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Abstract

Schizophrenia is an often devastating neuropsychiatric illness. Understanding the genetic variation 

affecting response to antipsychotics is important to develop novel diagnostic tests to match 

individual schizophrenic patients to the most effective and safe medication. Here we use a 

genomewide approach to detect genetic variation underlying individual differences in response to 

treatment with the antipsychotics olanzapine, quetiapine, risperidone, ziprasidone and 

perphenazine. Our sample consisted of 738 subjects with DSM-IV schizophrenia who took part in 

the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE). Subjects were genotyped 

using the Affymetrix 500K genotyping platform plus a custom 164K chip to improve genomewide 

coverage. Treatment outcome was measured using the Positive and Negative Syndrome Scale 

(PANSS). Our criterion for genomewide significance was a pre-specified threshold that ensures, 

on average, only 10% of the significant findings are false discoveries. The top statistical result 

reached significance at our pre-specified threshold and involved a SNP in an intergenic region on 
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chromosome 4p15. In addition, SNPs in ANKS1B and CNTNAP5 that mediated the effects of 

olanzapine and risperidone on Negative symptoms were very close to our threshold for declaring 

significance. The most significant SNP in CNTNAP5 is nonsynonymous, giving rise to an amino 

acid substitution. In addition to highlighting our top results, we provide all p-values for download 

as a resource for investigators with the requisite samples to carry out replication. This study 

demonstrates the potential of GWAS to discover novel genes that mediate effects of 

antipsychotics, which eventually could help to tailor drug treatment to schizophrenic patients.
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Introduction

Schizophrenia is a serious and often devastating neuropsychiatric illness, with a median 

lifetime morbid risk of 0.7–0.8%1. It is ranked ninth in global burden of illness2 and the 

projected lifespan for individuals with schizophrenia is some 15 years less than the general 

population3. Clearly, efforts to better understand and treat this disorder are of paramount 

public health importance4.

Etiologically, schizophrenia is best viewed as a complex trait influenced by multiple small 

genetic and environmental risks. A substantial heritable component is now accepted and 

several specific genes are considered to be likely risk factors. However, from a biological 

perspective, the etiology of schizophrenia remains poorly defined5. One eventual goal of 

improved biological understanding is to facilitate the development of better therapeutic 

compounds6. However, the development of new drugs is extremely expensive and takes 

several years7. Arguably, a more immediate role for genetics in the treatment of 

schizophrenia is tailoring the prescription of existing drugs to individual patients based upon 

genotype8.

The impetus driving the search for such “individualized” antipsychotic therapy emerges 

from several observations. First, only a proportion of patients typically respond to any given 

antipsychotic drug9. Second, it may take several weeks before a clinician can declare a 

treatment ineffective and this delay leaves the patient vulnerable to continuing social 

dysfunction and suicide10. Third, the administration of ineffective drugs leaves the patient 

at risk for adverse events or side effects. Finally, research into other non-genetic predictors 

of antipsychotic response, such as clinical or demographic variables, has met with limited 

success8.

The clinical benefits of a genetic test to identify the most effective antipsychotic treatment 

for each patient at time of first presentation would be considerable11. This observation has 

led to a proliferation of schizophrenia pharmacogenetics research in the last decade12. To 

date, studies have tended to focus on candidate genes, selected for encoding of drug targets 

(pharmacodynamic candidates) or for involvement in the metabolism of the drug itself 

(pharmacokinetic candidates). Pharmacodynamic candidates in schizophrenia include 
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dopamine or serotonin receptors and several studies have shown positive associations 

between, for example, dopamine receptors D2 (DRD2) and D3 (DRD3) and antipsychotic 

response (see Arranz and de Leon12 for a review). Pharmacokinetic candidates, particularly 

the cytochrome P450 genes, are well known to harbor genetic variation affecting the 

metabolism of antipsychotics13. The importance of these variants, with respect to dosing 

and other clinical considerations, has led to the introduction of diagnostic microarrays that 

are already on the market14.

Despite these advances, the pharmacogenetics of schizophrenia is still in its infancy. A 

major limitation of previous studies is that the selection of candidate genes is restricted to 

current knowledge about the mechanisms of drug action. For example, a recent study by 

Need et al.15 genotyped almost 3,000 SNP markers in several candidate genes related to 

antipsychotic response. However, no significant results were found in that study for 

improvement in schizophrenia symptoms, after correcting for multiple testing. More 

exploratory methods that systematically screen the whole genome for association with drug 

response likely represent a superior strategy for discovering relevant genetic variation. In the 

past two years, such genomewide association studies (GWAS) have become technically and 

economically feasible. It is now clear that GWAS can be a successful strategy, as there have 

been multiple successes with the identification of highly compelling candidate genes for 

age-related macular degeneration16, body mass index17, inflammatory bowel disease18 and 

type 2 diabetes mellitus19–21.

In this study, we use the Clinical Antipsychotic Trials of Intervention Effectiveness 

(CATIE)22,23 to detect genetic variation underlying symptom severity and individual 

differences in response to treatment with olanzapine, quetiapine, risperidone, ziprasidone 

and perphenazine. The sample consisted of 738 CATIE subjects with DSM-IV 

schizophrenia diagnoses who were genotyped using the Affymetrix 500K genotyping 

platform plus a custom 164K chip to improve genome-wide coverage24. Treatment outcome 

was measured using the Positive and Negative Syndrome Scale (PANSS)25.

Methods

Subjects

A detailed description of the CATIE study design can be found elsewhere22,23. Briefly, 

CATIE is a multiphase randomized controlled trial of antipsychotic medications where 

patients with DSM-IV schizophrenia were followed for up to 18 months. Preliminary 

diagnoses of schizophrenia were established by the referring psychiatrists and independently 

re-evaluated by CATIE personnel using the SCID (Structured Clinical Interview for DSM-

IV)26. The main exclusion criteria were a first episode of illness (because of diagnostic 

uncertainty) or being treatment-refractory (as alternative therapeutic approaches are 

indicated). To maximize representativeness, subjects were ascertained from clinical settings 

across the US (e.g., public mental health, academic, Veterans’ Affairs, and managed care 

centers).

CATIE assessments began with a baseline assessment followed by Phase 1, a double-

blinded randomized clinical trial comparing treatment with the second generation 
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antipsychotics olanzapine, quetiapine, risperidone, or ziprasidone versus perphenazine (a 

midpotency first generation antipsychotic). If the initially assigned medication was 

discontinued, typically because of a lack of efficacy or adverse effects, the subject and 

clinician could choose between one of the following Phase 2 trials: (1) randomization to 

open-label clozapine or a double-blinded second generation drug that was available but not 

assigned in Phase 1; or (2) double-blinded randomization to ziprasidone or another second 

generation drug that was available but not assigned in phase 1. Phase 3 was for patients who 

discontinued the treatment assigned in phase 2 and involved an open-label treatment chosen 

collaboratively by the clinician and patient. The followup phase was for patients who were 

no longer willing to continue taking study medication or who had discontinued their phase 3 

medication before 18 months from the time of initial randomization had elapsed. Followup 

phase participants were not provided with study medication but were followed 

naturalistically on their treatment of choice.

Genotyping

Following provision of informed consent, a peripheral venous blood sample was obtained 

and sent to the Rutgers University Cell and DNA Repository (RUCDR). DNA is currently 

available for 765 CATIE subjects. All these subjects were genotyped by Perlegen Sciences 

(Mountain View, CA, USA) using the Affymetrix 500K genotyping platform plus a custom 

164K chip to improve genome-wide coverage24. The genotype and clinical data are 

available to the scientific community from the controlled-access repository of the National 

Institutes of Mental Health (NIMH: www.nimhgenetics.org).

Details of the quality control (QC) analyses can be found in Sullivan et al.24 who performed 

a GWAS with case-control status as the outcome variable. In short, genotype calls were 

generated with a proprietary Perlegen algorithm27 applied to the .cel files. There were 

500,568 SNPs on the Affymetrix 500K chip and 164,871 on the Perlegen custom chip 

(665,439 SNPs in total). A variety of QC checks such as genotyping a subset of the samples 

twice and comparing genotype calls using alternative software confirmed the general quality 

of the samples and genotypes. However, an extensive set of analyses were performed to 

individual samples and genotypes that did not meet high QC standards. First, a more 

stringent quality score cutoff (≥7) than that applied by Perlegen was used. Second, an 

identity-by-state matrix for all autosomal genotypes was generated using PLINK28 for all 

pairwise combinations of subjects. In four instances, CATIE subjects were found to be 

cryptic duplicates and one member of each pair was removed. Subjects with more than 10% 

missing SNPs were also deleted. In addition, we deleted SNPs that had more than 10% 

missing genotypes and SNPs with minor allele frequencies smaller than 0.01. SNPs were not 

excluded based solely on deviations from Hardy-Weinberg Equilibrium29, given the 

ancestries of the subjects and as there are informative reasons for departures from HWE30. 

After application of these filters 738 subjects remained with 492,900 SNPs available for 

analysis.

Estimating treatment effect

In this article we focus on the Positive and Negative Syndrome Scale (PANSS)25, which is 

one of the main outcome measures in CATIE. The 30 items of the PANSS measure a broad 
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range of the symptoms typical for schizophrenia. To unravel the structure of the PANSS 

items, a considerable number of factor analyses have been performed. Although variation 

exists, partly because of methodological differences31, a five factor structure is generally 

preferred32. Because of their very large sample size (N = 5,769), we used the five scales 

derived by Van der Gaag et al.33 (using the bold items in their Table 3) that are labeled 

Positive, Negative, Disorganization, Excitement, and Emotional distress, along with the 

Total symptom score which is the sum of the 30 PANSS items.

The mean number of assessments for each subject was 7.5. Clearly, a more traditional 

approach that would define treatment using only 2 observations would not take advantage of 

all available information. In a previous article34, we described a systematic method using 

mixed effects modeling to estimate treatment effects for a given outcome. This condenses all 

information collected during the CATIE trial in an optimal, empirical fashion. The method 

consisted of first studying the best way to model drug effects, then screening many possible 

covariates to select those that improve the precision of the treatment effect estimates, and 

finally generating individual drug effect estimates based on the best fitting model. A model 

assuming it takes on average about 30 days for a treatment to exert an effect that will then 

remain about the same for the rest of the trial showed the best fit to the data34. Treatment 

effects were estimated for the five main drugs in the trial: olanzapine, quetiapine, 

risperidone, ziprasidone and perphenazine. For each drug, we estimated treatment effects for 

each of the five PANSS subscales outlined above, in addition to PANSS Total. This is 

because the antipsychotics in the study show considerable variation in efficacy, both in 

terms of total symptom improvement and symptom improvement for specific 

psychopathology35,36.

The distributions of the 30 outcome measures, i.e. 5 drugs × 6 PANSS scales, were checked 

for non-normality. Relative to the normal distribution, ten of the outcome measures (five of 

them involved Excitement) showed skewness and/or kurtosis indices in excess of −1 or +1. 

Visual inspection of the distribution revealed that in all instances this non-normality was 

caused by outliers. Removing on average 2.2 outliers resulted in approximately normal 

distributions (skewness and kurtosis indices between −1 and +1 and mean skewness 0.22 

and mean kurtosis 0.44).

Controlling for sample stratification

Given the ancestral diversity of the CATIE sample, false positive findings due to genetic 

subgroups are a realistic threat. Sullivan et al.24 performed an extensive evaluation of 

multiple statistical methods to avoid such false positive findings including: self-reported 

race, genomic control37, structured association38, principal components39, multi-

dimensional scaling28 and partial least squares relating phenotype to ancestry-informative 

markers40. They concluded that the principal components controlled this risk best, capturing 

both subtle and extensive variation due to both genomic and experimental features. This 

approach uses the genotyping matrix to infer continuous axes of genetic variation (principal 

components) which then serve as covariates. All autosomal GWAS SNPs were used as input 

to EigenSoft39,41 and default parameters were used except that the outlier removal option 

was turned off in order to generate estimates for all subjects.
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Analyses

The SNPs passing QC were tested in PLINK28 for association with each of the 30 outcome 

measures. The Wald test was used to test for additive SNP effects after the seven extracted 

EigenSoft dimensions were regressed out to control for genetic substructure. To control the 

risk of false discoveries, we calculated for each p-value a so-called q-value42,43 (see 

supplementary material). A q-value is an estimate of the proportion of false discoveries 

among all significant markers (i.e. q-values are false discovery rates or FDRs) when the 

corresponding p-value is used as the threshold for declaring significance. As argued 

previously44, we prefer this FDR-based approach because it a) represents a good balance 

between the competing goals of finding true effects versus controlling false discoveries, b) 

provides comparable standards across studies because it is much less affected by the number 

of (sets of) tests, which is an arbitrary factor, c) is relatively robust to having correlated 

tests42,45–52 and d) rather than an all-or-nothing conclusion, gives a more subtle picture of 

the possible role of the tested markers.

For the most promising SNPs we performed a variety of additional analyses to examine the 

robustness of the signal. First, we tested the SNP in the subjects who self-identified as 

European Americans (EA) only. We considered the proportion of explained variance rather 

than the p-value, which assuming the effect is real would be lower because EA comprise 

only 67% of the total sample. A large drop in explained variance could point to ethnic 

differences or stratification effects not accounted for by our principal components. Next, for 

each SNP we looked at the test results of all six PANSS scales and counted the number of p-

values that were smaller than 0.05. Although it is possible that SNP effects are PANSS scale 

specific, observing associations with multiple scales excludes the possibility of significant 

effects due to scale specific outliers and is informative from a clinical perspective. We also 

performed haplotype analyses for significant SNPs that were in close proximity, to examine 

if they represented the same signal. In addition, for each SNP we performed “proxy” 

analyses that considered other SNPs in that region. Such analyses may provide a technical 

validation of the single SNP result (e.g. all SNPs in substantial LD, defined here as r2 > 0.8, 

should also show evidence for association) or point to a haplotype that is even more 

associated. Finally, we explored whether the SNP was in a copy number variant (CNV) 

region using calls generated specifically for this sample.

Examination of common SNP effects across drugs

Antipsychotic drugs may act on common pathways and therefore a gene or SNP may 

mediate the effect of multiple drugs, particularly if they are pharmacologically similar. 

However, it is important to point out that in CATIE patients were switched from a drug if 

clinical response was inadequate. As a result treatment effects are negatively correlated 

across drugs34. This suggests that the likelihood of observing common SNPs effects for 

multiple drugs in CATIE is somewhat diminished, if we aggregate all drug treatments over 

the course of the trial into a single outcome. To work around this limitation, we performed 

GWAS on response to the first drug prescribed to each patient only (i.e. CATIE Phase I), 

thereby avoiding potential difficulties arising from drug switching. Except for this 

difference, the six outcome measures (improvement in the five PANSS subscales and 
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PANSS Total for all of the 5 main CATIE drugs combined) were generated and the GWAS 

carried out using identical methods to those described above.

Results

Descriptive statistics for the genotyped sample can be found in Table 1 in Sullivan et al.24. 

In summary, the cases had been ill for a mean of 14 years and the mean PANSS scores are 

consistent with a moderately ill sample. CATIE subjects who provided DNA samples had 

lower symptom severity (PANSS total 74 vs. 77), lesser current drug/alcohol abuse/

dependence (29% vs. 36%) and less likely to describe themselves as African-American 

(29% vs. 40%) than the total sample.

Quantile-Quantile (QQ) plots and p-values for each outcome variable are available to 

download at www.vipbg.vcu.edu/~edwin. Table 1 shows a summary of the number of q-

values below various thresholds. One SNP was significant at our pre-specified threshold for 

declaring significance in genetic studies of q < 0.144 and several other SNPs were close to 

that threshold. Our analysis of common SNP effects across drugs did not yield any q-values 

less than 0.6 (see Table S1 in the Supplementary Material).

Table 2 shows the specific SNPs with q-values smaller than 0.5. The top finding was with 

rs17390445 on chromosome 4p15, which mediated the effect of ziprasidone on Positive 

symptoms. The effect was robust when tested in EA only and the SNP was significantly 

associated with 3 additional PANSS scales when tested at the 0.05 level. A neighboring 

SNP, rs11722719, that was 1.6kb from our top finding, had a q value < 0.15. Both of these 

SNPs tag a region that is gene poor. The closest validated gene is >1Mb distant, while the 

closest predicted gene (LOC727819) is approximately 200kb telomeric to the region defined 

by the SNPs.

SNP rs7968606 in the ANKS1B gene showed a q-value very close to 0.1 for mediating the 

effect of olanzapine on Negative symptoms. In addition, the signal was robust when tested 

in the EA subsample and this SNP was significantly associated with olanzapine response on 

all six PANSS scales. Unfortunately no other SNPs were genotyped in the region around 

rs7968606 that could serve as a technical replicate (closest SNPs were over 70–80kb away 

with r2 < 0.07). The finding for SNP rs17727261 in CNTNAP5, mediating the effects of 

risperidone on Negative symptoms, was also robust in the EA subsample and affected 

almost all PANSS scales. Although LD was very modest (r2 = 0.12), rs6706476, which is 

located 17.1kb away from rs17727261, also provided evidence for association (p = 0.0042). 

The SNP rs17815774 in TRPM1 mediated the effects of risperidone on Negative symptoms 

and PANSS Total. Although several SNPs were genotyped in the area around rs17815774, 

consistent with the HapMap data none of these SNPs were in LD with it (e.g. maximum r2 

of the 20 closest SNPs, together spanning 40kb, was 0.02). Thus, there were no technical 

replicates.

According to the calls specifically generated for the CATIE data, the only SNP in Table 2 

that was in a copy number variant (CNV) was rs10888501, located on chromosome 1, that 

mediated the effect of olanzapine on Negative symptoms. Less than half of a percent 
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(0.48%) of the sample showed a deletion here. This very low frequency makes it unlikely 

that the CNV caused the reported association signal in Table 2.

Table 3 shows the results from candidate gene analyses. Using the PLINK retrieval 

interface, SNPs were selected using the TAMAL database53, based chiefly on UCSC 

genome browser files54, HapMap55, and dbSNP56. A liberal definition of the gene 

boundary is used (+/− approximately 200kb), to avoid excluding SNPs in the region that 

may be in LD with others within the gene itself. Caution is required when interpreting the q-

values in these analyses, because far fewer tests are performed and FDR-based q values are 

known to be too liberal in these scenarios57.

To select candidate genes for drug effects, we selected all genes that had previously shown 

positive associations with response to any antipsychotic drug, as reviewed by Arranz and de 

Leon12, plus any further genes with reported positive associations since publication of that 

article58–63. We also included all assayed SNPs that corresponded to genes involved in the 

major and secondary metabolic pathways of antipsychotic drugs12. 39 genes were selected, 

of which 33 had SNPs genotyped, to give 2032 SNPs total (see supplementary material). 

The top result was for rs12860002 that is 120kb outside HTR2A and had a q-value smaller 

than 0.1 when testing the effects of quetiapine on Negative symptoms. In addition, results 

held in the EA subsample and seemed to affect Total symptoms (p = 0.00098) and to a lesser 

extent Positive symptoms (p = 0.01435). Unfortunately, no other SNPs were in high LD 

with rs12860002 so that we did not have a technical replicate.

Several SNPs in FMO5 were associated with quetiapine response on the Emotional distress 

scale. The top SNP, rs12122534, was in high LD (r2 = 0.85) with rs12122453 that showed 

the next best results, and in relatively low LD with other SNPs (average r2 = 0.15) that were 

less significant. A common (54%) haplotype (CCCCCTC) probably explains the signal 

observed for FMO5. This haplotype spans over 413 kb and, although the top SNP is not in 

the gene, includes the gene. The haplotype analyses did not really improve the signal 

suggesting that only rs12122534 may be needed to capture the association.

Discussion

Understanding the biological factors affecting response to antipsychotics may be crucial to 

develop diagnostic tests to match individual schizophrenic patients to the most safe and 

effective medication. In this study we performed a GWAS in 738 subjects from the CATIE 

study to detect genetic variation underlying individual differences in response to treatment 

with antipsychotics.

The top statistical GWAS result overall was rs17390445 on chromosome 4, reaching 

significance according to our pre-specified threshold allowing for 10% false discoveries. 

The finding involved Positive symptoms and ziprasidone. An adjacent SNP (rs11722719) 

also reached significance with the same phenotype, making it unlikely that the finding was 

caused by a genotyping error. However, the closest annotated gene is over 1Mb from the 

region encompassed by these SNPs. It is therefore difficult to speculate on how this locus 

may be mediating the effects of ziprasidone, even in light of the robust statistical association 
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with Positive symptoms and significant findings with 3 other PANSS scales. Nevertheless, 

the lack of genes does not preclude the possibility of a true finding. There is a precedent for 

such intergenic associations to replicate in independent samples, such as found with a region 

on chromosome 9 in Type II diabetes mellitus64. It is conceivable that such findings are 

indicative of long range regulatory effects mediated by these genomic regions, or other 

mechanisms that are not yet fully understood.

The analysis identified SNPs located in 3 specific genes: ANKS1B, CNTNAP5 and TRPM1. 

The Ankyrin Repeat and Sterile Alpha Motif Domain-Containing Protein 1B (ANKS1B, 

NCBI gene id: 56899) is a tyrosine kinase signal transduction gene, primarily expressed in 

the brain. It contains 2 SAM domains and one PTB domain65. SAM domains are found in 

most Eph-family tyrosine kinase receptors, which orchestrate axonal guidance and 

bundling66. PTB domains have proven roles in regulating cell proliferation and 

differentiation, and those in ANKS1B are related to the Numb family of Drosophila neuronal 

cell fate-determining factors65. The Contactin-Associated Protein-Like 5 gene (CNTNAP5, 

NCBI gene id: 129684) belongs to a subgroup of the neurexin family of multidomain 

transmembrane proteins that are involved in cell adhesion and intercellular communication 

in the central nervous system (CNS)67. The SNP at CNTNAP5 showing strongest 

association, rs17727261, gives rise to an amino acid substitution (Ser-452-Leu). Transient 

Receptor Potential Cation Channel, subfamily M, member 1 (TRPM1, NCBI gene id: 4308) 

is expressed in brain (UniGene). It is a member of the Transient Receptor Potential 

superfamily of Ca2+-permeable cation channels68. As with CNTNAP5, the strongest 

association with TRPM1 is with a nonsynonymous SNP, rs17815774 (Met-605-Val). None 

of these genes have been investigated in relation to antipsychotics before. Nevertheless, all 3 

are expressed in the brain and are implicitly associated with the CNS. The top SNPs in 

CNTNAP5 and TRPM1 are both nonsynonymous, strongly suggesting functional relevance.

Our results employing pharmacogenetics candidate genes yieled several interesting findings. 

The most significant association was with rs12860002 at HTR2A, which mediated the effects 

of quetiapine on Negative symptoms. However, due to our liberal definition of SNP 

selection, this marker was some 120kb from the actual gene. HapMap data indicated the 

marker to be in a block of 18kb, which therefore does not include the HTR2A gene itself. 

Nevertheless, several previous association studies have shown positive findings with HTR2A 

and antipsychotics12. Furthermore, in vitro functional work by Davies et al.69 has 

demonstrated how nonsynonymous nucleotide substitutions in the coding sequence of the 

HTR2A gene can alter the receptor’s binding affinity and the cellular functional effects of 

quetiapine, the specific drug with which we found our association. HTR2A would therefore 

appear to be an increasingly firm candidate antipsychotic pharmacogene.

Several markers close to the FMO5 locus showed association for mediating the effects of 

quetiapine on Emotional distress symptoms. However, the FMO5 enzyme is not generally 

considered to be a major metabolizer of quetiapine70. Although quetiapine appears to 

undergo a complex metabolic fate, in vitro studies suggest that this is largely via CYP3A4 

(see Mauri et al.71). Nevertheless, to our knowledge, the metabolism of quetiapine by 

FMO5 has never been specifically tested. In the absence of definitive functional data on the 
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relationship between quetiapine and FMO5, our result immediately suggests a direction for 

future study.

Our genotyping methods were chosen to optimize genomewide coverage, and there are some 

notable gaps whereby specific candidate genes were not assayed (e.g. some of the 

Cytochrome P450 genes, see Supplementary Material). Therefore, it is possible that some 

relevant genetic variation in candidate genes was missed. In a recent study, Need et al.15 

genotyped 2,769 SNP in 118 candidate genes in CATIE versus our subset of 2032 SNPs in 

32 genes. A direct comparison of the results is hampered by the many differences that exist 

between our candidate genes analyses and those by Need et al. For instance, they genotyped 

different SNPs even for the small subset of overlapping candidate genes, b) they used a very 

different approach to define treatment effects that essentially calculated post- minus pre-

treatment scores using Phase 1 data only, and c) they used a different method to control for 

stratification that is based on many fewer markers compared to the present study. 

Nevertheless, it was interesting that both efforts implicated markers close to or within 

HTR2A, although it should be noted their results with the PANSS did not withstand 

correction for multiple testing.

Our GWAS analyses focused on discovering SNPs predicting to what specific antipsychotic 

a patient responds. That is, because all patients who respond to a specific antipsychotic will 

have a high treatment score and all patients who do not respond will get a low high 

treatment score for that specific drug, the SNP discriminates between the two response 

groups. Our analyses are therefore aimed directly at finding the markers needed for the goal, 

outlined in the Introduction, of individualizing antipsychotic therapy.

Antipsychotics may partly improve disease symptoms through common pathways. For 

several reasons, finding genetic variants that are associated with treatment response through 

common pathways is of scientific interest, but it was not the primary goal of this paper. 

First, the fact that a considerable proportion of schizophrenic patients do not respond to a 

specific antipsychotic and are switched to another drug due to lack of efficacy suggests that 

common antipsychotic pathways may not be that critical for treatment response. That is, if 

they would be critical and universal, there would be no need to tailor antipsychotic therapy 

to individual patients. The more important clinical challenge therefore seems to predict who 

will respond to what drug, and markers predicting general antipsychotic response are not 

helpful in this respect. Second, the CATIE design seems more suitable for finding variants 

predicting the response to a specific drug than finding variants predicting general 

antipsychotic response. For example, opposite to what is expected assuming common 

mechanisms of antipsychotics, drug effects are negatively correlated in CATIE34. This 

negative correlation probably occurs because in CATIE patients are switched to another 

drug when the first drug is not efficacious. Hence it may very well be that patients who 

respond to one drug also respond to another drug, but the resulting positive correlation may 

not be observed in CATIE because these patients will remain on the efficacious drug. The 

practical implication is that simply combining treatment effects in CATIE across drugs may 

not result in an accurate measure of general drug effect.
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Although we are currently working on more sophisticated approaches, we have performed 

GWAS analyses using treatment effects estimated from Phase I data only. This will 

probably increase the power to find SNPs affecting common drug pathways, because data 

from patients that are switched to other drugs (i.e. do not benefit from the drug effect on a 

possible common pathway) are less likely to dilute any signals. A limitation of this Phase I 

general drug effect measure is that we assume that all CATIE drugs share the same common 

pathways. A less stringent assumption would be that a subset of CATIE drugs share similar 

pathways. To explore this possibility, we examined whether top findings for one drug were 

also significant for the other drugs.

Results Table S1, shown in the Supplementary Material, provided little evidence for genetic 

variants affecting the response to multiple drugs. This could mean that common drug 

pathways are not that critical for drug response or point to limitations of the methods we 

used. Drugs could, for example, not be effective for certain subgroups of patients where the 

disorder involves biological systems different from the ones targeted by the drug72. This is 

particularly plausible for schizophrenia, which is considered to be a highly heterogeneous 

disorder. Further studies and more sophisticated statistical tools may shed further light on 

these issues73.

In terms of their translational potential to personalize drug treatment, genetic markers have a 

number of advantages such as being cost-efficient, prognostic (i.e. can be used prior to 

starting drug treatment), and can be measured in biomaterial (blood, saliva) that is easy to 

collect. On the other hand, these markers may explain only a modest proportion of the 

variance meaning that the majority of the relevant genetic variation will need to be identified 

to obtain an accurate prediction. In this respect it was encouraging that our top SNPs in the 

GWAS explained as much as 10–15% of the variance in drug response. However, assuming 

our top findings are true, these effect sizes are likely to be overestimates. That is, due to 

sampling error, effect sizes in the initial study are often larger than in subsequent 

replications74,75.

Our findings require replication and functional validation. To facilitate that process we 

provide all p-values for download (at www.vipbg.vcu.edu/~edwin ) as a resource for 

investigators with the requisite samples to carry out replication. However, the present study 

demonstrates the potential of GWAS to discover novel genes that potentially mediate effects 

of antipsychotics, which could eventually help to tailor treatment for individual 

schizophrenic patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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