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Foreword
The biology of adeno-associated virus (AAV) has been extensively 
studied since the discovery of the first adeno-associated satel-
lite virus in the 1960s.1 The potential application of recombinant 
AAV as vectors for gene transfer was realized over the next three 
decades. A vast majority of these seminal studies were carried out 
with AAV serotype 2, the most prevalent strain found in the human 
population. As a result, receptor usage, infectious pathways, tissue 
tropism, antigenicity, immune profile, and persistence of AAV2 
vectors in a wide range of animal models are now well known. 
Also, several phase I clinical trials for gene therapy of inherited 
and acquired diseases using first generation AAV2 vectors have 
been completed or are currently in progress.2 For instance, AAV2 
vectors have been evaluated for gene transfer within the liver in 
the treatment of hemophilia B, in the lung for treatment of cys-
tic fibrosis, in the brain for treatment of Parkinson’s, Batten’s, and 
Canavan’s disease; within the joints for patients with rheumatoid 
arthritis; and in the eye for treatment of Leber’s congenital amau-
rosis and age-related macular degeneration.2 Perhaps the most 
striking example of successful gene therapy in a clinical setting 
is the phase I trial of Leber’s congenital amaurosis.3–9 Persistent 
improvement in vision of affected patients has been reported in 
over 40 patients treated with AAV2 vectors delivering a corrective 
version of the RPE65 gene. However, other clinical trials reporting 

partial success, and in some cases none at all, have still been 
instrumental in highlighting critical challenges including pre-
existing humoral immunity, vector dose-dependent toxicity and 
significant cross-species differences in the nature of the immune 
response to AAV2 vectors and transgene products.

Over the most recent decade of this bench-to-bedside tran-
sition of AAV2 vectors, several other serotypes and novel AAV 
strains have been isolated.10–13 Comprehensive efforts to unravel 
the biology of such new AAV isolates have established key differ-
ences in AAV capsid structure, their antigenic diversity and vary-
ing tissue tropisms demonstrated in preclinical animal models. 
A summary of current knowledge pertaining to the biology and 
capsid structure of different AAV serotypes and pertinent litera-
ture is outlined in Table 1. These features have enabled the rapid 
transition of different AAV serotypes into promising lead vector 
candidates currently being evaluated in several phase I clinical 
trials. For instance, muscle-tropic AAV1, originally isolated as a 
contaminant in adenovirus stocks, is being evaluated for intra-
muscular gene delivery in α-1 antitrypsin deficiency, lipoprotein 
lipase deficiency, Pompe’s disease, limb girdle muscular dystrophy, 
and cardiac failure. The closely related AAV6 strain is also being 
evaluated for therapeutic gene transfer in patients with heart fail-
ure. Another nonhuman primate isolate, AAV8, has demonstrated 
promising early stage results in a clinical trial for gene therapy 
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of hemophilia B. Importantly, however, the lack of expression in 
one subject enrolled in the latter trial reiterated the challenge of 
pre-existing neutralizing antibodies (NAbs) against different AAV 
capsids in the human population.

Against the backdrop of ongoing clinical trials, the aforemen-
tioned AAV serotypes and several other AAV isolates covering 
a broad tissue tropism range have now been extensively charac-
terized in preclinical animal models. In addition, an arsenal of 
engineered AAV strains have now been generated with clinically 
relevant challenges in mind. In the following review, we will update 
progress in the ever-expanding AAV vector toolkit, highlight 
recent preclinical studies in large animal models and provide spe-
cific examples of naturally occurring as well as engineered strains 
poised for clinical translation. While we have made every effort 
to highlight recent contributions to the AAV vector repertoire, it 
should be noted that the current version of the AAV portfolio was 
made possible by contributions worldwide, some of which might 
have been omitted due to the scope of the current review.

Natural Aav Serotypes: on Both Sides of  
the Clinical Fence
Comprehensive evaluations of the tissue tropisms and biodis-
tribution of AAV serotypes 1 through 9 in mouse models have 
been published to date. In addition, several AAV serotypes are 
now being evaluated in clinical trials as outlined earlier, and their 
performance in the clinic has been reviewed elsewhere.2 More 
recently, collaborative efforts to establish the preclinical trans-
duction profile of different AAV serotypes in large animal mod-
els such as primates, pigs, and dogs have increased. These studies 
have provided valuable insight into cross-species differences in 
transduction efficiency and immune response to AAV vectors. We 
highlight key findings from recent preclinical studies evaluating 

different AAV serotypes in large animal models below (summa-
rized in Table 2).

Liver gene transfer: AAV8
Several studies have validated preferential liver transduction in 
nonhuman primates and dog models by AAV8 vectors. While the 
absolute transgene expression levels in primate and dog liver have 
been shown to be lower than mouse models, promising therapeu-
tic indices have been achieved in large animals.14,15 For instance, 
intravenous administration of self-complementary AAV8 vec-
tors in the nonhuman primate liver can mediate expression lev-
els of factor IX sufficient for phenotypic correction in hemophilia 
patients16–18 and sustained correction of disease in a canine model 
of hemophilia.19–21 Effects of transient immunosuppression on 
AAV8 liver transduction in nonhuman primates and the ability 
of proteasomal inhibitors to enhance AAV8 liver transduction in 
canine models have also been evaluated.20,22 Moreover, a recent 
study evaluating intrauterine gene transfer with AAV8 vectors in 
rhesus macaques yielded robust liver-specific expression of fac-
tor IX in injected offspring for up to 2 years.23 In another recent 
study, AAV8-mediated hepatic gene transfer in neonatal rhesus 
macaques was found to be less stable when compared to ado-
lescent animals. Although infant monkeys displayed transgene 
expression in nearly 98% of hepatocytes within 1 week of admin-
istration, a significant loss of transgene expression was observed 
~1 month postinjection.24

Taken together with the successful completion of St Jude’s 
phase I clinical trial in hemophilia patients,25 the aforementioned 
studies corroborate the choice of AAV8 vectors as the lead candi-
date for factor IX gene transfer in the human liver. These studies 
also provide a roadmap for evaluating AAV8 vectors in clinical 
liver gene transfer protocols for treatment of conditions such as 

Table 1  Biology of naturally occurring AAV strains and isolates

AAV clades 
and clones Representative members Primary (glycan) receptor Secondary receptor (Coreceptor) References

A AAV1 α2,3/α2,6 N-linked sialic acid — (Not known) 119

AAV6 α2,3/α2,6 N-linked sialic acid/heparan sulfate Epidermal growth factor receptor (EGFR) 119–121

B AAV2 Heparan Sulfate Fibroblast/hepatocyte growth factor receptor 
(FGFR/HGFR) Laminin receptor (LR)  
Integrin αVβ5/α5β1

122–128

C AAV2-AAV3 hybrid — — 60

D AAV7 — — 129

E AAV8 — LR 124,130

AAV10 — — 131

AAVrh.10 — — 60

F AAV9/AAVhu.14 Galactose LR 124,132

Clones AAV3a/3b Heparan sulfate HGFR/LR 124,133,134

AAV4 α2,3 O-linked sialic acid — 135,136

AAV5 α2,3 N-linked sialic acid Platelet-derived growth factor receptor (PDGFR) 137–139

AAV11 — — 131

AAVrh32.33 — — 30

AAV12 — — 79

Abbreviation: AAV, adeno-associated virus.
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hemophilia B, α-1 antitrypsin deficiency, phenylketonuria and 
lysosomal storage disorders to name a few.

A common observation in clinical and preclinical studies is 
that pre-existing low levels of NAbs profoundly impact gene trans-
fer efficiency. A recent mechanistic study demonstrated that AAV8 
capsid-specific NAb diminished liver deposition of genomes and 
increased genome distribution to the spleen.26,27 Three separate 
studies have established the prevalence of NAbs to AAV8 and 
other serotypes in the human population. The NAb prevalence for 
AAV8 was noted to be lowest amongst other serotypes in case of 
pediatric hemophilia patients (22.6%),28 healthy human subjects 
(19%)29 and a worldwide epidemiology study.30 Despite this rela-
tively favorable antigenic profile for AAV8 in humans, develop-
ment of strategies to evade NAbs would make a diverse patient 
cohort eligible for enrollment in clinical trials. Within this frame-
work, generating Nab-escape AAV8 variants and reengineering 
antigenic domains on the AAV8 capsid31 are likely to yield next 
generation vector candidates for liver gene transfer. Furthermore, 
the availability of the AAV8 crystal structure32 should facilitate 
engineering new lab-derived AAV strains.

Cardiac and musculoskeletal gene transfer: AAV1, 
AAV6, and AAV9
Intracoronary delivery of AAV1 vectors carrying the SERCA2a 
gene has been shown to prevent cardiac dysfunction, improve 
ventricular remodeling and vascular reactivity in a porcine model 
of heart failure.33,34 These studies provided the foundation for the 
current phase I/II clinical trial of gene therapy for cardiac failure 
with AAV1/SERCA2a vectors.35 In addition to cardiac muscle, 
regional intravenous delivery of AAV1 vectors to the hind limb 
of nonhuman primates has also been reported to mediate robust 
transgene expression similar to AAV8 in different skeletal muscle 
groups without any signs of immunotoxicity.36–38

Similar to AAV1, coronary infusion of the closely related 
serotype AAV6 mediates efficient and long-term myocardial gene 
expression.39 Effective cardiac delivery of shRNA encoding vector 
genomes by AAV6 has also been demonstrated in canine models.40 
Furthermore, a recent report utilizing a novel technique for myo-
cardial gene delivery demonstrates robust cardiac gene transfer 
using AAV6 vectors in a sheep model.41 Likewise, high transduc-
tion efficiencies have also been demonstrated in skeletal muscle 

of nonhuman primates and a canine muscular dystrophy model 
following intramuscular administration of AAV1 and AAV6 
vectors, respectively.42,43 An open label, dose-escalation study in 
hemophilia patients involving intramuscular administration of 
AAV2 vectors encoding factor IX revealed the need for higher 
transduction efficiency in muscle to attain a sustained therapeutic 
effect. More recently, phase I and II clinical trials for gene therapy 
of α-1 antitrypsin deficiency involving intramuscular administra-
tion of AAV1 vectors have been successfully completed thereby 
supporting the safety and feasibility of this approach.44,45 Similar 
application of AAV1 vectors for correction of lipoprotein lipase 
deficiency through intramuscular administration in human sub-
jects has also been demonstrated.46

Early studies with AAV9 vectors in infant rhesus macaques 
have demonstrated preferential cardiac transduction following 
intravenous administration in nonhuman primates similar to 
mouse models.47 These studies have now been corroborated by 
a preclinical study demonstrating efficient cardiac-specific gene 
transfer following intracoronary administration of AAV9 vec-
tors in a porcine model of post-ischemic heart failure.48 However, 
another study in adult human primates comparing different AAV 
vectors has shown that AAV9 vectors mediate less efficient car-
diac gene transfer than AAV6 in adult nonhuman primates.49 That 
said, an interesting related observation is that in contrast to liver 
studies, cardiac gene transfer efficiency of different AAV sero-
types generally appears to display a lesser extent of cross-species 
variation. In addition to delivery to the heart, widespread skel-
etal muscle expression of human mini-dystrophin in a neonatal 
golden retriever muscular dystrophy model following intrave-
nous administration of AAV9 vectors has been reported.50 Taken 
together, preclinical studies in large animal models strongly argue for 
the evaluation of AAV serotypes 1, 6, and 9 as lead vector candidates 
in gene therapy of cardiac and musculoskeletal disease.

CNS gene transfer: AAV5 and AAV9
In the past 5 years, several studies evaluating the transduction effi-
ciency of different AAV serotypes in the primate brain have been 
reported against the backdrop of phase I clinical trials using AAV2 
vectors for gene therapy of Canavan’s, Parkinson’s, and Batten’s 
disease. For instance, convection-enhanced delivery,51,52 a dose–
response study and long-term assessment have demonstrated 

Table 2  Summary of current and emerging AAV vectors suitable for specific clinical applications

Organs Disease targets AAV serotypes and isolates Emerging vector candidates  References

Liver Hemophilia, α-1 antitrypsin deficiency, ornithine 
transcarbamylase deficiency

AAV8 AAV2 (Y→F), AAV7, AAV-HSC15/17 84, 18, 140, 82

Heart Congenital heart failure, cardiomyopathies AAV1, AAV6, AAV9 AAVM41, AAV2i8, AAV9.45 112, 96, 113

Skeletal 
Muscle

Muscular dystrophies, α-1 antitrypsin deficiency,  
lipoprotein lipase deficiency, lysosomal storage disorders

AAV1, AAV6, AAV9 AAV7, AAV2.5, AAV6  
(Y445F/Y731F), AAV2i8, AAV9.45

141, 92, 86,  
96, 113

Lung Cystic fibrosis, α-1 antitrypsin deficiency AAV5 AAV6.2, AAV2.5T,  
AAV-HAE1/2

93, 110, 111

CNS Parkinson’s, Alzheimer’s, Batten’s, Canavan’s, epilepsy, 
amyotrophic lateral sclerosis, spinal muscular atrophy,  
Rett syndrome, lysosomal storage disorders

Intracranial: AAV1, AAV5,  
AAV8 Systemic: AAV9

For systemic use: AAVrh.10,  
AAV Clone 32/83

61, 62, 116

Eye Leber’s congenital amaurosis, macular degeneration AAV4, AAV8 AAVShH10, AAV2 (Y→F), AAV8(Y733F) 114, 84, 89

Abbreviation: AAV, adeno-associated virus.
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clinical improvement in Parkinsonian monkeys with AAV2 vec-
tors.53–55 Convection-enhanced delivery of AAV1 vectors in the 
nonhuman primate brain revealed transduction of oligodendro-
cytes and astrocytes in addition to the neuronal population.56 In 
another recent study in adult cynomolgus monkeys involving 
striatal injection of AAV1, AAV5 and AAV8, AAV5 and AAV1 
were superior to AAV8 in transducing neurons in the nonhuman 
primate striatum.57 Such efficient intracerebral gene transfer using 
AAV5 vectors following intracerebral injection in nonhuman pri-
mates has now been corroborated in other preclinical studies.58,59 
Another emerging candidate for central nervous system (CNS) 
gene delivery is AAVrh.10, a rhesus macaque isolate belonging to 
clade E (AAV8 family60,61). This AAV isolate has shown promis-
ing results in the rat brain and found suitable for therapeutic CNS 
gene transfer in a mouse model of Batten disease.62

Recent studies have also focused on cross-species comparison 
of the ability of AAV9 vectors to traverse the blood–brain barrier 
in mouse models and nonhuman primates following intravenous 
administration.63–65 In addition to decreased transduction efficiency 
in comparison with the mouse brain, a shift in AAV9 tropism from 
neuronal to glial cells was observed in the monkey brain follow-
ing IV administration.64 These findings underscore the importance 
of cross-species variation in transduction efficiency and tissue 
tropism of different AAV serotypes. Furthermore, systemically 
injected AAV9 in cynomolgus macaques was efficient at crossing 
the blood–brain barrier, with transgene expression being detected 
in glial cells throughout the brain and dorsal root ganglia neurons 
and motor neurons within the spinal cord.65 Systemic injection of 
AAV9 vectors in macaques also results in robust transduction of 
skeletal muscle and other peripheral organs. As an alternative strat-
egy, restricted gene expression in the primate CNS has be achieved 
by AAV9 delivery to cerebrospinal fluid, which efficiently targets 
motor neurons. These strategies provide the rationale for transla-
tion of AAV9-mediated gene transfer to patients with CNS-related 
disorders. Lastly, a recent study comparing the ability of different 
AAV strains to traverse the blood–brain barrier in mice demon-
strates that AAVrh.10 is at least as efficient as AAV9 vectors in CNS 
gene transfer following systemic administration.66

Gene transfer to the eye: AAV4 and AAV8
Over the past 5 years, AAV vectors have clearly emerged as lead 
candidates for therapeutic gene transfer in a wide range of eye 
diseases. The safety and efficacy of AAV2 vectors delivering the 
RPE65 transgene in clinical gene therapy of Leber’s congenital 
amaurosis has been unequivocally established.3–9 An earlier com-
parison of AAV serotypes 1, 2, and 5 yielded similar transgene 
expression levels within retinal pigmented epithelium (RPE) as 
well as photoreceptors upon subretinal administration in a canine 
model of Leber’s congenital amaurosis.67 Another study has dem-
onstrated successful restoration of vision in RPE65-deficient 
Briard dogs using AAV4 vectors, which display selective tropism 
for the RPE.68 Transduction efficiency of AAV4 was shown to be 
similar to AAV2 vectors in this canine model.

Subretinal administration of AAV8 vectors in canine models 
has been shown to mediate transgene expression in the RPE, pho-
toreceptors as well as cells of the inner nuclear layer and ganglion 
cells.69 These results suggest that AAV8 vectors might undergo 

transport along neurons of the visual pathway. Moreover, while 
no species differences have been noted between rats, dogs and pri-
mates with AAV1, AAV2, or AAV5 vectors, AAV8 vectors appear 
to display greater spread in the canine model. A recent dosage 
threshold study comparing AAV2 and AAV8 vectors was carried 
out in a nonhuman primate model.70 Although both serotypes 
demonstrated comparable transduction levels, AAV8 vectors 
transduced photoreceptors with greater efficiency when com-
pared to AAV2.

In general, the pre-existing NAb response is thought to mini-
mally affect AAV transduction efficiency in immune-privileged 
sites such as the brain or the eye. Nevertheless, it is noteworthy to 
mention that a transient increase in anti-AAV2 NAbs was seen in 
two of three subjects in the Leber’s congenital amaurosis clinical 
trial.9 Whether this transient increase in NAbs will impact vector 
readministration in the same or contralateral eye remains to be 
seen. The availability of other AAV serotypes with similar trans-
duction efficiency or broader tropism within the eye might serve 
as an advantage in such a scenario.

Pulmonary gene transfer
Gene transfer to the lung for treatment of diseases such as cystic 
fibrosis using AAV vectors has faced several hurdles such as the 
lack of availability of appropriate animal models, poor transduction 
efficiency due to various physiological barriers and cross-species  
variation. Repeated administration of AAV2 vectors encoding the 
cystic fibrosis transmembrane regulator, although well tolerated, 
failed to demonstrate any significant improvement in lung function 
in cystic fibrosis patients.71 Recent studies have demonstrated that 
AAV1 vectors mediate more efficient transgene expression than 
AAV5 following intratracheal delivery in a chimpanzee model.72 
These results corroborated studies carried out in cultured human 
airway epithelia in vitro. Intratracheal delivery of AAV6 vectors 
in immunosuppressed dogs was recently shown to mediate effi-
cient transduction in airway epithelia.73 Recent reports describing 
the development of ferret and porcine models of cystic fibrosis 
with lung anatomy and cell biology similar to humans are note-
worthy,74–76 as these critical advances in the field will likely enable 
clinically relevant studies of AAV-mediated lung gene transfer in 
large animal models.

Other Natural Aav Isolates
The discovery of several hundred human and nonhuman primate 
isolates of AAV has been reviewed earlier.10 Other studies have 
reported the isolation of new AAV isolates in ATCC (Manassas, 
VA) simian adenovirus stocks.77–79 The AAV12 serotype isolated in 
aforementioned studies, which displays 78% identity to AAV4, was 
found to be particularly resistant to neutralization by anticapsid 
antibodies in human serum. In addition, AAVhu.37 and AAVrh.8 
have been noted for their enhanced liver transduction efficiency 
in mouse models.26 Furthermore, successful gene transfer follow-
ing intracranial as well as intrapleural administration of AAVrh.10 
in mouse models has also been demonstrated.62,80,81 The City of 
Hope Medical Center recently reported the isolation of new AAV9 
variants from CD34+ human hematopoietic stem cells.82 Notably, 
AAV-HSC15 and AAV-HSC17 displayed improved liver trans-
duction efficiency in mouse models when compared to AAV9. In 
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another study, the UMass Gene Therapy Center reported isola-
tion of novel AAV5 variants from chimpanzee tissues such as liver, 
lung, and heart. One variant, CHt-P6, was found to target alveoli 
and airway epithelia and transduce the murine lung at modestly 
higher levels than AAV5 vectors following intranasal instilla-
tion.83 Evaluation of these AAV isolates in large animal models is 
forthcoming.

Reengineered Aav Strains: Next Generation 
Vector Candidates For the Clinic
Naturally occurring AAV serotypes and isolates show promise for 
gene transfer in a number of clinical indications. However, stud-
ies outlined above have posed the question whether synthetic 
AAV strains engineered with defined properties will demonstrate 
significant advantages in a clinical setting. New AAV variant or 
mutant strains have thus been engineered—either by rational 
design or directed evolution—to address clinically relevant chal-
lenges such as dose-related toxicity and gene expression in off-
target tissues. Such reengineered AAV strains have displayed the 
potential to markedly reduce vector dose administered owing to 
enhanced transduction efficiency in target tissues (summarized in 
Table 2). Having established their efficacy in mouse models, these 
next generation vectors are poised for translational studies in pre-
clinical large animal models and subsequently add to the growing 
pipeline of clinical grade vectors.

Tyrosine-mutant AAV vectors
In an effort to reduce dose-related toxicity of AAV vectors, Zhong, 
Srivastava and others84 have developed a series of next generation 
tyrosine-mutant vectors that display improved gene transfer effi-
ciency. Briefly, phosphorylation of surface-exposed tyrosine resi-
dues on AAV2 capsids is correlated with decreased transduction 
efficiency and thought to occur due to increased ubiquitination 
resulting in proteasomal degradation. Mutagenesis of tyrosines 
into phenylalanines on the AAV2 capsid was demonstrated to 
bypass this critical barrier to transduction and improved gene 
transfer efficiency by as much as 30-fold at a log lower vector dose 
in mice. Subsequent studies in mice have shown that this strategy 
can be broadly applied to different tissues such as liver, retina, and 
skeletal muscle and has been expanded to include AAV serotypes 
such as AAV3, AAV6, AAV8, and AAV9.85–89 A recent report has 
also demonstrated that mutation of capsid surface-exposed serines 
prone to phosphorylation can enhance transduction in a similar 
fashion.90 These exciting new reagents are poised for preclinical 
dose-variation studies in large animal models. Within this frame-
work, it is noteworthy to mention that enhanced gene transfer by 
AAV vectors has been achieved following concurrent administra-
tion of the proteasome inhibitor, bortezomib, in a canine mod-
el.22 Successful translational studies with tyrosine-mutant vectors 
would not only corroborate the aforementioned studies, but also 
enable reduction in vector dose needed for clinical trials.

AAV2.5
The first example of a hybrid AAV vector to proceed to clinical 
trials is AAV2.5, a rationally engineered AAV strain designed to 
graft the muscle tropism determinants of AAV1 onto parental 
AAV2.91 As shown in preclinical studies and in a phase I clinical 

trial of Duchenne muscular dystrophy, AAV2.5 is capable of robust 
gene transfer in skeletal muscle. Consistent with an antigenically 
distinct profile, this hybrid vector has also been shown to evade 
NAbs against both AAV1 and AAV2 capsids. While this clinical 
study highlighted the need to consider T-cell immunity to self and 
foreign dystrophin epitopes in Duchenne muscular dystrophy 
patients,92 the AAV2.5 vector demonstrated an excellent safety 
profile and remains a promising vector candidate for clinical gene 
transfer in musculoskeletal diseases.

AAV6.2
Another interesting subset of hybrid AAV vectors are the single-
ton vectors developed by Vandenberghe, Wilson and others.93 For 
instance, the engineered AAV6.2 strain contains a single F129L 
mutation in the phospholipase A2 domain originally present in the 
closely related AAV1. The AAV6.2 vector has also been shown to 
mediate efficient gene transfer in comparison with other related 
strains within the same clade following intravenous administration 
in a mouse model.93 More importantly, this hybrid vector outper-
formed several AAV serotypes in the mouse conducting and nasal 
airways as well as cultured human airway epithelia.94 Functional 
correction of cystic fibrosis transmembrane regulator expression 
cultured cystic fibrosis human airway epithelia has also been dem-
onstrated.95 Evaluation of AAV6.2 in large animal models is likely 
to shed more light on the translational potential of this hybrid vec-
tor for gene therapy of cystic fibrosis and other lung diseases.

AAV2i8
The UNC Gene Therapy Center has recently developed reengi-
neered AAV vectors demonstrating attenuated liver sequestra-
tion following intravenous administration.96 Liver-detargeting 
potential of mutant AAV2 vectors was originally observed as 
a consequence of mutating heparin-binding arginine residues 
on the AAV capsid by Kern, Kleinschmidt and others.97 While 
reengineering the heparin-binding footprint of AAV2 with cor-
responding domains from other AAV serotypes, we generated the 
hybrid AAV2i8 vector harboring a linear epitope from AAV8. In 
addition to being detargeted from the murine liver, this hybrid 
strain displayed the ability to traverse the blood vessel barrier and 
transduce cardiac and skeletal muscle tissue with high efficiency. 
Since then, we have successfully carried out isolated limb infusion 
studies98 as well as intravenous administration resulting in robust 
gene expression in primates (McPhee SW, Asokan A, Tarantal A, 
Samulski, RJ, unpublished results). Notably, low volume injec-
tions of AAV2i8 are significantly more efficient in transducing 
primate skeletal muscle during isolated limb infusion studies, 
in contrast to AAV8, which only performs well at high injection 
volumes. Also noteworthy against the backdrop of AAV2i8 vec-
tor development studies are recent clinical studies of transvenous 
limb perfusion with saline99 in muscular dystrophy patients at the 
UNC Wellstone Center. These studies suggest that high-pressure 
retrograde transvenous limb perfusion with saline up to 20% of 
limb volume at above infusion parameters is safe and feasible in 
adult human muscular dystrophy. Taken together with the afore-
mentioned results, AAV2i8 is a promising lead candidate for cor-
rection of musculoskeletal diseases through isolated transvenous 
limb infusions.
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AAVrh32.33
Studies with a hybrid AAV isolate, rh32.33, have demonstrated 
that specific capsid domains on this strain augment the CD8+ 
T-cell responses to both capsid proteins and transgene product.100 
Thus, AAVrh32.33 appears to be distinct from other AAV sero-
types, which have been shown induce a functionally impaired 
T-cell response to transgene product in mouse models as well as 
the clinic.100,101 Based on the aforementioned studies, AAVrh32.33 
has been proposed as a new genetic vaccine platform. Evaluation 
of the immunogenicity of this hybrid strain in large animal mod-
els is likely to enable development of a robust AAV-based clinical 
vaccine platform.

Chimeric and Mutant Strains: Emerging 
Candidates From Combinatorial Aav  
Libraries
The earliest AAV libraries were random peptide display libraries 
generated by Müller et al.102 Targeted vectors derived from the 
aforementioned libraries continue to be developed and validated 
in mouse models.103–106 Additional work in preclinical large ani-
mal models will be needed to determine whether these target-
ing strategies will translate across species. Combinatorial protein 
engineering strategies such as error-prone PCR and DNA shuf-
fling followed by directed evolution have yielded several AAV 
vectors with important functional mutations relative to a parent 
serotype, or chimeras of several serotypes. Several recent studies 
have assessed the potential applications of such vectors in rodent 
models. Further evaluation of this chimeric AAV portfolio in large 
animal models would unequivocally establish their position in the 
clinical pipeline. The NAb profile of different AAV strains in com-
monly used animal models is also noteworthy in this regard.107 
Major advances in vector design addressing short-term and long-
term clinical needs that are poised for cross-species characteriza-
tion are listed below (summarized in Table 2).

NAb-escape mutants
Amongst the earliest examples of promising vector candidates 
developed using such combinatorial library approaches are the 
AAV2-derived mutants, AAV2.15 and AAV2.4.108 Both these 
strains harbor mutations at critical antigenic sites, thereby effi-
ciently evading NAbs in human serum. These strains have the 
potential for immediate translation as candidates for vector read-
ministration in ongoing clinical trials. Another approach involves 
randomization of previously mapped immunogenic epitopes on 
the AAV2 capsid to evolve NAb-escape mutants.109 More recently, 
a structure-based approach to reengineer surface-exposed anti-
genic epitopes previously identified using cryo-EM has been 
proposed.31 This strategy was used to engineer novel AAV8 NAb-
escape variants suitable for administration in the presence of pre-
existing humoral immunity to the AAV8 capsid.

Airway-tropic AAV vectors
As outlined earlier, airway gene transfer faces major hurdles such 
as the lack of availability of appropriate animal models, poor 
transduction efficiency due to various physiological barriers and 
cross-species variation. Keeping these challenges in mind, novel 
vector candidates for airway gene transfer have been developed 

by subjecting combinatorial AAV libraries to directed evolution 
in cultured human airway epithelia. One study yielded an AAV2/
AAV5 chimeric harboring a single point mutation (AAV2.5T)110 
that was 100-fold more efficient than AAV5 vectors in mediating 
gene transfer to human airway cultures and rescued chloride ion 
transport following cystic fibrosis transmembrane regulator gene 
transfer in diseased human airway cultures. These results are cur-
rently being evaluated for translation to a porcine model of cystic 
fibrosis.75,76 Another contemporary study yielded two chimeric 
strains, AAV-HAE1 and AAV-HAE2, containing capsid compo-
nents derived from AAV1, AAV6 and AAV9 that were more effi-
cient than AAV6 and efficiently corrected the cystic fibrosis defect 
in diseased human airway cultures.111 Both studies corroborate 
the notion that AAV5, AAV6, and mutants thereof constitute lead 
candidates for evaluation in large animal models of lung disease.

Muscle-tropic AAV vectors
Directed evolution of the myocardium-tropic AAVM41, a chi-
meric capsid derived from AAV1, AAV6, AAV7 and AAV8, was 
recently achieved by Yang, Xiao and others112 at the UNC Gene 
Therapy Center. AAVM41 was shown to be more efficient than 
AAV6 in transducing the murine heart. In addition, the mutant 
also demonstrated remarkably attenuated tropism for liver, skel-
etal muscle amongst other organs. Efficient rescue of cardiac func-
tions were demonstrated following administration of AAVM41 
vectors delivering delta-sarcoglycan in a hamster cardiomyopathy 
model. The UNC Gene Therapy Center also recently reported a 
subset of liver-detargeted AAV9 mutant vectors, which allowed 
efficient gene expression in cardiac and skeletal muscle similar to 
parental AAV9.113 The aforementioned vectors, when combined 
with other transcriptional and translational regulation strategies 
are likely to yield optimal vector candidates for selective cardiac 
or musculoskeletal gene transfer. Evaluation of these vectors in 
canine and primate models is forthcoming.

Chimeric AAV vectors for CNS and retinal gene 
transfer
Directed evolution of chimeric AAV vectors for transducting astro-
cytes105 has been demonstrated in vitro. Chimeric AAV vectors 
derived from the latter approach, particularly a variant of AAV6 
named ShH10, have been shown to transduce Müller glia follow-
ing intravitreal administration in a rat model with high efficiency. 
Investigators at UC Berkeley used these variants to test the hypoth-
esis that intravitreal vector administration can provide strong thera-
peutic efficacy across the retina while avoiding the risks inherent 
in more delicate subretinal injections, and they recently found that 
ShH10 mediated delivery of GDNF significantly ameliorated degen-
eration and vision in a rat retinitis pigmentosa model.114 These new 
vectors are likely candidates for further evaluation in animal mod-
els of Alzheimer’s disease, amyotrophic lateral sclerosis in the CNS 
and a broad range of retinal diseases. Similar strategies have been 
applied toward evolution of new AAV vectors capable of transduc-
ing neural stem cells and glioma cell lines.106,115 While the neural 
stem cell-tropic AAVr3.45 vector shows promise as a reagent for 
applications involving gene targeting and stem cell reprogramming, 
the potential for exploiting oncotropic AAV vectors in preclinical 
models of glioma remains to be determined.
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Another interesting development within the framework of 
CNS applications is the directed evolution of chimeric AAV vec-
tors that can cross the seizure-compromised blood–brain barrier 
in a rat model of epilepsy.116 Mosaic clones 32 and 83 derived from 
AAV serotypes 1, 3, 8, and 9 demonstrated the ability to efficiently 
transduce CNS regions damaged during induced seizures, via the 
compromised blood–brain barrier at those sites. Although similar 
to AAV8 in transduction efficiency, these clones displayed biodis-
tribution profiles markedly reduced peripheral organ tropism 
compared to the parental AAV serotypes. Studies evaluating the 
therapeutic efficacy of these vectors in a rat model of epilepsy are 
forthcoming.

New Directions: Maintaining the Clinical 
Pipeline and Ongoing Trials
The AAV vector toolkit is currently well-equipped with a broad 
portfolio of naturally occurring serotypes, reengineered variants, 
and chimeric and mutant strains. While evaluation of these strains 
continues on both in preclinical animal models and in the gene 
therapy clinic, it is critical to maintain a robust pipeline of AAV 
vector candidates engineered for specific, future applications. 
New strategies to generate combinatorial AAV libraries that will 
expand the current portfolio and enable generation of synthetic 
AAV strains are required. Increased focus on evolving AAV strains 
in clinically relevant settings has only just begun. For instance, 
exciting new directed evolution studies were recently carried out 
in a pig model and hold considerable potential for developing lead 
vector candidates for cystic fibrosis gene therapy.117 In addition, 
evolution of liver-tropic AAV strains derived from AAV3, AAV6, 
AAV8 and AAV9 in the humanized Fah−/−/Rag2−/−/IL2rg−/− 
mouse model repopulated with over 25% human hepatocytes was 
recently reported.118 Directed evolution of AAV strains in other 
humanized mouse models as well as canine and primate models 
will thus not only help expand the AAV portfolio, but also help 
understand cross-species variation in tissue tropism, transduction 
efficiency and immune response, ultimately leading to successful 
translation of safe gene therapy modalities to the clinic.

Recently, the American Society of Cell and Gene Therapy 
held an National Institutes of Health (NIH) symposium showcas-
ing numerous clinical success stories that have accrued in the last 
couple of years.2 With respect to AAV vectors, mounting data in 
a number of therapeutic areas clearly supports continued explora-
tion of this vector for gene therapy of monogenic disorders. For 
instance, five AAV clinical trials for Leber’s congenital amauro-
sis (three in United States, one in United Kingdom, one in Israel) 
treating 35 patients have been carried out. The longest follow-up 
extending over 3.5 years, reported no vector related safety issues 
with efficacy in most patients with some patients demonstrating 
over 63,000-fold improvement in rod photoreceptor-based vision 
(Hauswirth and others, ASGCT NIH symposium 2011).7 These 
outcomes were highlighted by the fact that pseudo-fovea in patients 
developed exactly at the site of vector administration, strongly sup-
porting the notion that next generation vectors may overcome these 
limitations by intravitreal delivery. Another clinical highlight at the 
meeting was the ongoing study with AAV8 vectors packaging self-
complementary FIX administered in hemophilia B patients. Unlike 
preceding trials with AAV2 vectors packaging single-stranded FIX 

trials,2 the study carried out by groups at St. Jude’s Hospital and 
University College London demonstrated long-term expression (18 
months and counting) with FIX levels ranging from 1 to 8% (Reiss 
and others, ASGCT NIH Symposium 2011).25 The latter study cor-
roborates earlier predictions that AAV vector development will 
continue to resolve rate-limiting steps observed in earlier trials 
(e.g., lower vector dose and higher potency will overcome the dose-
dependent immunotoxicity proposed in the earlier U Penn trial).

The latest clinical results were particularly striking against the 
backdrop of discussions held during a breakout session, where 
Dr Kathy High discussed the lack of persistent FIX expression in an 
immunosuppressed hemophilia B patient administered AAV2 vec-
tors, contrasting results from an earlier preclinical study in rhesus 
macaques.20 Although obtained from a small patient cohort, results 
from the recent St Jude/UCL hemophilia clinical trial,25 in conjunc-
tion with earlier studies, suggest that capsid-specific cytotoxic T 
lymphocyte response appears to be a minor concern in the clini-
cal setting. Clearly as we accumulate more information in patients, 
we can hope to sort these disparities with preclinical studies and 
better determine which animal models are of value in guiding the 
clinical community forward in utilizing different vectors. Thus, the 
long-term therapeutic benefits observed in the St Jude/UCL studies 
clearly highlight the fact that continued AAV vector development 
is and most likely will be the primary path forward toward solving 
these early clinical conundrums. These clinical reports were com-
plemented by data describing other first generation AAV serotypes, 
namely, AAV1 in phase II studies for congestive heart failure, AAV9 
in early Pompe trials (Byrne and others, ASGCT NIH symposium 
2011) as well as chimeric AAV vectors in Duchenne muscular dys-
trophy studies.91 Overall, extensive safety data with AAV vectors in 
multiple target tissues (brain, ocular, heart, liver, muscle, etc.) con-
tinues to accumulate, with early efficacy being acknowledged in a 
majority of these studies. Resolving the issue of pre-existing NAbs 
to AAV capsid along with the continued development of tissue-
specific AAV vectors, as described in this review, should usher in 
a new generation of AAV vector candidates. Taken together with 
the current portfolio, the newly synthesized AAV strains, which are 
poised to enter the clinical arena, promise a similar-to-improved 
safety profile.
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