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SUMMARY

The fungal protein CBP (calcium binding protein) is a known virulence factor with an unknown 

virulence mechanism. The protein was identified based on its ability to bind calcium and its 

prevalence as Histoplasma capsulatum’s most abundant secreted protein. However, CBP has no 

sequence homology with other calcium binding proteins and contains no known calcium-binding 

motifs. Here, the NMR structure of CBP reveals a highly intertwined homodimer and represents 

the first atomic level NMR model of any fungal virulence factor. Each CBP monomer is comprised 

of four α-helices that adopt the saposin fold, characteristic of a protein family that binds to 

membranes and lipids. This structural homology suggests that CBP functions as a lipid-binding 

protein, potentially interacting with host glycolipids in the phagolysosome of host cells.
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INTRODUCTION

The fungal pathogen Histoplasma capsulatum is uniquely adapted to survive and replicate 

within the phagolysosome of macrophages (Eissenberg et al., 1988). H. capsulatum secretes 

its virulence factor CBP, originally designated a calcium-binding protein (Batanghari and 

Goldman, 1997), into this intracellular compartment, and this process is essential for causing 

respiratory infections in mammals (Sebghati et al., 2000). CBP is the only detectable 

calcium-binding macromolecule released by Histoplasma yeasts and is the major component 

of culture supernatant, indicative of an important function for this protein in sensing, 

modifying, and/or regulating the environment within the phagolysosome (Batanghari and 

Goldman, 1997; Batanghari et al., 1998). Equilibrium calcium-binding constants for CBP 

reveal significant Ca2+- binding affinity (KD = 6.45 ± 0.4 nM), however no structural 
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changes occur upon binding calcium (Beck et al., 2008). These features suggest that the role 

of CBP may be more complex than simple calcium acquisition, because other calcium 

binding proteins in this class (i.e. with high affinity for calcium coupled with no 

conformational change) are involved in deactivation of signal transducers and/or quenching 

of Ca2+ signals. The ultimate goal of this work was to determine the tertiary structure of 

CBP to generate hypotheses regarding its specific function and precise role in pathogenesis.

CBP was first identified as a secreted calcium-binding protein produced only in the yeast 

form, not the mold form, of this dimorphic fungus (Batanghari and Goldman, 1997). Later 

studies showed that it is the most abundant protein released by H. capsulatum and that its 

production continues as the yeast multiplies inside host cells (Kugler et al., 2000). Most 

importantly, CBP has been genetically proven to be indispensable for survival of H. 
capsulatum in both macrophage and mouse models of pulmonary infection (Sebghati et al., 
2000).

Previous characterization of CBP’s structure has yielded information on the oligomeric 

status, disulfide bond linkages, and overall protein stability (Beck et al., 2008). Biophysical 

studies revealed that CBP exists as a symmetric homodimer in solution and that the structure 

is unperturbed by calcium binding. Additionally, three critical disulfide bond connections 

were determined experimentally (Fig. 1). Characterization of the structural stability and 

unfolding mechanisms of CBP indicated potential mechanisms of protein regulation and 

insight into the functional status as an extremely stable, protease-resistant protein.

CBP shares no significant sequence homology with other proteins in NCBI’s GenBank 

Database, with the exception of orthologs in three different strains of H. capsulatum and the 

closely related dimorphic fungal pathogen Paracoccidioides brasilensis (Fig. 1). To gain 

insight into the specific function(s) of CBP, we have determined the three-dimensional 

solution structure of this homodimeric protein. The resulting global fold of CBP is highly 

similar to saposin B (SapB) (Ahn et al., 2003), a mammalian sphingolipid activator protein 

with broad lipid binding specificity and lysosomal localization. Despite lack of primary 

sequence homology, the structural similarity between the two proteins suggests a common 

mechanism whereby CBP is involved in lipid binding, lipid metabolism, membrane 

remodeling, and/or membrane stability.

RESULTS

NMR structure determination

We have recently reported the full backbone and sidechain chemical shift assignments for 

CBP (Beck et al., 2008) (BRMB accession #15404). From the analysis of short range NOE, 

CSI, and dihedral angle constraints; we concluded that CBP is composed of four helical 

segments: α1 (residues 5-26), α2 (residues 32-37), α3 (residues 42-50), and α4 (residues 

58-63) (Fig. 1). Here we determined the complete structure of endogenously synthesized 

CBP using 2,827 experimental restraints, including 2,679 inter-proton distance restraints 

derived from nuclear Overhauser enhancements (NOEs). Dihedral angle restraints and 

hydrogen bonds were included from the analysis of chemical shifts using TALOS 

(Cornilescu et al., 1999) and CSI (Wishart and Sykes, 1994a), respectively. During initial 
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NOE assignment and structure calculations for monomeric CBP (using ARIA 1.2 interfaced 

to CNS (Brunger et al., 1998; Nilges et al., 1997)), some restraints could be assigned 

manually to intermonomer NOEs. For example, during the assignment process, intense 

NOEs were observed between the aromatic protons of F19 and Cβ proton of V5, which are 

not compatible with an intact α1 helix. NOEs such as these can only be explained in terms 

of dimer structure where the N-terminus of α1 of one monomer is in close contact with the 

C-terminus of α1 of the second monomer in an antiparallel coiled-coil structure. However, 

the symmetry-related degeneracy of the spectra was an obstacle toward the full structural 

study of the dimer, and the lack of a sufficient number of unambiguous distance restraints 

initially prevented us from obtaining a high-resolution quaternary structure of CBP.

To further distinguish inter- from intramolecular NOEs, we prepared a heterolabeled dimer 

by mixing eqiumolar unlabeled and fully 13C, 15N- labeled monomeric CBP obtained after 

denaturing dimers with 8 M urea. Isotope filtered/edited NOESY experiments (Zwahlen et 
al., 1997) performed on this heterolabeled dimer allowed for the identification of a set of 

intermonomer NOE connectivities. The unambiguous distance constraints derived from 

these NOEs could be used for structure determination using ARIAv2.2β (Rieping et al., 
2007), which accommodates restraints for symmetric homodimer structure calculations, and 

accordingly produced the ensemble of lowest energy NMR structures presented in Figure 

2A.

Architecture of the dimer

Each monomer consists of four α-helices arranged in a long hairpin that is bent into a simple 

V-shape. The outer surface of the monomer is predominantly hydrophilic, whereas the inner 

surface of the “V” is lined with the side chains from hydrophobic residues. CBP has 12 

charged residues (two lysines, one arginine, six aspartate, and three glutamate) resulting in a 

net negative charge and an estimated pI of 3.93. The charges are not uniformly positioned on 

the surface (Fig. 3A and B) so that a high density of basic charge is buried by the dimer 

interface. The fold of each subunit is stabilized by three disulfide bridges, two connecting 

the extreme C-terminus with the N-terminus of α2 and another between α3 and α4.

The homodimer is formed by a head-to-tail interaction of the two monomers involving all 

four helices. Helix α1 (V5-A25) is especially interesting because of its amphipathic nature 

and predominance of hydrophobic (V5, F9, Y12, V16, V18, F19, and L22) residues. Several 

key long-range intermolecular NOEs assigned to these same residues in α1 indicate their 

participation in the dimer interface. Interestingly, there is little evidence for ion pairing 

between the subunits. Only one symmetrical pair of intermolecular salt bridges is formed 

between the side chains of R17 and D58 (Fig. 3C and D). Presumably this interaction further 

stabilizes the dimer.

In this structure, more than 25% of the surface of each monomer (representing 1122 Å 2) is 

buried in the dimer interface. Nearly all the hydrophobic residues of the protein are 

positioned in the cavity at the dimer interface. Disruption of the dimer would expose at least 

12 of these residues to the solvent; suggesting that the dimer is the energetically favorable 

form. This correlates well with previous unfolding data that indicated that an isolated 

monomeric form of CBP is unstable (Beck et al., 2008).
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Backbone disorder and dynamics

{1H} 15N heteronuclear NOE measurements provide a qualitative assessment of the mobility 

of the N-H bond vectors for individual residues and is sensitive to both the mobility of the 

overall tumbling time of the protein (τm) and fast internal motions (Palmer, 1993). Although 

heteronuclear NOE data alone are not sufficient for fully quantifying the dynamic behavior 

of molecules, they have been used as a probe for assessing the structural flexibility of a 

protein (Cho et al., 1996; Farrow et al., 1995). Measured NOE values, shown in Figure 4, are 

all positive and hover near the slow tumbling limit. Areas of intermediate NOEs (such as 

residues 4, 39-41, and 47) reflect an increase in dynamic flexibility. The {1H} 15N 

heteronuclear NOE in these distinct areas also correlates with a decrease in the number of 

long range NOEs and an increase in local rmsd (Fig. 4A and C), indicating a high degree of 

mobility in these loop regions of the structure. Taken as a whole, these results indicate that 

CBP is very rigid, with little disorder and dynamic flexibility with respect to the overall 

tumbling of the protein.

Structural homology

Dimerization of proteins via a coiled-coil segment is common, therefore a Dali(Holm and 

Sander, 1993) search of the Protein Data Bank (PDB) retrieved an abundance of structural 

homologs for the paired helix α1 of CBP. However, the Dali search did not yield a close 

match for the overall structure. Subsequently, the FATCAT server (Ye and Godzik, 2004a, 

2004b) was used to search the PDB for structural homologs to CBP. The closest match was 

to the mammalian homodimeric SapB protein (PDB accession number 1N69), which is a 

member of the saposin-fold family of proteins that bind to membranes and lipids (Ahn et al., 
2003; Munford et al., 1995). Despite a lack of sequence homology, the three-dimensional 

structure of CBP is highly similar (FATCAT p-value = 4.5e-2 and a RMSD of 2.39 Å with 1 

twist) to that of SapB as revealed in superposition of two structures in Figure 5A.

CBP dimers are formed by interlocking two V-shaped monomers in the same manner as the 

SapB monomers, based on the crystal structure of human saposin B (Ahn et al., 2003) (Fig. 

5B and C). Like CBP, the structure of SapB is comprised of two symmetric monomer halves 

that each contain four amphipathic α-helices folded into a single globular domain. Notably 

CBP shares the same disulfide linkage pattern (1-6, 2-5, and 3-4), which is also 

characteristic of the saposin-like protein (SAPLIP) family (Munford et al., 1995). However, 

the linear spacing of these cysteine residues in CBP is quite different from the consensus 

spacing in the sequence of the saposins. The SAPLIP family of proteins ranges from 70 to 

84 residues in length, analogous to CBP at 78 amino acids in length.

Evidence of bound lipid

Upon further review of the FATCAT structural homology hit to SapB (1N69A), we realized 

that the highest structural similarity found for CBP (P-value of 4.5e-02; RMSD 2.51 Å) 

corresponds to one of three distinct monomeric forms of saposin B that were obtained by x-

ray crystallography (Ahn et al., 2003). Unintentional co-crystallization of lipids with SapB 

resulted in the observation of two different conformations of this protein: an asymmetric, 

closed holo conformation (chain A and B) and a symmetric, more solvent-accessible apo 
conformation (chain C and C’) (Ahn et al., 2003). CBP shares the greatest structural 
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similarity with chain A of SapB, which corresponds to the monomer conformation with lipid 

bound.

In light of this finding, we hypothesized that the sample of CBP used for NMR data 

collection might contain residual lipids much like the SapB crystallization samples. After 

running a 15N-HSQC on a 15N-labeled sample of CBP used in previous NMR experiments, 

this protein sample was passed over a lipophillic (“lipidex”) column to remove any bound 

lipids. After this delipidation procedure, the amide chemical shifts of several residues were 

perturbed (Fig. 6A), indicating a change in the local environment of these amino acids. 

Previous unsuccessful attempts to change the solution-state structure of CBP (with addition 

of calcium or EGTA), as well as the observed extreme stability of NMR samples over five 

years, indicate the stability and immobility of this protein and highlight the significance of 

its chemical shift changes upon this delipidation experiment. The putative lipid-binding 

residues were then mapped onto the protein structure of CBP and overlaid with residues 

identified in SapB that line the hydrophobic putative ligand-binding cavity (Fig. 6B and C). 

Most of these residues from CBP are similarly situated to those in the lipid-binding pocket 

of SapB, consistent with a shared role in lipid binding. Validation that these chemical shift 

perturbations are the result of lipid removal will require reconstitution of the lipid-bound 

form of CBP and demonstration that the original structure is restored. Preliminary lipid co-

sedimentation experiments have confirmed that CBP is able to bind a variety of lipids, but 

we have not yet been able to identify the native lipid bound to CBP by mass spectrometry 

approaches. There are a wide variety of lipid ligands that bind to members of the SAPLIP 

family, and the structural basis for lipid recognition and specificity by any of the saposins 

remains unclear, especially with regard to native ligands.

DISCUSSION

CBP was first identified ten years ago as the major protein secreted by the yeast form of H. 
capsulatum (Batanghari and Goldman, 1997), and subsequent studies on CBP focused on 

gene regulation, protein localization, and its essential role as a virulence factor. However, it 

has been difficult to predict any precise mechanism for CBP, because the primary sequence 

lacks homology to any protein with a known function. Even the relevance of in vitro 
measurements of calcium binding is unclear with respect to CBP function in vivo. Structure 

determination provided the only viable outlet for uncovering potential functional roles for 

this protein.

The final NMR ensemble of homodimeric CBP structures exhibits a backbone conformation 

generally consistent with the dominant α-helical motif described for all members of the 

saposin-like protein (SAPLIP) family, with significant structural homology to the 

mammalian saposin SapB (as determined from the FATCAT structural homology database 

search). CBP and SapB contain identical disulfide linkages (1-6, 2-5, 3-4) and are 

homodimers, despite the fact that the database search engines did not include these key 

features as search criteria. Recent homodimeric structures of Sap C and D (Rossmann et al., 
2008) which complement earlier SapA and B dimers (Ahn et al., 2003; Ahn et al., 2006), 

indicate that dimerization is a common feature of saposins. This is a feature also shared by 

homodimeric CBP. The SAPLIP family members, like CBP, are small proteins ranging in 

Beck et al. Page 5

Mol Microbiol. Author manuscript; available in PMC 2016 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



size from 8-11 kDa. A similar three-dimensional fold, conserved disulfide linkages, and 

shared biochemical property of lipid binding are the only identified common properties of 

all SAPLIPs (Bruhn, 2005). Besides the disulfide bridges, no other individual conserved 

residues have been identified that contribute to stability or function throughout the whole 

SAPLIP family (Bruhn and Leippe, 1999).

Although CBP shares little amino acid sequence homology with the mammalian saposins 

(A-D), the shared molecular architecture suggests that CBP is the first structurally 

characterized fungal member of the saposin-fold family. The four mammalian saposins have 

multiple functions, including that of enhancing lysosomal enzyme-lipid interactions by 

solubilizing the lipids and/or activating the lipid degrading enzymes (Bruhn, 2005; Kolter 

and Sandhoff, 2005; Schuette et al., 2001; Soeda et al., 1993). Members of the larger 

saposin-like family include NK-lysin (Liepinsh et al., 1997), granulysin (Anderson et al., 
2003), the pore-forming amoebapores (Hecht et al., 2004), the microbial cyclic polypeptide 

bacteriocin AS-48 (Gonzalez et al., 2000; Sanchez-Barrena et al., 2003) and the membrane-

targeting domain of the aspartic proteinase phytepsin (Kervinen et al., 1999). All these 

proteins share a common fold and the ability to interact with membranes, but have a wide 

variety of biological functions.

Based on biochemical and structural information, several mechanisms have been proposed to 

explain how saposin-like proteins interact with membranes (Alattia et al., 2006; Qi and 

Grabowski, 2001). For example, amoebapore A has been proposed to act via pore formation 

upon oligomerization (Hecht et al., 2004). In contrast, it has been suggested that NK-lysin, 

granulysin and bacteriocin AS-48 destabilize the membrane via binding of positively 

charged regions, a process termed “molecular electroporation” (Miteva et al., 1999). Yet a 

general mechanism for saposin-membrane interaction has been recognized whereby 

positively charged clusters on the surface of saposins interact with negatively charged lipid 

head groups (Ciaffoni et al., 2001; de Alba et al., 2003; Liu et al., 2005). The recently 

identified sulfate binding sites of Lys10 and Arg17 in the crystal structure of SapD were 

linked to biologically relevant interaction of SapD with phosphate groups of lipids 

(Rossmann et al., 2008). The sidechains of Lys11 and Arg17 in CBP may interact with 

anionic lipids in a similar fashion. Another congruence is that co-purification with 

endogenous lipids may influence the folding and structure of saposins, already noted for 

SapB and C (Ahn et al., 2003; Rossmann et al., 2008) and inferred from structural 

comparisons of CBP before and after a delipidation procedure.

The common lipid-binding feature among the SAPLIP family of proteins obviously does not 

limit their functional capabilities, which include antigen presentation and antimicrobial 

activity (Munford et al., 1995). H. capsulatum could take advantage of a number of lipid-

binding mechanisms in order to alter the environment of the phagolysosome for survival and 

replication of the yeast. Modification of the phagolysosomal lipid content could alter the 

normal maturation or facilitate expansion of this compartment, thus providing a more 

suitable environment for H. capsulatum. It is also possible that membrane destabilization 

and/or pore formation arising from the binding of CBP could facilitate pH modification of 

the phagolysosome associated with in vivo survival and replication of H. capsulatum 
(Eissenberg et al., 1993).
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Obviously several different models of pathogenesis related to saposin-like membrane/lipid 

binding by CBP can be hypothesized, but the detailed mechanism of action of CBP during 

Histoplasma infection still remains to be determined. Intriguingly, CBP shows the closest 

structural resemblance to a mammalian saposin that is found in lysosomes, which are major 

components of the intracellular home of H. capsulatum (Eissenberg et al., 1988). It is 

therefore tempting to speculate that the primary role of CBP is molecular mimicry or direct 

subversion of host saposin function in the phagolysosomal compartment. Regardless, the 

quaternary structure of CBP suggests new biological roles for this secreted protein that are 

distinct from the originally identified correlation with calcium binding.

EXPERIMENTAL PROCEDURES

Sample preparation

Unenriched, 15N- and 13C/ 15N-enriched CBP proteins were expressed in the native 

organism (H. capsulatum) and purified using a modification of a procedure described earlier 

(Batanghari and Goldman, 1997) and modified (Beck et al., 2008). Samples used for NMR 

spectroscopy contained ~1 mM CBP in 10 mM deuterated-HEPES (pH 6.5), 100 mM KCl, 

0.02% (w/v) NaN3 and either 5% or 99% D2O.

Heterolabeled dimers were obtained by mixing equimolar unlabeled and fully (13C/15N-) 

labeled CBP (2 mM total protein concentration). The mixture was denatured to a final 

concentration of 8 M urea, then refolded by extensively dialyzing against 10 mM 

ammonium acetate, pH 7.0 for 48 hours, followed by lyophilization and resuspension in 

NMR buffer (99% D2O).

Delipidation of 15N-labeled CBP was attempted by passing protein over a lipophillic 

(“lipidex”) column to remove bound lipids (H6258 Hydroxyalkoxypropyl-Dextran; Sigma, 

St. Louis). Sample was then lyophilized to dryness and resuspended in NMR buffer.

NMR spectroscopy

All NMR data were collected at 25°C on 600- and 700-MHz Varian Unity INOVA (Palo 

Alto, CA) spectrometers. Pulse sequences were either provided by Varian (Palo Alto, CA) 

BioPack or were kindly provided by Dr. Lewis Kay (University of Toronto). Data were 

processed with FELIX 2001 (Accelrys, Inc.).

Distance restraints were obtained from isotope-edited 3D-NOESY experiments: 15N-15N-

edited NOESY (τ = 200ms), 15N-edited (τ = 180 ms), 13C-edited (τ = 180 ms), and 

aromatic 13C-edited (τ = 200 ms) NOESY-HSQC. Inter-monomer distance restraints were 

obtained from 3D 13C F1-filtered, 12C F3-edited NOESY-HSQC(Zwahlen et al., 1997) (τ = 

200 ms) with the heterolabeled dimer. Backbone dihedral angle restraints were obtained 

from backbone Cα, Cβ, C’, HN and N chemical shifts using TALOS (Cornilescu et al., 1999) 

and verified by directly measured 3JHNHα coupling constants (Vuister and Bax, 1993). 

Slowly exchanging amide protons were identified by recording 2D 1H-15N HSQC 

experiments, 24 and 48 hours after the transfer of lyophilized protein into D2O. Hydrogen 

bond restraints were obtained from the consensus of a combination of amide hydrogen 
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exchange data, chemical shift index analysis (Wishart and Sykes, 1994b), and 3JHNHα 

(Vuister and Bax, 1993) experiments.

{1H} 15N heteronuclear NOEs were obtained by recording spectra with and without the use 

of presaturation applied during the delay between successive transients (Kay et al., 1989). 

Steady-state {1H}15N NOE values were determined from the ratio of peak intensities in the 

spectra recorded with and without saturation of protons during the NOE delay period and 

averaged for the duplicate spectra.

Structure calculations

NOESY spectra were peak picked in FELIX (Accelrys, Inc.) and used as input into ARIA 

(version 1.2) (Nilges et al., 1997) implemented in CNS (Version 1.1) (Brunger et al., 1998). 

For the first stage of NOE assignment and structure calculation, an in-house script was used 

to remove all peaks found in filtered-edited CH-NOESY spectra from the peak lists of the 

CH-, NH- and aromatic-NOESY spectra. Three pairs of disulfide bonds together with 46 

backbone H-bond restraints were also incorporated into the calculations. Backbone H-bond 

restraints were included in regions of regular secondary structure as defined by both CSI 

consensus and characteristic NOE patterns. A total of 96 ϕ and ψ angle constraints from 

TALOS were also used.

The calculation protocol comprised eight iterations of 20 structures each and a final cycle of 

100 structures using the default ARIA protocol to determine the structure of the monomeric 

subunit of homodimeric CBP. Manually assigned 15N-15N NOEs were included; however all 

remaining NOE restraints were assigned using ARIA’s ADR method for iterative structure 

calculation and NOE assignment (Nilges, 1995, 1997; Nilges et al., 1997). A total of 1152 

unambiguous and 213 ambiguous restraints were identified by ARIA v1.2, and these 

restraints were manually checked. The 20 lowest energy structures from iteration 8 were 

refined in a 9-Å shell of water molecules.

The program HADDOCK (High Ambiguity Driven protein-protein DOCKing) (Dominguez 

et al., 2003) was used to “dock” the 10 lowest energy CBP monomers calculated in the 

previous stage using ARIA v1.2. The dimer interface was constrained with a set of nine 

manually assigned intermolecular NOEs from the filtered-edited CH-NOESY experiment. 

All default parameters of HADDOCK were used.

For the final stage of quaternary structure refinement, a pre-release ARIA version 2.2 

(Rieping et al., 2007) structure calculation protocol was obtained from B. Bardiaux and M. 

Nilges (personal communication). ARIA v2.2β was implemented in order to calculate 

symmetric homodimers because all distance restraints can be designated as intermonomer, 

intramonomer, or both. In addition, non-crystallographic symmetry is enforced and a 

packing force can be used to maintain monomers in close proximity during simulated 

annealing. Default parameters were used with a few notable exceptions due to the fact that 

the initial linear chain structure for simulated annealing was replaced with the HADDOCK-

derived CBP homodimer. The assignment parameter p was set to a smaller value (e.g. 0.9999 

instead of 1) and the violation tolerance to an intermediate value of 5.0 Å (instead of default 

value of 1000 Å) as suggested for it0 (Linge et al., 2001). The final 20 conformers were 
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refined in a shell of water and the resulting structural ensemble was validated by 

PROCHECK (Laskowski et al., 1993). The statistics for these are listed in Table 1 (per 

dimer). The final structural ensemble includes the 20 lowest-energy (total energy) structures 

with no distance violations >0.5 Å and no angle violations >10.0°. There were 71.1% of 

residues in the most favored region of the Ramachandran plot of the final 20 structures of 

CBP. All structural representations of CBP were drawn in MOLMOL (Koradi et al., 1996) or 

PyMol (DeLano, 2002). The atomic coordinates for CBP have been deposited in the Protein 

Data Bank, www.pdb.org (PDB ID code 2JV7). The chemical shifts for CBP have 

previously been deposited in BRMB with accession number 15404.

NMR chemical shift mapping

Changes in the 2D 1H-15N HSQC spectra of 15N-labeled CBP upon delipidation were 

monitored and quantified using the length of the vector describing the chemical shift change 

for each peak: Δδ = [(ΔδHN)2 + (ωΔδN)2]1/2, where the weighting factor (0.15) is determined 

by the relative magnitudes of the amide nitrogen chemical shift range compared to that for 

the NH proton chemical shift range (Tugarinov and Kay, 2003).
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1. 
CBP homology and secondary structure. H. capsulatum strain G186AR CBP1 (accession 

O42720) sequence alignment with two other H. capsulatum strains CBP1 (G217B), CBP1 
(WU24), and CBP1 from P. brasiliensis (Q6TS31). The four helices of CBP are shown as 

gray bars above the alignment. Conserved cysteine residues are numbered and brackets 

depict disulfide bond connections determined for G186AR CBP1. The triangle above the 

sequences indicates the start of the mature, secreted protein. The level of sequence 

homology is indicated by bar chart below sequences, as well as with color using the 

ClustalX default parameters (red, basic; blue, hydrophobic; green, uncharged hydrophilic; 

and orange, polar uncharged).
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2. 
Three-dimensional structure of CBP. (A) Superposition of 20 NMR structures representative 

of the CBP dimeric fold. The monomers are shown in cyan or magenta with disulfide bonds 

in orange for both. (B, C) Ribbon drawing of the lowest-energy conformers of monomer (B) 

and dimer (C). Red, N-terminal helix 1; yellow, helix 2; green, helix 3; and blue, helix 4; 

with orange disulfide bonds. Homodimer structures (A, C) are in same orientation.
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3. 
CBP dimer interface features burial of charges and hydrophobicity. (A, B) Surface 

electrostatic potential of CBP as a dimer (A) and monomer (B) (blue, positive charge; red, 

negative charge; and white, neutral). Charged surfaces calculated using MOLMOL (Koradi 

et al., 1996). (C, D) Structures of CBP homodimer (monomers are colored cyan or magenta) 

showing arrangement of intermolecular Arg 17-Asp 58′ polar interactions. (D) Enlarged 

detail of salt bridges (indicated by dotted lines) stabilizing the CBP dimer visualized using 

PyMol(DeLano, 2002).
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4. 
Sequence-dependent NOEs highlight structural and dynamic features of stable CBP 

homodimer. (a) Distribution of NOE distance restraints, where the intermolecular (light 

gray), long-range (white), medium-range (dark gray), and short-range (black) NOE distance 

restraints used for the calculation of the final ensemble of structures of CBP are displayed. 

(b) Measured heteronuclear {1H}-15N NOE data (±1 std dev) indicate the protein is very 

rigid, with only discrete region of slightly increased backbone mobility. (c) Local precision 

of CBP conformation is reflected in rms deviation values plotted against the residue number. 

Location of secondary structure elements, sequence, and residue numbering are given at top 

of figure.
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5. 
CBP is structurally homologous to saposin B. (A) Backbone structural superposition of CBP 

(red) and SapB (blue; chain A, PDB 1N69) from FATCAT structural alignment (p-value = 

4.5 e-2). RMSD for alignment was 2.51 Å with one twist (introduced by FATCAT alignment 

procedure at hinge region in order to get better alignment of two structures). Side-by-side 

structural comparison of homodimeric CBP (B) and SapB (C) with similar orientation of N-

terminal helices and four helices colored identically with disulfide bonds in orange.
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6. 
Evidence for lipid binding by CBP. (A) Chemical shift perturbation of CBP after 

delipidation procedure monitored by HSQC spectra. Ribbon diagram of CBP monomer (B) 

and dimer (C) colored according to chemical shift changes induced following presumed 

delipidation of CBP. Residues colored by gradient, with most affected residues colored with 

darkest blue to those unaffected in white. The residues most affected are also labeled in (B).
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Table 1

NMR and refinement statistics for CBP

NMR distance and dihedral constraints per monomer

Distance constraints

   Total NOE 2679

   Intra-residue 508

   Inter-residue 1475

      Sequential (∣i − j∣=1) 416

      Medium-range (∣i −j∣<4) 297

      Long-range (∣i−j∣>5) 381

      Intermolecular 251

   Hydrogen bonds 55

   Dihedral angle restraints 90

Structure statistics

Violations (mean and s.d.)

   Distance constraints (Å) 0.288 ± 0.002

   Dihedral angle constraints (°) 1.91 ± 0.06

   Max. dihedral angle violation (°) 7.43

   Max. distance constraint violation (Å) 0.43

Deviations from idealized geometry

   Bond lengths (Å) 0.008 ± 0.0001

   Bond angles (°) 1.1 ± 0.008

   Impropers (°) 1.2 ± 0.01

Average pairwise rms deviationa (Å)

   Heavy atoms 1.12 ± 0.01

   Backbone 0.61 ± 0.20

Ramachandran plot (%)b

   Most favored regions 71.1

   Additionally allowed regions 14.8

   Generously allowed regions 8.9

   Disallowed regions 5.2

a
Pairwise r.m.s. deviation was calculated among 20 refined structures using ARIA2.2 (Rieping et al., 2007).

b
Calculated with PROCHECK-NMR (Laskowski et al., 1993).

Mol Microbiol. Author manuscript; available in PMC 2016 May 23.


	SUMMARY
	INTRODUCTION
	RESULTS
	NMR structure determination
	Architecture of the dimer
	Backbone disorder and dynamics
	Structural homology
	Evidence of bound lipid

	DISCUSSION
	EXPERIMENTAL PROCEDURES
	Sample preparation
	NMR spectroscopy
	Structure calculations
	NMR chemical shift mapping

	References
	1
	2
	3
	4
	5
	6
	Table 1

