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Abstract

To achieve the great potential of siRNA based gene therapy, safe and efficient systemic delivery in 
vivo is essential. Here we report reductively responsive hydrogel nanoparticles with highly 

uniform size and shape for systemic siRNA delivery in vivo. “Blank” hydrogel nanoparticles with 

high aspect ratio were prepared using continuous particle fabrication based on PRINT (particle 

replication in nonwetting templates). Subsequently, siRNA was conjugated to “blank” 

nanoparticles via a disulfide linker with a high loading ratio of up to 18 wt %, followed by surface 

modification to enhance transfection. This fabrication process could be easily scaled up to prepare 

large quantity of hydrogel nanoparticles. By controlling hydrogel composition, surface 

modification, and siRNA loading ratio, siRNA conjugated nanoparticles were highly tunable to 

achieve high transfection efficiency in vitro. FVII-siRNA conjugated nanoparticles were further 

stabilized with surface coating for in vivo siRNA delivery to liver hepatocytes, and successful gene 

silencing was demonstrated at both mRNA and protein levels.
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1. INTRODUCTION

RNA interference (RNAi) with small interfering RNA (siRNA) is a promising 

biotechnology, which has great potential to treat cancer and other diseases.1–3 As a 

negatively charged biological molecule, naked siRNA is unable to penetrate the cell 

membrane effectively.4 In addition, siRNA is unstable and susceptible to degradation by 

RNase in serum. A safe and efficient delivery method is necessary to protect siRNA and 

facilitate its delivery to the cytoplasm. A suitable delivery carrier should assist in 

overcoming multiple biological barriers for systemic delivery in vivo, to enable prolonged 

circulation time, target-specific cellular uptake, and enhanced endosomal escape.5 

Nanoparticles are of extreme interest for siRNA delivery as a result of the ease to control 

particle composition and surface properties. Different types of nanoparticles have been 

developed to deliver siRNA, which include lipid nanoparticles,6–17 polymer-based 

nanoparticles,18–23 peptide-based nanoparticles,24,25 calcium phosphate nanoparticles,26,27 

and other inorganic nanoparticles.28,29 Nevertheless, it remains a challenge to achieve 

systemic delivery in vivo. To date, there are only a few examples of systemic siRNA delivery 
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in vivo with lipids,6–8 cationic polymers,3,30 and lipid-coated calcium phosphate.26,31 The 

majority of these examples are based on physical entrapment of siRNA, which may lead to 

premature release during blood circulation.

Particle replication in nonwetting templates (PRINT) is a particle fabrication technology 

capable of producing nano-particles or microparticles with highly uniform shape, size, and 

composition.32–36 We previously reported the use of PRINT based hydrogel nanoparticles to 

deliver siRNA in vitro.37 In that work, siRNA was loaded when nanoparticles were being 

fabricated, requiring water to be used as solvent (see further explanations in Supporting 

Information, Part 2), which does not favor continuous particle fabrication process. 

Therefore, batch fabrication method was used. To enable the full potential of PRINT 

technology by using continuous particle fabrication38 to efficiently produce large quantity of 

highly uniform particles, we developed a new “post-fabrication” siRNA loading method. 

With this new method, reductively responsive nanoparticles were efficiently prepared with 

continuous fabrication process. The loading efficiency of siRNA was also greatly improved. 

The resulting luciferase-siRNA conjugated nanoparticles were able to efficiently knock 

down luciferase expression in vitro. Furthermore, the surface of nanoparticles were modified 

to facilitate systemic delivery of siRNA in vivo, and efficient gene silencing of FVII in liver 

hepatocytes was achieved with FVII-siRNA conjugated nanoparticles.

2. MATERIALS

Tetraethylene glycol monoacrylate (HP4A) was synthesized in house39 and kindly provided 

by Dr. Ashish Pandya and Mathew Finnis. DMAPMA (N -[3-(dimethylamino)propyl]-

methacrylamide) was from TCI America. 2-(Methacryloyloxy)-ethyltrimethylammonium 

chloride solution, poly(acrylic acid) (Mw = 1800), S-acetylthioglycolic acid N-

hydroxysuccinimide ester, and TPO (diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide) 

were from Sigma-Aldrich. mPEG5k acrylate and mPEG5k-NH2 were from 

CreativePEGWorks. NHS-PEG3.4k-COOH was from Laysan Bio. Poly-L-lysine 

hydrobromide and DL-dithiothreitol were from Sigma. EDC (1-ethyl-3-(3-

(dimethylamino)propyl)carbodiimide hydrochloride), hydrox-ylamine hydrochloride and 

SPDP were from Thermo Scientific. AEM (2-aminoethyl methacrylate hydrochloride) and 

PEG700 diacrylate were from Acros Organics. Sulfo-NHS (N-hydrox-ysulfosuccinimide 

sodium salt) was from Chem-Impex International. Sense strand amine modified siRNA was 

synthesized by Novartis. The sequences of siRNA: Luciferase sense amine-modified 5′-

NH2-C6-GAUUAUGUCCGGUUAUGUAUU-3′. antisense 5′-

UACAUAACCGGACAUAAUCUU-3′; FVII sense 5′-NH2-C6-

uGucuuGGuuucAAuuAAAuu; antisense 5′-UUuAAUUGAAACcAAGAcAuu-3′. 

Luciferase siRNA was used as control for in vivo experiments in mice, and FVII siRNA was 

used as control for in vitro assays on HeLa/luc cells.

3. EXPERIMENTAL METHODS

3.1. “Blank” Nanoparticle Fabrication

The method for nanoparticle fabrication on a PRINT based continuous particle fabrication 

instrument was described in detail previously.40 The preparticle solution was prepared by 
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dissolving 5 wt % of the various reactive monomers in methanol. A representative 

preparticle solution composition was shown in Table S1. Nanoparticles were transferred to 

plasdone harvest sheets and harvested with sterile water with a yield of 0.8 mg/foot. SEM 

micrograph of “blank” nanoparticles was shown in Figure S1. DyLight 680 labeled 

nanoparticles were prepared similarly with the addition of DyLight 680 succimide.

3.2. siRNA Loading and Nanoparticle Surface Modification

First, “Blank” nanoparticles were suspended in anhydrous DMF at 2 mg/mL. NHS-PEG3.4k-

COOH (1 equiv to nanoparticle mass) and pyridine (2 equiv to nanoparticle mass) were 

added. The reaction proceeded at r.t. for 12 h, followed by centrifugation (14 000 rpm, 20 

min, 4 °C) to collect nanoparticles. Next, nanoparticles were resuspended in PBS at 2 

mg/mL and SPDP (0.2 equiv to nanoparticle mass in CH3CN) was added. The suspension 

was vortexed gently at r.t. for 6 h. Nanoparticles were collected by centrifugation (14 000 

rpm, 20 min, 4 °C) and subsequently washed twice with sterile water. Subsequently, siRNA-

SH (synthetic procedure was described in Supporting Information) was added to a 

suspension of nanoparticles (10 mg/mL) in PBS, which was shaken at r.t. for 12 h. 

Nanoparticles conjugated with siRNA were collected by centrifugation (14 000 rpm, 20 min, 

4 °C), which were washed twice with 10× PBS and twice with sterile water. Finally, 

nanoparticles were suspended in PBS (1 mg/mL). EDC (3 equiv), sulfo-NHS (10 equiv), and 

PLL (10 equiv) were added. Reaction proceeded at r.t. for 12 h. Nanoparticles were 

centrifuged and washed once with 10× PBS and twice with sterile water. The resulting 

hydrogel nanoparticles were used for cellular study in vitro. To conduct hemolysis assay and 

deliver siRNA in vivo, nanoparticles (4 mg/mL) were incubated in a solution of mPEG5k-

PAA (synthetic procedure was described in Supporting Information, 10 equiv in PBS) for 30 

min. Resulting nanoparticles were collected with centrifugation (14 000 rpm, 20 min, 4 °C) 

and washed once with PBS.

3.3. Nanoparticle Characterization

Scanning electron microscopy (SEM) enabled imaging of hydrogels that were dispersed on a 

silicon wafer and coated with 2.2 nm of Au/Pd (Hitachi S-4700). ξ-potential and dynamic 

light scattering measurements (approximate measurements of hydrogel dynamic size of rod-

like particles based on a mathematical model of spherical particles) were conducted on 20 

μg/mL particle dispersions in 1 mM KCl or 0.1× PBS buffer using a Zetasizer Nano ZS 

particle analyzer (Malvern Instruments Inc.).

3.4. Analysis of siRNA by Gel Electrophoresis

2.5% agarose gel in TBE buffer was prepared with 0.5 μg/mL of ethidium bromide. To study 

release of siRNA from hydrogel nanoparticles, nanoparticles were incubated in 1× PBS, 

with 5 mM reduced glutathione (GSH). Aliquots of particle dispersions were centrifuged (14 

000 rpm, 15 min, 4 °C) for recovery of the supernatant at various time points which were 

then stored at −20 °C until analysis on gel. For evaluation of protection of siRNA by 

nanoparticles, siRNA hydrogels were incubated in 1× PBS supplemented with 30% FBS at 

37 °C for given times, followed by incubation in 10× PBS (5 mM glutathione) for 4 h at 1.2 

mg/mL and 37 °C to release all siRNA. Twelve microliters of sample (supernatants from 

particle dispersions, siRNA solutions, or particle dispersions) was mixed with 3 μL of 6× 
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loading buffer (60% glycerol, 0.12 M EDTA in DEPC-treated water) and loaded into the gel. 

After applying 70 V/cm for 25 min, the gel was imaged with ImageQuant LAS 4000 (GE). 

Analysis of siRNA band intensity was conducted with ImageJ software for quantification. 

siRNA loading ratio was calculated by comparing the maximum amount of siRNA released 

from nanoparticles to the nanoparticle mass. Conversion efficiency of siRNA conjugation 

was calculated by comparing the maximum amount of siRNA released from nanoparticles to 

the amount of siRNA used to conjugate nanoparticles.

3.5. Cells Culture and in vitro Assays

Luciferase-expressing HeLa cell line (HeLa/luc) was from Xenogen. HeLa/luc cells were 

maintained in DMEM high glucose supplemented with 10% FBS, 2 mM L-glutamine, 100 

units/mL penicillin and 100 μg/mL streptomycin, 1 mM sodium pyruvate, and nonessential 

amino acids. All media and supplements were from GIBCO except for FBS which was from 

Mediatech, Inc.

HeLa/luc cells were plated in 96-well plates at 5000/well and incubated overnight at 37 °C. 

Cells were dosed with fluorescently tagged particles in OPTI-MEM (Invitrogen) at 37 °C for 

4 h for cell uptake studies. Fluorescently tagged particles were prepared by incorporation of 

fluorescein O-acrylate in the particle composition and copolymerization of these monomers 

into particle matrix. After incubation, cells were trypsinized and treated with 0.1% trypan 

blue to quench the fluorescein fluorescence from particles associated with the cell surface. 

Cells were then washed and fixed in 1% paraformaldehyde/DPBS and analyzed by CyAn 

ADP flow cytometer (Dako). The cell uptake was represented as the percentage of cells that 

were positive in fluorescein fluorescence.

For in vitro cytotoxicity and luciferase expression assays, cells were dosed with particles or 

lipofectamine 2000 (Invitrogen)/siRNA (2:1, wt/wt) in OPTI-MEM at 37 °C for 4 h, then 

particles were removed, and complete grow medium was added for another 48 h incubation 

at 37 °C. Cell viability was evaluated with Promega CellTiter 96 AQueous One Solution 

Cell Proliferation Assay, and luciferase expression level was evaluated with Promega Bright-

Glo Luciferase Assay according to manufacturer’s instructions. Light absorption or bio-

luminescence was measured by a SpectraMax M5 plate reader (Molecular Devices). The 

viability or luciferase expression of the cells exposed to PRINT particles was expressed as a 

percentage of that of cells grown in the absence of particles. Half-maximal effective 

concentration (EC50) of siRNA required to elicit gene knockdown was determined by 

applying the dose-dependent luciferase expression data to a log(inhibitor) vs response 

variable slope nonlinear function in GraphPad Prism software.

3.6. Hemolysis Assay

Blood from C57BL/6 mice were washed twice with HBSS buffer. 1.5 × 108 red blood cells 

were placed in each well of round-bottom 96-well plate and treated with particle 

formulations of various concentrations for 30 min at 37 °C. Cells were then centrifuged at 

1500 rpm for 10 min, and supernatants were transferred into another plate and absorbance 

was measured at 540 nm. 0.5% Triton X-100 and 5 mg/mL PEG8000 were used as positive 

and negative controls, respectively.
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3.7. Biodistribution of NP in Mice

C57BL/6 mice were intravenously injected with 0.5 mg particles labeled with DyLight 680. 

Twenty-four h post injections, mice were euthanized, and the major organs (liver, spleen, 

lung, kidney, and heart) were harvested. The resected organs were imaged by IVIS Lumina 

fluorescence imaging system (PerkinElmer) with excitation at 675 nm and emission 

measured at 720 nm. The percentage of NP fluorescence in each organ against the total 

fluorescence recovered from all the major organs was calculated and presented.

3.8. in vivo FVII Silencing in Mice

All procedures used in animal studies were approved by the Institutional Animal Care and 

Use. C57BL/6 mice were from Jackson Laboratories and used at 6–10 weeks old. Particle 

formulations were administered intravenously via tail vein injection, at 4 or 6 mg siRNA/kg. 

48 h post treatment, liver tissues were harvested for analyses.

For qRT-PCR assay of mRNA level, liver tissues were harvested from euthanized mice and 

preserved in RNALater. qRT-PCR was done as previously published.41 Primers used were: 

(Mus Factor VII) forward: ACA AGT CTT ACG TCT GCT TCT; reverse: CAC AGA TCA 

GCT GCT CAT TCT; probe: FTC TCA CAG TTC CGA CCC TCA AAG TCQ; (Mus β-

Actin) forward: CTG CCT GAC GGC CAG GTC; reverse: CAA GAA GGA AGG CTG 

GAA AAG A; probe: FCA CTA TTG GCA ACG AGC GGT TCC GQ; F: 5′-fluorescein 

(FAM); Q: quencher (TAMRA).

FVII protein level in mouse plasma was assayed with BIOPHEN VII assay kit (Aniara 

Corporation) according to manufacturer’s instructions. A standard curve was constructed 

using samples from PBS-injected mice and relative Factor VII expression was determined by 

comparing treated groups to untreated PBS control.

For immunohistochemistry analysis, particles were labeled with DyLight 680 dye. Particle 

formulations were administered intravenously via tail vein injection, at 4 mg siRNA/kg. 

Twenty-four h post treatment, liver tissues were harvested and snap frozen in O.C.T medium 

and cryosected into 5 μm sections. Sections were fixed in ice cold acetone for 5 min, briefly 

air-dried, and rehydrated in 1× PBS for 15 min. The tissue sections were then blocked with 

1% bovine serum albumin in PBS for 20 min, and sequentially stained with antimouse 

MARCO (Invitrogen) and goat antirat IgG-Alexa Fluor 488 in 1% BSA/PBS. Tissue 

sections were also stained with phalloidin-Alexa Fluor 555 (Invitrogen) and DAPI (Sigma). 

Images were collected with Zeiss710 confocal laser scanning microscope (Carl Zeiss).

3.9. Statistical Analysis

Liver FVII mRNA and plasma FVII protein measurements were analyzed by One-Way 

ANOVA followed by Bonferroni’s Multiple Comparison test.
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4. RESULTS AND DISCUSSION

4.1. Nanoparticle Preparation and Characterization

We chose to make a rod-shaped particle with high aspect ratio: 80 × 80 × 320 nm (L × W × 

H, 80 × 320 nm hereafter) for enhanced cell uptake42 and improved in vivo PK 

previously40,43 compared to 200 × 200 cylindrical particles we previously used for siRNA 

delivery.37 Compared to the direct siRNA incorporation method previously reported,37 the 

current formulation strategy made particles and loaded siRNA in two separate steps. We first 

prepared 80 × 320 nm hydrogel nanoparticles using the PRINT based continuous particle 

fabrication instrument with a high efficiency.40 A representative “blank” nanoparticle 

composition (Table S1) includes: (1) AEM (2-aminoethyl methacrylate) as a reaction handle 

for siRNA conjugation; (2) cationic tertiary amine DMAPMA (N-[3-

(dimethylamino)propyl]methacrylamide) to improve transfection efficiency; (3) mPEG5k-

acrylate as a nanoparticle stabilizer. This composition also includes cross-linker (PEG700 

diacrylate), photo initiator (TPO), and hydrophile (tetra-ethylene glycol monoacrylate). This 

composition dissolved in volatile methanol is fully compatible with mold based continuous 

fabrication process without using aqueous content for siRNA dissolution. 300 mg of 

nanoparticles with highly uniform size, shape, and composition were prepared within 30 

min. As illustrated in Scheme 1, the resulting “blank” nanoparticles were treated with SPDP 

(succinimidyl 3-(2-pyridyldithio)propionate),44 which reacted with primary amine groups on 

nanoparticles. Subsequently, by incubating these nanoparticles in thiol modified siRNA 

(siRNA modification method described in the Supporting Information),45 siRNA was 

conjugated to nanoparticles via a disulfide linker to enable reduction-sensitive release of 

cargo. To further enhance transfection efficiency, nanoparticles were treated with 

polyammonium polymers (poly-L-lysine) along with an activation agent of EDC (1-Ethyl-3-

(3-(dimethylamino)-propyl)carbodiimide) and sulfo-NHS (N-hydroxysulfosuccinimide 

sodium salt). The SEM micrograph (Figure 1a and S1) indicated that the size, shape, and 

integrity of these rod-shape nanoparticles were well-retained after siRNA loading and 

surface modification. Dynamic light scattering measurement in water using a mathematical 

model of spherical particles indicated that the 80 × 320 nm rod-shape nanoparticles had an 

overall hydrodynamic size of 368.2 ± 4.2 nm with a narrow size distribution (PDI = 0.06).

4.2. Reductively Responsive Release of siRNA

Electrostatic complexation of siRNA with cationic nanoparticles may have the issue of 

premature release during circulation in blood. In order to avoid this issue, siRNA was 

conjugated to hydrogel nanoparticles via a “pro-drug” strategy. The disulfide linker in these 

“pro-siRNA” hydrogel nanoparticles is stable in the physiological environment, but 

cleavable in the intracellular reducing environment. As shown in Figure 1b, these reductively 

responsive hydrogel nanoparticles are expected to maintain encapsulation of siRNA while 

circulating in blood and release the cargo after entering cells. The release profile of siRNA 

loaded nanoparticles is shown in Figure 1c. While no siRNA was released in PBS, siRNA 

was quickly released when incubated in 5 mM glutathione,46 which mimics the intracellular 

reducing condition.37
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4.3. Protection of siRNA from Degradation

Another important requirement for siRNA carriers is the capability to protect cargo from 

degradation by RNase. To determine if hydrogel nanoparticles provided conjugated siRNA 

protection from nuclease degradation, a stability assay was carried out. As shown in Figure 

1d, siRNA conjugated to hydrogel nanoparticles was stable after incubation in 30% FBS for 

24 h. By comparison, naked siRNA was completely degraded by 30% FBS in the same 

period of incubation.

4.4. siRNA Delivery Evaluation in vitro

Before these siRNA conjugated nanoparticles were used for systemic delivery in vivo, 

nanoparticle composition was adjusted to evaluate gene silencing efficiency in vitro. PEG-

based PRINT hydrogel particles without targeting ligand generally enter nonphagocytic cells 

via endocytosis.42 Positive charges of cationic nanoparticles enhance nonspecific 

interactions with cells, improve endocytosis, and assist endosomal escape likely via so-

called “proton sponge” effect.37,47,48 We were able to tune the positive charge density of 

these nanoparticles by varying their composition and surface modification of PLLs. 

Luciferase gene silencing was evaluated by treating HeLa/luc cells with luciferase–siRNA 

conjugated nanoparticles of different surface modifications, chemical compositions, and 

siRNA loading ratios.

First, three PLLs of different molecular weights (1–5k, 15–30k, and 30–70k) were used to 

modify nanoparticle surface properties, when the content of the tertiary amine macromer 

DMAPMA was fixed at 40 wt % and siRNA was constantly charged at 40 wt %. Luciferase 

expressing HeLa/luc cells were treated with luciferase-siRNA conjugated nanoparticles in a 

media with reduced serum (OPTI-MEM) for 4 h. Nanoparticles were subsequently removed, 

and cells were incubated at 37 °C for another 48 h. Dose-dependent knock-down of 

luciferase expression was observed with a maximum gene silencing of 90%, when 

nanoparticles were surface modified with PLL 15–30k (Figure 2a). Nanoparticles modified 

with PLL 15–30k showed no cytotoxicity (Figure 2b). By 30k. Four different ratios of 

siRNA (weight percentage to “blank” nanoparticles), 100, 40, 20, and 10 wt %, were 

charged and conjugated to “blank” nanoparticles. The siRNA loading ratios of the resulting 

nanoparticles were 18.2, 10.0, 5.8, and 2.6 wt %, respectively (Table 1). The loading 

efficiencies of siRNA comparison, nanoparticles modified with PLL 1–5k showed low 

transfection efficiency, and nanoparticles modified with the large molecular weight PLL 

(30–70k) led to high cytotoxicity.

Next, the content of the tertiary amine macromer DMAPMA was varied with the siRNA 

charging ratio fixed at 40 wt % and surface modification with PLL 15–30k. The dimethyl 

amine group in DMAPMA may assist cellular uptake and increases pH buffering capacity to 

enhance endosomal escape due to the “proton sponge” effect. Luciferase transfected HeLa 

cells were dosed with hydrogel nanoparticles fabricated with different DMAPMA contents 

of 10, 20, and 40 wt % (weight percent to macromers in preparticle solution). As illustrated 

in Figure 2c (cell uptake and viability assays are shown in Figure S4 and S5), nanoparticles 

with the highest DMAPMA content of 40 wt % had the highest transfection efficiency, while 

those with 10 and 20 wt % DMAPMA were less efficient in delivering luciferase-siRNA 
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into HeLa/luc cells. Therefore, we chose 40 wt % DMAPMA as the best nanoparticle 

composition to enhance transfection.

Furthermore, nanoparticles were conjugated with different ratios of siRNA to evaluate the 

influence of siRNA loading ratio on transfection efficiency. “Blank” nanoparticles were 

fabricated with 40 wt % DMAPMA and surface modified with PLL 15–30k. Four different 

ratios of siRNA (weight percentage to “blank” nanoparticles), 100, 40, 20, and 10 wt %, 

were charged and conjugated to “blank” nanoparticles. The siRNA loading ratios of the 

resulting nanoparticles were 18.2, 10.0, 5.8, and 2.6 wt %, respectively (Table 1). The 

loading efficiencies of siRNA were between 18% and 29%. Silencing of luciferase 

expression with hydrogel nanoparticles of different siRNA loading ratios was evaluated 

(Figure 2d). EC50 was calculated to be 509, 150, 116, and 80 nM, respectively. 

Nanoparticles with the lowest siRNA loading ratio had the lowest EC50 and were the most 

efficient at gene silencing based on the amount of siRNA dosed. It is possible that, with a 

large quantity of siRNA conjugated (up to 18 wt %), the relatively lower content of cationic 

polymers would lower the transfection efficiency, including less efficient cellular uptake and 

reduced endosomal escape capability. The highest transfection efficiency achieved by our 

hydrogel nanoparticles (EC50 = 80 nM) is comparable to that achieved by lipofectamine 

2000 (EC50 = 28 nM, Figure S6), a commercially available transfection agent, which is 

widely used for in vitro transfection. We chose nanoparticles loaded with 10.0 wt % siRNA, 

which combined a high loading ratio and efficient gene silencing, for further in vivo animal 

studies.

4.5. siRNA Delivery in vivo

The above studies indicate that hydrogel nanoparticles with surface modification of PLL 15–

30k, chemical composition of 40 wt % DMAPMA, and siRNA loading ratio of 10 wt % 

achieved efficient transfection in vitro in a media with reduced serum (OPTI-MEM). 

Nanoparticles of this composition were positively charged (ζ-potential = +31.8 mV). 

Positive nanoparticles may suffer from reduced transfection efficiency in serum-containing 

medium as a result of serum protein coating. The coating with negatively charged serum 

protein would change the nanoparticle surface property and significantly lower the capability 

of cellular uptake and endosomal escape. Notably, the luciferase expression assay of our 

luciferase–siRNA conjugated nanoparticles showed no reduction in transfection efficiency in 

10% FBS compared to those in medium with reduced serum (Figure S7). This result 

demonstrated that nanoparticles were stabilized, most likely by mPEG5k acrylate used to 

fabricate “blank” nanoparticles and/or NHS-PEG3.4k-COOH used to modify the nanoparticle 

surface.

The above formulation was used for systemic delivery in vivo. Cationic nanoparticles could 

be subject to quick clearance during circulation in blood due to opsonization.49 Our previous 

study demonstrated that PEGylation of hydrogel NP significantly improved circulation of 

NP.40 Therefore, mPEG modified poly(acrylic acid) (mPEG5k-PAA) was used to coat siRNA 

loaded cationic nanoparticles to further stabilize them for in vivo applications. The resulting 

nanoparticles had a slightly negative ζ -potential of −5.8 mV and a size of 331.5 ± 4.4 nm 

(PDI = 0.06) in 0.1× PBS (pH = 7.4). Distribution study of the cationic NP and mPEG5k-
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PAA coated NP in mice showed that both accumulated most efficiently in liver (>40%), 

followed by accumulation in spleen and kidney at similar levels (Figure S8). About 20% of 

cationic NP was also found in lung, likely due to opsonization of positively charged NP in 

blood and formation of larger aggregates, which is often filtered by lung. On the other hand, 

only 5% of mPEG5k-PAA coating was in lung, and there was about 10% more of this NP in 

liver instead. Further examination of liver sections (Figure S9) indicated that mPEG5k-PAA 

coating helps to stabilize NP in vivo and get internalized by hepatocytes and other liver cells, 

while cationic NP tended to aggregate and was less taken up by cells.

The toxicity of these mPEG5k-PAA coated nanoparticles to red blood cells was studied with 

a hemolysis assay (Figure 3a). Red blood cells (RBCs) were treated with hydrogel 

nanoparticles at 0.111, 0.333, and 1 mg/mL and incubated at 37 °C for 0.5 h. Minimal RBC 

lysis was observed with up to 1 mg/mL of either FVII-siRNA or luciferase-siRNA 

conjugated nanoparticles. This result indicates these nanoparticles have minimal toxicity to 

red blood cells when administered for systemic delivery.

Studies have been reported on using siRNA to treat liver-related diseases.49,50 Since 

biodistribution study as well as liver examination indicated efficient accumulation of our 

hydrogel particles in liver parenchymal cells, we chose to show the gene silencing potential 

of this system in liver in the initial investigation. Coagulation factor VII (FVII) that is 

produced by liver hepatocytes has been reported in multiple siRNA delivery systems.8,51–53 

In addition, measurements of FVII at mRNA and blood protein levels have been well 

studied. Therefore, mouse hepatic FVII was chosen as the gene target to test the efficacy of 

siRNA delivery and gene silencing. Mice were dosed with FVII-siRNA loaded nanoparticles 

via intravenous administration at 6 mg/kg or 4 mg/kg (weight ratio of siRNA to mice). 

Nanoparticles loaded with luciferase-siRNA were administered at the same dose as the 

control. Liver tissues and blood were collected 48 h post treatments for mRNA and FVII 

protein analyses, respectively. Figure 3b showed that 6 mg/kg FVII-siRNA resulted in ~75% 

reduction of the FVII mRNA level, while the lower dose of 4 mg/kg FVII-siRNA gave a 

moderate reduction of approximately 40%. The reduction of the FVII protein level in plasma 

followed the same trend, with 6 mg/kg FVII-siRNA administration leading to a 40% 

decrease in FVII protein level in blood (Figure S10). Since protein is more stringently 

regulated, the decrease in protein level is smaller compared to that of mRNA level. 

Optimization of treatment regime may be needed for desired knockdown levels.

A closer examination of liver tissues from mice treated with hydrogel nanoparticles (labeled 

with DyLight 680 and loaded with FVII-siRNA) via intravenous administration was done by 

confocal microscopy. Figure 3c showed a representative image of liver sections from mice 

treated with nanoparticles (separate channels shown in Figure S11). It could be seen that 

large quantities of particles (green) were accumulated in almost all cells, including Kupffer 

cells (magenta) and other cells (red) which should be mostly hepatocytes, the mesenchymal 

cells of liver (70–85% of total liver cells). In addition, images taken along z-axis showed that 

particles were distributed at different depth of tissues (Figure S12), further demonstrating 

that the particles were able to penetrate liver tissues and reach intracellular environment. 

These results together demonstrated the capability of the nanoparticles to deliver cargo to 

liver hepatocytes and silence gene expression.
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5. CONCLUSION

siRNA conjugated polymeric nanoparticles with a uniform shape, size, and composition 

have been developed and used for systemic delivery in vivo. Building on our previous work, 

the new “post-fabrication” siRNA loading method allows us to use PRINT based continuous 

particle fabrication to prepare large quantity of nanoparticles with a high efficiency. The 

cargo was conjugated to nanoparticles with a loading ratio of up to 18 wt % and a loading 

efficiency of up to 29%. The composition, surface modification, and siRNA conjugation 

ratio of nanoparticles are highly tunable to achieve efficient luciferase gene silencing in vitro 
with minimum cytotoxicity. Furthermore, FVII-siRNA loaded nanoparticles are capable of 

efficient knock-down of FVII expression via systemic delivery in vivo. We are currently 

further optimizing this hydrogel formulation for other targets, including tumors, and also 

developing particles constituted with biodegradable materials.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) SEM micrograph of 80 × 320 nm hydrogel nanoparticles conjugated with siRNA (scale 

bar 4 μm); (b) illustration of reductively responsive hydrogel behavior under physiological 

and intracellular conditions; (c) time-dependent incubation of pro-siRNA hydrogels (1 

mg/mL) in PBS and under reducing conditions (glutathione, 5 mM) at 37 °C; (d) Integrity of 

siRNA soluble or conjugated to hydrogels after exposure to 30% fetal bovine serum (FBS) 

in PBS over time; after FBS treatment, siRNA was extracted from nanoparticles using 5 mM 

glutathione in 10× PBS and analyzed with gel electrophoresis.
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Figure 2. 
(a) Luciferase expression and (b) viability of Hela/luc cells treated with cationic hydrogel 

nanoparticles surface modified with PLL of different molecular weights. Luciferase 

expression in HeLa/luc cells treated with nanoparticles of (c) different tertiary amine 

DMAPMA contents and (d) different siRNA loading ratios. Cells were dosed with 

nanoparticles in a media with reduced serum (OPTI-MEM) for 4 h followed by the removal 

of nanoparticles and 48 h incubation in media. The error bars represent standard deviation 

from triplicate wells in the same experiment. The amount of siRNA loaded was calculated 

based on that was released in gel electrophoresis assays. Nonspecific siRNA was used as a 

control.
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Figure 3. 
(a) Hemolysis assay with mPEG-PAA coated and FVII-siRNA or control-siRNA conjugated 

nanoparticles at 0.111, 0.333, and 1 mg/mL; 0.5% Triton X-100 was used as the positive 

control, and 5 mg/mL PEG8000 as the negative control. in vivo FVII knock-down (48 h after 

intravenous administration) with different doses of FVII-siRNA or control-siRNA 

conjugated nanoparticles: (b) FVII mRNA level in liver with qRT-PCR assay. (c) Confocal 

micrograph of liver tissue (24 h after intravenous administration of nanoparticles) from mice 

treated with DyLight 680 labeled nanoparticles (green). Cellular actin cytoskeleton was 

stained with phalloidin (red), macrophages with MARCO (magenta), and nuclei with DAPI 

(blue). Scale bar represents 20 μm. Antiluciferase siRNA conjugated nanoparticles were 

used as the control. Results are combinations of two independent experiments with n = 4–5 

for each experiment; data are shown as mean ± SEM *p < 0.05; **p < 0.01; ***p < 0.001.
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Scheme 1. 
Schematic Illustration of “Post-Fabrication” siRNA Loading and Surface Modification: (a) 

NHS-PEG3.4k-COOH, DMF, Pyridine; (b) SPDP, PBS/CH3CN; (c) siRNA-SH, PBS; (d) 

Poly-L-lysine, EDC, Sulfo-NHS, PBS
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Table 1

siRNA Loading Ratio, Loading Efficiency, and EC50 of Nanoparticles Charged with Different Amounts of 

siRNA

theoretical siRNA
charging ratio

empirical measured siRNA
loading ratio

loading
efficiency

EC50
(nM)

100 wt % 18.2 wt % 18% 509

40 wt % 10.0 wt % 25% 150

20 wt % 5.8 wt % 29% 116

10 wt % 2.6 wt % 26% 80
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