), and (b;b) due to off-

target sequence variation in or near the probe sequence. Both possible heterozygous states 

(A;B) and (A;b) are correctly called heterozygous by the Illumina software, but information 

is lost by collapsing five states to three. c Another multiallelic marker, but with lower calling 

accuracy by Illumina: samples in one of the two heterozygous clusters (arrowhead) are 

arbitrarily called as heterozygous (filled circle) or no-call (open circle). d A poorly 

performing marker: samples collapse into the middle of the plot, and Illumina calls are 

almost completely arbitrary. However, samples of the same genotype are loosely clustered 

in 2D space, albeit with poor discrimination. Haplotype reconstruction on the basis of 

intensity rather than genotype calls preserves this information
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Fig. 6. 
Ancestry inference by a hidden Markov model (HMM) in CC lines. a Schematic of the 

HMM procedure. (Only the eight homozygous states are shown for simplicity, but the full 

model has an additional 28 states representing the possible heterozygous combinations.) The 

true underlying chromosome is recombinant for the A/J and CAST/EiJ haplotypes. 

Probability of each of eight possible haplotypes is estimated as a function of observed 2D 

genotyping array intensities (asterisk, unknown sample; colored circles, CC founder strains) 

along the genome. Information is shared across markers, and the MegaMUGA array is 

designed to discriminate between all eight founder strains in any 3-marker window. The 

transition from the A/J to the CAST/EiJ haplotype—representing a crossover event—occurs 

between the third and fourth markers, but its exact position remains uncertain (gray region) 

in the final haplotype reconstruction. b Example haplotype reconstruction of a CC line, 

CC011/Unc, from MegaMUGA genotypes of three obligate ancestors. The line is still 

segregating for regions on chromosomes 8, 10, 14, 17, and 18. c Screen capture from the 

interactive Collaborative Cross Viewer showing haplotype mosaics for 12 CC lines in an 

interval on chromosome 19
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Fig. 7. 
Resources for next-generation sequencing in the CC. a Allele-specific diploid alignment 

pipeline. An individual’s haplotype mosaic is combined with a catalog of variants in the 

founder strains to create an imputed diploid pseudogenome for allele-specific read 

alignment. Reads overlapping a variant site can be assigned to a parental chromosome 

(colored reads); reads not overlapping a variant remain unassigned (black reads). b The 

msBWT, a compressed and searchable data structure for alignment-free analyses of next-

generation sequencing reads. c Direct evidence for a splice junction in a transcript of the 

Cwc22 gene, in a msBWT of 100 bp mRNA-seq reads from whole brain of a CAST/EiJ 

mouse. A query with a 40-bp fragment spanning two exons returned 48 reads containing 

exactly that sequence on the forward cDNA strand (blue highlights) or reverse cDNA strand 

(red highlights). In a dataset of 90 million reads, the query took <1 s
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