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A B S T R A C T

Pin1 specifically recognizes and catalyzes the cis-trans isomerization of phosphorylated-Ser/

Thr-Pro bonds, which modulate the stability, localization, and function of numerous Pin1

targets involved in tumor progression. However, the role of Pin1 in cancer remains enigmatic

as the gene is located on chromosome 19p13.2, which is a region subject to loss of heterozy-

gosity in several tumors. Since Pin1 protein is frequently under-expressed in kidney cancer,

we have explored its role in human clear cell renal cell carcinoma (ccRCC). Here we show

evidence for PIN1 gene deletion andmRNAunder-expression as amechanism of Pin1 reduc-

tion in ccRCC tumors. We demonstrate that restoration of Pin1 in cell lines found to be

deficient in Pin1 protein expression can attenuate the growth of ccRCC cells in soft agar

and a xenograft tumor model. Moreover, this ability of Pin1 to negatively influence tumor

growth in ccRCC cells may be dependent on the presence of functional p53, which is infre-

quentlymutated in ccRCC. These observations suggest Pin1mayhave amild tumor suppres-

sive role in ccRCC.

ª 2011 Federation of European Biochemical Societies.

Published by Elsevier B.V. All rights reserved.
1. Introduction these targets are key regulators of G1-S progression, Pin1 has
Pin1 is a conserved peptidyl-prolyl isomerase that specifically

recognizes phosphorylated serine/threonine-proline motifs

(pS/T-P) (Yaffeetal., 1997). Bycatalyzing the cis-trans isomeriza-

tion of pS/T-P bonds, Pin1 induces conformational changes in

its target phosphoproteins that can alter their biological func-

tion and/or stability (Lu and Zhou, 2007). Several proteins im-

portant for cell cycle and cancer progression are regulated by

Pin1, including b-catenin, c-Jun, c-Myc, cyclin D1, cyclin E,

and p53 (Liou et al., 2002; Ryo et al., 2001; Wulf et al., 2001;

Yehetal., 2004,2006;Zacchietal., 2002;Zhengetal., 2002). Since
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ontrol shRNA; shPin1, Pi
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been suggested to function as amolecular timer for the cell cy-

cle (Yeh and Means, 2007). Indeed, the loss of Pin1 in multiple

cell types, suchas Pin1�/�primordial germcells andmouseem-

bryonic fibroblasts (MEF), leads to prolongation of G0-G1-S pro-

gression (Atchison et al., 2003; Fujimori et al., 1999; You et al.,

2002). Such a delay could be explained by Pin1’s ability to pro-

mote the expression and stabilization of cyclin D1, underscor-

ing the potential importance of Pin1 in cancer.

A number of studies report prevalent Pin1 over-expression

in human cancers, including those of breast and prostate

(Ayala et al., 2003; Bao et al., 2004; Wulf et al., 2001). In breast
bryonic fibroblasts; RPTEC, renal proximal tubule epithelial cells;
n1 shRNA.
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cancer, Pin1 over-expression correlates with the deregulation

of cyclin D1, which is likely the result of enhanced transcrip-

tion of this gene by c-Jun and b-catenin as well as post-

translational stabilization of the protein (Ryo et al., 2001;

Wulf et al., 2001). Pin1 levels also correlate with poor clinical

outcome and may have prognostic value in the case of pros-

tate cancer (Ayala et al., 2003). Based on these studies, one

might conclude that increased levels of Pin1 promote tumor

progression. However, and perhaps not surprising given the

plethora of Pin1 targets, the role of Pin1 in human cancer is

complex and context dependent.

In fact, several reports suggest Pin1 might inhibit tumor

progression by destabilizing oncoproteins (i.e. cyclin E,

c-Myc) or by activating tumor suppressors (i.e. p53, p73) (Yeh

andMeans, 2007). Previously, we showed that cyclin E is stabi-

lized in Pin1�/� C57BL6 MEF, which correlated with defective

cell cycle progression and accelerated genomic instability

(Yeh et al., 2006). Moreover, Pin1�/� MEF cells transformed

with p53DD and/or H-RasG12V when grown as xenografts dis-

played reduced tumor free survival and increased tumor

growth compared to wild type MEF, which suggests Pin1

may exhibit a tumor suppressive effect in these cells. Since

Pin1 appears to play a tumor promoting or inhibitory role

depending on the genetic context, Pin1 has been described

as a “conditional” tumor suppressor (Yeh and Means, 2007).

However, Pin1-mediated tumor suppressive effects in a hu-

man context have yet to be demonstrated.

Interestingly, Pin1 is prevalently under-expressed in some

human cancers, including kidney cancer (Bao et al., 2004). Al-

though the relevance of Pin1 under-expression in kidney can-

cer has not been evaluated, the effect of differential Pin1 levels

on tumor progression likely depends on the specific repertoire

of genetic mutations acquired by the cancer cells. In particu-

lar, although p53 is commonly mutated in many human can-

cers, p53 mutation is infrequent in renal cell carcinoma (RCC)

(Dalgliesh et al., 2010; Gurova et al., 2004). Since Pin1 has been

shown to positively regulate p53, one hypothesis is that Pin1

can exert a tumor suppressive role in a manner dependent

on wild type p53. Herein, we evaluate the role of Pin1 in RCC

and find support for this hypothesis.
2. Materials and methods

2.1. Copy number analysis

SNP6.0 array data corresponding to gene expression data de-

posited in Gene Expression Omnibus GSE17818 (Dalgliesh

et al., 2010) were obtained from theWellcome Trust Sanger In-

stitute (Hinxton, Cambridge, UK). Raw allele intensities were

imported into Partek Genomics Suite software, version 6.5

(St. Louis, MO, USA). Based on the PCA plot, one outlying

tumor and corresponding normal were excluded, batch effect

was removed, and copy number values were created from al-

lele intensities. Genomic segmentation was performed with

segmentation parameters of a minimum of 10 genomic

markers, p-value threshold of 0.001, and a signal to noise ratio

of 0.3. Identified regions were visualized using the Plot Chro-

mosome function within Partek Genomic Suite.
2.2. Gene expression analysis

PIN1geneexpression levelswereexamined frompreviouslyde-

scribed gene expression data (Brannon et al., 2010), which was

re-downloaded with 44 additional new tumor samples from

the UNCMicroarray Database in log2 Lowess-normalized sam-

ple/reference format (median), filtered for 70% of probes pres-

ent above background levels and annotated using the

20101031 Agilent annotation release. The data was imported

into Partek Genomics Suite software and batch effect was

removed through Partek’s batch effect removal algorithms.

All human studies were approved by the University of North

Carolina Biomedical Institutional Review Board and Office of

Human Research Ethics.
2.3. Cell lines and antibodies

Primary human renal proximal tubule epithelial cells (RPTEC)

were cultured in REGM Renal Epithelial Cell Growth Medium

(Lonza, Walkersville, MD, USA). Human renal cell carcinoma

ACHN and A498 cells, and human embryonic kidney 293T cells

(American Type Culture Collection, Manassas, VA, USA) were

cultured in Dulbecco’s modified Eagle’s medium (Mediatech,

Manassas,VA,USA) supplementedwith10% fetal bovineserum

(Gemini Bio-Products, West Sacramento, CA, USA) and 1%

penicillin-streptomycin (Mediatech). Cells were maintained at

37 �Cina5%CO2humidifiedincubator.The followingantibodies

were used: anti-Pin1 (Winkler et al., 2000), anti-b-actin (Sigma-

eAldrich, St. Louis, MO, USA), anti-Ki67 (Lab Vision, Fremont,

CA, USA), IRDye800-conjugated anti-mouse IgG (Rockland Im-

munochemicals, Gilbertsville, PA, USA), and Alexa Fluor

680-conjugated anti-rabbit IgG (Invitrogen, Carlsbad, CA, USA).
2.4. Retrovirus preparation and transduction

Pin1 shRNA construct was generated by inserting a sequence

targeting 50-CTGCCACCGTCACACAGTA-30 into pSUPER. Non-

silencing control shRNA construct pSUPER. Mamm-X was

obtained from Oligoengine (Seattle, WA, USA). Pin1 expres-

sion construct was created by PCR amplifying the human

Pin1 cDNA from pGEX-2TK-Pin1 (Yi et al., 2005) and ligating

it into the EcoRI-SalI sites of pBABE-neo. Site-directed muta-

genesis of pBABE-neo-Pin1WT to Pin1W34A was carried out by

GenScript (Piscataway, NJ, USA). pBABE-puro-p53DD construct

was created by excising p53DD from pBABE-hygro-p53DD (Yeh

et al., 2006), then inserting it into the BamHI-EcoRI sites of

pBABE-puro. Retroviruses were produced in 293T cells follow-

ing established methods (O’Hayer and Counter, 2006). ACHN

cells were infected with retrovirus, then stably selected using

1 mg/ml G418 (Invitrogen) or 2 mg/ml puromycin (Sigma-

eAldrich) for 7e10 days.
2.5. Immunoblotting

Equal amounts of protein sample were resolved using

SDS-PAGE and then transferred to Immobilon-FL membrane

(Millipore, Billerica, MA, USA). Quantitative immunoblotting

was carried out using procedures established by LI-COR Bio-

sciences (Lincoln, NE, USA).
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2.6. RT-PCR

RNA was isolated using RNeasy Plus Mini Kit (Qiagen, Valen-

cia, CA, USA). Transgenic expression of p53DD was verified

by RT-PCR as previously described (Adam and Counter, 2008).

2.7. Soft agar assay

Cellular transformation was evaluated by soft agar assay as

previously described (O’Hayer and Counter, 2006). Briefly,

2.5 � 104 ACHN cells were seeded per well of a 6-well plate.

Cells were fed with 0.2 ml of culture media every 3e4 days

for 21 days. Colonies greater than 30 cells were counted under

a light microscope. Images were acquired with a Sony DSC-

W50 (New York, NY, USA) attached to a Zeiss Axiovert 10 Mi-

croscope (Oberkochen, Germany) using a CamAdapter Kit

(The Microscope Store, Wirtz, VA, USA).

2.8. Xenograft tumor model

Five hundred thousand or 106 ACHN cells were subcutane-

ously injected into each flank of athymic nudemice using pro-

tocols approved by the University of North Carolina

Institutional Animal Care and Use Committee. Tumor dimen-

sionsweremeasured every 3e4 dayswith calipers until largest

tumors reached 0.8 cm in length, afterwhich the animalswere

sacrificed. Xenograft tumorswere fixedwith formalin and em-

bedded in paraffin for tissue sectioning.

2.9. Immunohistochemistry

Immunohistochemical staining was performed as previously

published (Chenet al., 2010). TUNELassaywasperformedusing

ApopTag Peroxidase In Situ Apoptosis Detection Kit (Millipore).

High resolution images were captured using an Infinity 2-3

Camera (Lumenera Corporation, Ottawa, ON, Canada) affixed

to an Olympus CX41 Microscope (Center Valley, PA, USA). No

primary antibody control images are provided in

SupplementaryFigure3.AveragepercentDAB-positivestaining

was quantified from 10 different fields per tumor using Immu-

noRatio (Tuominenetal., 2010)orblindedmanual cell counting.

2.10. Statistical analysis

Bar graphs showmean� standard error of the indicated num-

ber of experiments or samples. Statistical analyses were per-

formed using Microsoft Excel and StatView. Cutoff for

statistical significance was arbitrarily set at P < 0.05. * denotes

significant and ** denotes highly significant, with specific P

values indicated in the figure legends.
3. Results

3.1. PIN1 gene is frequently deleted and under-expressed
in human clear cell RCC (ccRCC)

Previous studies indicate that the Pin1 protein is prevalently

under-expressed in kidney tumors compared to normal kid-

ney tissue (Bao et al., 2004). As shown in Figure 1A, we
determined that Pin1 under-expression in kidney cancer

may be in part due to deletion of the PIN1 locus from chro-

mosome 19p13.2, and resultant haploinsufficiency, as copy

number analysis revealed Pin1 loss in 24 of 86 (28%) ccRCC tu-

mors. In order to evaluate the effective mRNA expression

level of the PIN1 gene, we examined 18 renal tumor and nor-

mal kidney paired samples for relative PIN1 gene expression.

We observed that the PIN1 gene was under-expressed in 4 of

18 (22%) ccRCC tumors relative to paired normal kidney tis-

sue (Figure 1B), which correlates with the frequency of PIN1

deletion observed in ccRCC. Since genetic loss of function is

a hallmark of tumor suppressors, we further assessed the rel-

evance of Pin1 under-expression in ccRCC by gene set analy-

sis (GSA). GSA revealed low Pin1 levels correlate with reduced

expression of genes involved in p53 stabilization as well as

mitotic cell cycle pathways (Supplementary Figure 1). In addi-

tion, depressed Pin1 levels are associated with increased ex-

pression of genes involved in metastasis, stem cell-related,

and proliferation pathways (Supplementary Figure 1). Collec-

tively, these observations are compatible with the hypothesis

that Pin1 may have tumor suppressive function in ccRCC.

3.2. Pin1 attenuates growth of ccRCC cells in soft agar

To test if Pin1 could serve a tumor suppressive role,we selected

two RCC cell lines that displayed reduced expression of Pin1

protein, ACHN and A498 (Figure 2A; Supplementary

Figure 2A). The rescue of reduced Pin1 levels to w1.5-fold nor-

mal levels with ectopic expression of Pin1 was sufficient to

modestly, but significantly inhibit the growth of both ACHN

and A498 cells in soft agar (Fig. 2AeC; Supplementary

Figure 2). Since A498 cells formed fewer andmuch smaller col-

onies, ACHN cells were chosen for further analysis of Pin1-

mediated effects. To evaluate the importance of Pin1’s WW-

domain in tumor suppressive activity, ACHN cells were trans-

ducedwith Pin1W34A, aWW-domainmutant incapable of bind-

ing toand isomerizingPin1 substrates (Luet al., 1999).Although

Pin1W34A was expressed at a level similar to Pin1WT (Figure 2A),

Pin1W34A was unable to diminish the growth of ACHN cells in

soft agar (Figure 2B, C). This result suggests a functional WW-

domain and canonical activity of Pin1 are essential for Pin1-

mediated inhibition of anchorage independent growth. Con-

versely to ectopic Pin1 expression, further Pin1 depletion

from ACHN cells by shRNA (Figure 2D) was associated with

a47%increase insoftagarcolonyformation (Figure2E,F).These

data demonstrate Pin1 can impede the growth of ccRCC cells in

soft agar, which is consistent with tumor suppressive activity.

3.3. Pin1 attenuates ACHN tumor growth in a xenograft
model

To further examine the role of Pin1 in tumor growth, ACHN-

Neo (vector control) and ACHN-Pin1 cells rescuedwith ectopic

Pin1 expressionwere assayed for tumorigenicity in a xenograft

model. Consistent with our soft agar assay data, Pin1 expres-

sion significantly improved tumor free survival and sup-

pressed the tumorigenic growth of ACHN xenografts

(Figure 3A, B). ACHN-Pin1 tumors were histologically similar

to ACHN-Neo control tumors, which exhibited necrotic cores

surrounded by proliferating cells (Figure 3C). In addition,

http://dx.doi.org/10.1016/j.molonc.2011.06.002
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Figure 1 e PIN1 gene is frequently deleted and under-expressed in human ccRCC tumors. (A) Frequency of tumors containing deletion (blue) or

amplification (red) of each region of chromosome 19. The PIN1 gene on 19p13.2 (9945999.9960358) is highlighted in black. (B) Fold PIN1 gene

expression in individual ccRCC tumor samples relative to matched normal kidney tissue, as determined by gene expression microarray.
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Pin1 immunohistochemical analysis showed ACHN-Pin1 tu-

mors retained elevated levels of Pin1 (Figure 3D), and thus

did not grow as a result of escaping Pin1 over-expression.

To explore themeans bywhich Pin1 expression impeded xe-

nograft growth, we compared rates of proliferation and apopto-

sis in the xenografts. Ectopic Pin1 expressing tumors displayed

significantly reducedKi67 staining, indicating that Pin1 contrib-

utes to decreased RCC tumor growth by inhibiting cellular pro-

liferation (Figure 4A). Indeed, ACHN-Pin1 tumors showed

a 29% decrease in the number of Ki67-positive nuclei

(Figure 4C), which is comparable to the impaired growth of

ACHN-Pin1 cells in soft agar (Figure 2C), and is consistent with
our GSA showing that Pin1 negatively correlates with genes in-

volved in proliferation (Supplementary Figure 1). Intriguingly,

ectopic rescue of Pin1 also led to increased apoptosis in the xe-

nograft tumors as measured by TUNEL staining (Figure 4B, D).

Thus ectopic Pin1 expression attenuates ACHN tumor growth

through effects on both proliferation and apoptosis.

3.4. Repression of p53 activity can prevent Pin1-
mediated tumor inhibitory activity

Since previous research suggests Pin1 can enhance p53

function in order to inhibit cell proliferation and induce

http://dx.doi.org/10.1016/j.molonc.2011.06.002
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Figure 2 e Pin1 attenuates growth of human renal cell carcinoma ACHN cells in soft agar. (A) RPTEC or ACHN cells transduced with empty

vector (Neo), Pin1 or Pin1W34A were analyzed by immunoblot. Average normalized Pin1 levels relative to RPTEC are below. (B, C) ACHN-Neo,

ACHN-Pin1, and ACHN-W34A cells were grown in soft agar. After 21 days, colonies were quantified from three independent assays done in

triplicate. (D) RPTEC or ACHN cells transduced with non-silencing control shRNA (NSC) or Pin1 shRNA (shPin1) were analyzed by

immunoblot as in (A). (E, F) ACHN-NSC and ACHN-shPin1 cells were assayed for growth in soft agar as in (B, C), except results represent two

independent experiments performed in triplicate. Scale bars represent 125 mm **P < 0.001 vs. control, t-test.
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apoptosis in response to genotoxic stress (Zacchi et al., 2002;

Zheng et al., 2002), we hypothesized that the Pin1-mediated

growth inhibitory effect on tumors might require functional

p53, which is known to be wild type in ACHN cells

(O’Connor et al., 1997; Warburton et al., 2005). To test this
hypothesis, p53 was specifically inhibited in ACHN-Pin1

cells by a dominant negative p53 (p53DD) mutant that we

have previously utilized (Yeh et al., 2006). Expression of

p53DD and Pin1 was verified by RT-PCR or immunoblot, re-

spectively (Figure 5A, B). As shown in Fig. 5CeE, as expected,

http://dx.doi.org/10.1016/j.molonc.2011.06.002
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http://dx.doi.org/10.1016/j.molonc.2011.06.002


Figure 3 e Pin1 attenuates tumor growth of ACHN cells in xenograft model. ACHN-Neo and ACHN-Pin1 cells were subcutaneously injected

into each flank of athymic nude mice. (A) Tumor free survival of ACHN-Neo (n [ 8) and ACHN-Pin1 (n [ 8) xenografts was assessed by

KaplaneMeier survival analysis. P-value determined by log-rank test. (B) Tumor growth was assessed from measurements of tumor length.

P-value determined by repeated measures ANOVA. (C) Hematoxylin and eosin (H&E) staining. Scale bars represent 50 mm (D) Pin1 was detected

by DAB immunohistochemistry (IHC) then counterstained with hematoxylin. Scale bars represent 25 mm.
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the inhibition of p53 by p53DD enhanced growth in soft agar

and in xenograft; however, ectopic Pin1 rescue in this set-

ting failed to suppress soft agar colony formation or xeno-

graft tumor growth. Therefore Pin1-mediated tumor

inhibitory activity in RCC appears to require functional p53.
4. Discussion

Here we provide the first demonstration of Pin1-mediated tu-

mor inhibitory activity in human cancer cells. The restoration

of Pin1 expression in Pin1-deficient ccRCC cells produced re-

ductions in tumor cell growth in soft agar, as well as in
xenograft model growth. These effects although modest,

were significant, and would be expected to have substantial

consequences over the long natural history of renal cell carci-

noma. Because tumorigenicity was not ablated, we have re-

ferred to Pin1 as a protein with tumor inhibitory activity,

rather than a nascent tumor suppressor. Moreover, Pin1’s tu-

mor inhibitory effects in renal carcinoma cells seem to require

functional p53, as p53 inhibition was sufficient to prevent

Pin1-mediated tumor suppressive activity in these cells. This

result suggests the possibility that Pin1 acts to attenuate tu-

mor cell growth in conditions in which p53 signaling is intact,

and is consistent with the physiologic role of Pin1 in positively

regulating p53 biological function, which has been previously

http://dx.doi.org/10.1016/j.molonc.2011.06.002
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Figure 4 e Pin1 attenuates ACHN xenograft tumor growth through effects on proliferation and apoptosis. (A) Proliferation was assessed by IHC

analysis of Ki67. (B) Apoptosis was evaluated by TUNEL assay. Black arrows point to examples of DAB-positive nuclei. (C, D) Average percent

DAB-positive nuclei was quantified for (A) Ki67 and (B) TUNEL stains respectively. Data represent ACHN-Neo (n [ 8) and ACHN-Pin1

(n [ 7) with *P < 0.05 vs. control, t-test. Scale bars represent 25 mm.
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documented (Berger et al., 2005; Mantovani et al., 2007; Zacchi

et al., 2002; Zheng et al., 2002). As the PIN1 gene is frequently

deleted in ccRCC tumors and Pin1 exhibits tumor attenuating

activity in p53 wild type ccRCC cell lines, but not those in

which p53 is inhibited, we surmise that Pin1 may play an im-

portant role in cancer biology to conditionally inhibit growth

in some scenarios while exerting tumor promoting activities

in other contexts.

Certainly, the concept of a protein functioning with condi-

tional tumor suppressive activity is not novel. Indeed, there

are several proteins reported to possess tumor suppressing

or promoting activity depending on the genetic context, in-

cluding deleted in colon cancer (DCC), netrin-1 and transform-

ing growth factor b (TGFb) (Massagu�e, 2008; Mazelin et al.,
2004). In “normal” contexts, TGFb mediates tumor suppres-

sion through mechanisms that regulate cytostasis, apoptosis,

and differentiation. However, TGFb can alternatively promote

the growth and metastasis of tumors containing certain ge-

netic mutations or deletions that disable TGFb’s tumor sup-

pressive function. The example of TGFb interestingly seems

to share some parallels with what has been observed for

Pin1 in cancer. Since Pin1 has been shown to function to either

decrease or enhance tumor growth, we speculate that muta-

tions that disable Pin1’s tumor suppressing activities (i.e. p53

mutation) may enhance Pin1’s tumor promoting activities

(i.e. cyclin D1 over-expression) in these contexts. Notably, fre-

quent Pin1 over-expression correlatingwith high cyclin D1 ex-

pression has been shown to occur in human cancers where

http://dx.doi.org/10.1016/j.molonc.2011.06.002
http://dx.doi.org/10.1016/j.molonc.2011.06.002
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Figure 5 e Repression of p53 blocks Pin1-mediated tumor suppressive activity in ACHN cells. (A) ACHN cells transduced with the indicated

combinations of vector (Neo, Puro), Pin1, and p53DD were analyzed for p53DD expression by RT-PCR. (B) Ectopic Pin1 expression in cell lines

from (A) was confirmed by immunoblot. (C, D) ACHN cells from (A, B) were assayed for growth in soft agar with results quantified from two

independent experiments performed in triplicate. Scale bars represent 125 mm. (E) Final tumor length of ACHN xenograft tumors (n [ 8) grown

for four months. *P < 0.05 or **P < 0.005 vs. corresponding Neo control, t-test.
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p53 is frequently mutated, including breast and liver cancers

(Pang et al., 2004; Wulf et al., 2001).

On the other hand, frequent Pin1 under-expression has

been most commonly observed in cancers where p53 is fre-

quently wild type, including kidney and testicular cancers

(Bao et al., 2004; Gurova et al., 2004; Heimdal et al., 1993). Based

on theseobservations, the role of Pin1 as an inhibitor of human

tumorigenesis seems to be highly dependent on the tumor cell

context. In ccRCC which harbors infrequent mutations of p53
and other common mediators of tumorigenesis, Pin1 appears

to play a mild tumor suppressive role, and further investiga-

tion iswarranted to ascertain if Pin1 could be a useful prognos-

tic factor or therapeutic target in human cancer.
Conflict of interest

The authors declare no conflict of interest.

http://dx.doi.org/10.1016/j.molonc.2011.06.002
http://dx.doi.org/10.1016/j.molonc.2011.06.002
http://dx.doi.org/10.1016/j.molonc.2011.06.002


M O L E C U L A R O N C O L O G Y 5 ( 2 0 1 1 ) 4 6 5e4 7 4 473
Acknowledgments

We thank Christopher Counter for providing pBABE and

pSUPER plasmids. Thank you to Rose Brannon for hours of

helpful advice. We also thank Charlene M. Ross and the UNC

Animal Studies Core Facility for assisting in the xenograft

studies. This research was supported by R01 CA082845

(ARM) and R01 CA121781 (WKR). Brian Teng received training

support through a Department of Defense Breast Cancer Re-

search Program Pre-Doctoral Fellowship (W81XWH-06-1-

0442). Kathryn Hacker received support from the UNC Depart-

ment of Genetics T32 Training grant.
Appendix Supplementary data.

Supplementary data associated with this article can be found,

in the online version, at doi:10.1016/j.molonc.2011.06.002.
R E F E R E N C E S

Adam, S.J., Counter, C.M., 2008. A method to generate genetically
defined tumors in pigs. Methods Enzymol., 39e51. Elsevier.

Atchison, F.W., Capel, B., Means, A.R., 2003. Pin1 regulates the
timing of mammalian primordial germ cell proliferation.
Development 130, 3579e3586.

Ayala, G., Wang, D., Wulf, G., Frolov, A., Li, R., Sowadski, J.,
Wheeler, T.M., Lu, K.P., Bao, L., 2003. The prolyl isomerase Pin1
is a novel prognostic marker in human prostate cancer.
Cancer Res. 63, 6244e6251.

Bao, L., Kimzey, A., Sauter, G., Sowadski, J.M., Lu, K.P., Wang, D.G.,
2004. Prevalent overexpression of prolyl isomerase Pin1 in
human cancers. Am. J. Pathol. 164, 1727e1737.

Berger, M., Stahl, N., Del Sal, G., Haupt, Y., 2005. Mutations in
proline 82 of p53 impair its activation by Pin1 and Chk2 in
response to DNA damage. Mol. Cell Biol. 25, 5380e5388.

Brannon, A.R., Reddy, A., Seiler, M., Arreola, A., Moore, D.T.,
Pruthi, R.S., Wallen, E.M., Nielsen, M.E., Liu, H.,
Nathanson, K.L., 2010. Molecular stratification of clear cell
renal cell carcinoma by consensus clustering reveals distinct
subtypes and survival patterns. Genes Cancer 1, 152e163.

Chen, S., Sanford, C.A., Sun, J., Choi, V., Van Dyke, T.,
Samulski, R.J., Rathmell, W.K., 2010. VHL and PTEN loss
coordinate to promote mouse liver vascular lesions.
Angiogenesis 13, 59e69.

Dalgliesh, G.L., Furge, K., Greenman, C., Chen, L., Bignell, G.,
Butler, A., Davies, H., Edkins, S., Hardy, C., Latimer, C., 2010.
Systematic sequencing of renal carcinoma reveals
inactivation of histone modifying genes. Nature 463, 360e363.

Fujimori, F., Takahashi, K., Uchida, C., Uchida, T., 1999. Mice
lacking Pin1 develop normally, but are defective in entering
cell cycle from G0 arrest. Biochem. Biophys. Res. Commun.
265, 658e663.

Gurova, K.V., Hill, J.E., Razorenova, O.V., Chumakov, P.M.,
Gudkov, A.V., 2004. p53 pathway in renal cell carcinoma is
repressed by a dominant mechanism. Cancer Res. 64,
1951e1958.

Heimdal, K., Lothe, R.A., Lystad, S., Holm, R., Foss�a, S.D.,
Børresen, A.L., 1993. No germline TP53 mutations detected in
familial and bilateral testicular cancer. Genes Chromosom.
Cancer 6, 92e97.
Liou, Y.C., Ryo, A., Huang, H.K., Lu, P.J., Bronson, R., Fujimori, F.,
Uchida, T., Hunter, T., Lu, K.P., 2002. Loss of Pin1 function in
the mouse causes phenotypes resembling cyclin D1-null
phenotypes. Proc. Natl. Acad. Sci. 99, 1335e1340.

Lu, K.P., Zhou, X.Z., 2007. The prolyl isomerase PIN1: a pivotal
new twist in phosphorylation signalling and disease. Nat. Rev.
Mol. Cell Biol. 8, 904e916.

Lu, P.J., Zhou, X.Z., Shen, M., Lu, K.P., 1999. Function of WW
domains as phosphoserine-or phosphothreonine-binding
modules. Science 283, 1325e1328.

Mantovani, F., Tocco, F., Girardini, J., Smith, P., Gasco, M., Lu, X.,
Crook, T., Del Sal, G., 2007. The prolyl isomerase Pin1
orchestrates p53 acetylation and dissociation from the
apoptosis inhibitor iASPP. Nat. Struct. Mol. Biol. 14, 912e920.

Massagu�e, J., 2008. TGFbeta in cancer. Cell 134, 215e230.
Mazelin, L., Bernet, A., Bonod-Bidaud, C., Pays, L., Arnaud, S.,

Gespach, C., Bredesen, D.E., Scoazec, J.Y., Mehlen, P., 2004.
Netrin-1 controls colorectal tumorigenesis by regulating
apoptosis. Nature 431, 80e84.

O’Connor, P.M., Jackman, J., Bae, I., Myers, T.G., Fan, S., Mutoh, M.,
Scudiero, D.A., Monks, A., Sausville, E.A., Weinstein, J.N., 1997.
Characterization of the p53 tumor suppressor pathway in cell
lines of the National Cancer Institute anticancer drug screen
and correlations with the growth-inhibitory potency of 123
anticancer agents. Cancer Res. 57, 4285e4300.

O’Hayer, K.M., Counter, C.M., 2006. A genetically defined normal
human somatic cell system to study ras oncogenesis in vivo
and in vitro. Methods Enzymol., 637e647. Elsevier.

Pang, R., Yuen, J., Yuen, M.F., Lai, C.L., Lee, T.K.W., Man, K.,
Poon, R.T.P., Fan, S.T., Wong, C.M., Ng, I.O.L., 2004. PIN1
overexpression and beta-catenin gene mutations are distinct
oncogenic events in human hepatocellular carcinoma.
Oncogene 23, 4182e4186.

Ryo, A., Nakamura, M., Wulf, G., Liou, Y.C., Lu, K.P., 2001. Pin1
regulates turnover and subcellular localization of -catenin by
inhibiting its interaction with APC. Nat. Cell Biol. 3, 793e801.

Tuominen, V.J., Ruotoistenm€aki, S., Viitanen, A., Jumppanen, M.,
Isola, J., 2010. ImmunoRatio: a publicly available web
application for quantitative image analysis of estrogen
receptor (ER), progesterone receptor (PR), and Ki-67. Breast
Cancer Res. 12, R56.

Warburton, H.E., Brady, M., Vlatkovi, N., Linehan, W.M.,
Parsons, K., Boyd, M.T., 2005. p53 regulation and function in
renal cell carcinoma. Cancer Res. 65, 6498e6503.

Winkler, K.E., Swenson, K.I., Kornbluth, S., Means, A.R., 2000.
Requirement of the prolyl isomerase Pin1 for the replication
checkpoint. Science 287, 1644e1647.

Wulf, G.M., Ryo, A., Wulf, G.G., Lee, S.W., Niu, T., Petkova, V.,
Lu, K.P., 2001. Pin1 is overexpressed in breast cancer and
cooperates with Ras signaling in increasing the transcriptional
activity of c-Jun towards cyclin D1. EMBO J. 20, 3459e3472.

Yaffe, M.B., Schutkowski, M., Shen, M., Zhou, X.Z.,
Stukenberg, P.T., Rahfeld, J.U., Xu, J., Kuang, J.,
Kirschner, M.W., Fischer, G., 1997. Sequence-specific and
phosphorylation-dependent proline isomerization: a potential
mitotic regulatory mechanism. Science 278, 1957e1960.

Yeh, E.S., Means, A.R., 2007. PIN1, the cell cycle and cancer. Nat.
Rev. Cancer 7, 381e388.

Yeh, E., Cunningham, M., Arnold, H., Chasse, D., Monteith, T.,
Ivaldi, G., Hahn, W.C., Stukenberg, P.T., Shenolikar, S.,
Uchida, T., 2004. A signalling pathway controlling c-Myc
degradation that impacts oncogenic transformation of human
cells. Nat. Cell Biol. 6, 308e318.

Yeh, E.S., Lew, B.O., Means, A.R., 2006. The loss of PIN1
deregulates cyclin E and sensitizes mouse embryo fibroblasts
to genomic instability. J. Biol. Chem. 281, 241e251.

Yi, P., Wu, R.C., Sandquist, J., Wong, J., Tsai, S.Y., Tsai, M.J.,
Means, A.R., O’Malley, B.W., 2005. Peptidyl-prolyl isomerase 1
(Pin1) serves as a coactivator of steroid receptor by regulating

http://dx.doi.org/doi:10.1016/j.molonc.2011.06.002
http://dx.doi.org/10.1016/j.molonc.2011.06.002
http://dx.doi.org/10.1016/j.molonc.2011.06.002
http://dx.doi.org/10.1016/j.molonc.2011.06.002


M O L E C U L A R O N C O L O G Y 5 ( 2 0 1 1 ) 4 6 5e4 7 4474
the activity of phosphorylated steroid receptor coactivator 3
(SRC-3/AIB1). Mol. Cell Biol. 25, 9687e9699.

You, H., Zheng, H., Murray, S.A., Yu, Q., Uchida, T., Fan, D.,
Xiao, Z.X.J., 2002. IGF 1 induces Pin1 expression in promoting
cell cycle S phase entry. J. Cell Biochem. 84, 211e216.

Zacchi, P., Gostissa, M., Uchida, T., Salvagno, C., Avolio, F.,
Volinia, S., Ronai, Z., Blandino, G., Schneider, C., Del Sal, G.,
2002. The prolyl isomerase Pin1 reveals a mechanism to
control p53 functions after genotoxic insults. Nature 419,
853e857.

Zheng, H., You, H., Zhou, X.Z., Murray, S.A., Uchida, T., Wulf, G.,
Gu, L., Tang, X., Lu, K.P., Xiao, Z.X.J., 2002. The prolyl
isomerase Pin1 is a regulator of p53 in genotoxic response.
Nature 419, 849e853.

http://dx.doi.org/10.1016/j.molonc.2011.06.002
http://dx.doi.org/10.1016/j.molonc.2011.06.002
http://dx.doi.org/10.1016/j.molonc.2011.06.002

	 Tumor suppressive activity of prolyl isomerase Pin1 in renal cell carcinoma
	1 Introduction
	2 Materials and methods
	2.1 Copy number analysis
	2.2 Gene expression analysis
	2.3 Cell lines and antibodies
	2.4 Retrovirus preparation and transduction
	2.5 Immunoblotting
	2.6 RT-PCR
	2.7 Soft agar assay
	2.8 Xenograft tumor model
	2.9 Immunohistochemistry
	2.10 Statistical analysis

	3 Results
	3.1 PIN1 gene is frequently deleted and under-expressed in human clear cell RCC (ccRCC)
	3.2 Pin1 attenuates growth of ccRCC cells in soft agar
	3.3 Pin1 attenuates ACHN tumor growth in a xenograft model
	3.4 Repression of p53 activity can prevent Pin1-mediated tumor inhibitory activity

	4 Discussion
	 Conflict of interest
	 Acknowledgments
	 Appendix Supplementary data
	 References


