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Abstract
The β3-adrenergic receptor (β3AR) is an essential regulator of metabolic and endocrine functions. A
major cellular and clinically significant consequence of β3AR activation is the substantial elevation
in interleukin-6 (IL-6) levels. Although the β3AR-dependent regulation of IL-6 expression is well
established, the cellular pathways underlying this regulation have not been characterized. Using a
novel method of homogenous reporters, we assessed the pattern of activation of 43 transcription
factors in response to the specific β3AR agonist CL316243 in adipocytes, cells that exhibit the highest
expression of β3ARs. We observed a unique and robust activation of the CRE-response element,
suggesting that IL-6 transcription is regulated via the Gs-protein/cAMP/protein kinase A (PKA) but
not nuclear factor kappa B (NF-κB) pathway. However, pretreatment of adipocytes with
pharmacologic inhibitors of PKA pathway failed to block β3AR-mediated IL-6 up-regulation.
Additionally, stimulation of adipocytes with the exchange protein directly activated by cAMP (Epac)
agonist did not induce IL-6 expression. Instead, the β3AR-mediated transcription of IL-6 required
activation of both the p38 and PKC pathways. Western blot analysis further showed that transcription
factors CREB and ATF-2 but not ATF-1 were activated in a p38- and PKC-dependent manner.
Collectively, our results suggest that while stimulation of the β3AR leads to a specific activation of
CRE-dependent transcription, there are several independent cellular pathways that converge at the
level of CRE-response element activation, and in the case of IL-6 this activation is mediated by p38
and PKC but not PKA pathways.
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1. Introduction
Interleukin-6 (IL-6) is a pleiotropic cytokine that modulates immune response, inflammation,
nervous, hematopoietic, and endocrine systems (Kamimura et al., 2003; Kishimoto, 2005).
Although IL-6 has a widespread tissue distribution, previous reports have indicated that up to
30% of circulating IL-6 is derived from adipose tissue (Fried et al., 1998; Mohamed-Ali et al.,
1997). Consistent with these reports, plasma IL-6 levels are markedly elevated in obese subjects
(Vgontzas et al., 1997). Obesity is closely associated with chronic low-grade inflammation
characterized by abnormal production of cytokines and acute phase proteins (Hotamisligil,
2006; Wellen and Hotamisligil, 2005). The inflammatory response that emerges in the presence
of obesity seems to be triggered by and predominantly reside in adipose tissue. Additionally,
the production of IL-6 is well documented in different adipose tissues and adipocyte models
(Burysek and Houstek, 1997; Fain et al., 2004; Hoch et al., 2008; Mohamed-Ali et al., 2001;
Path et al., 2001; Skurk et al., 2007; Vicennati et al., 2002).

Both white (WAT) and brown (BAT) adipose tissues are innervated by sympathetic nervous
system (SNS) (Fliers et al., 2003; Slavin and Ballard, 1978; Wirsen and Hamberger, 1967).
Although sympathetic innervation is less abundant in WAT than in BAT, norepinephrine
turnover in WAT can be significant in the immediate vicinity of nerve terminals, particularly
in response to stress (Bamshad et al., 1998; Collins et al., 2004). In rodents SNS activation
during stress has been associated with elevated plasma IL-6 levels (Takaki et al., 1994; Zhou
et al., 1993). Similarly, in humans a positive correlation has been observed between exercise-
induced peak plasma epinephrine or norepinephrine and IL-6 levels (Papanicolaou et al.,
1996). Epinephrine and norepinephrine regulate IL-6 release from adipocytes predominantly
via activation of β-adrenergic receptors (βARs). In vitro, administration of norepinephrine, the
general βAR agonist isoproterenol, or the selective β3AR agonist CGP-12117 stimulated IL-6
expression in murine brown adipocytes (Burysek and Houstek, 1997), and isoproterenol
elevated IL-6 production in human breast adipocytes (Path et al., 2001). In vivo, administration
of β2 or β3 agonists in mice or infusion of isoproterenol in human volunteers resulted in
heightened plasma IL-6 concentrations (Mohamed-Ali et al., 2001). Although β3AR-
dependent regulation of IL-6 expression is well established, the intracellular signaling
pathways underlying this regulation have not been characterized.

Activation of the β3AR by epinephrine, norepinephrine, or specific agonists typically results
in the Gs-dependent activation of adenylate cyclase, increases in intracellular cAMP, and
stimulation of protein kinase A (PKA) (Guan et al., 1995; Lindquist et al., 2000; Soeder et al.,
1999). PKA, in turn, regulates expression of various genes via phosphorylation of the
transcription factor cAMP-responsive element binding protein (CREB) which binds to cAMP-
responsive element (CRE) sites in the promoter region of cAMP-responsive genes (Rockman
et al., 2002). Recently, cAMP has been shown to activate not only PKA but also a class of
cyclic nucleotide-gated (CNG) cation channels and a small family of guanine nucleotide
exchange factors (GEFs) known as exchange proteins directly activated by cAMP (Epacs) (de
Rooij et al., 1998; Kawasaki et al., 1998b).

New layers of complexity have been added to the field of β3AR signaling with the discovery
that β3ARs couple to Gi as well as Gs. In adipocytes, stimulation of the β3AR activates the
extracellular signal-regulated kinases 1 and 2 (ERK1/2) via the Gi-dependent pathway (Cao et
al., 2000; Gerhardt et al., 1999; Soeder et al., 1999). However, discrepant reports from other
groups suggest that β3AR-dependent ERK1/2 activation is mediated via the Gs/PKA pathway
(Lindquist et al., 2000; Mizuno et al., 1999). In addition to ERK1/2, activation of β3ARs in
adipocytes has been shown to stimulate another mitogen-activated protein kinase (MAPK) p38
through the classical Gs- and PKA-dependent pathway (Cao et al., 2001; Moule and Denton,
1998), although an obligatory role of PKA in p38 phosphorylation was not confirmed in another
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work (Mizuno et al., 2002). Finally, activation of β3ARs leads to stimulation of one more major
family of signaling enzymes- protein kinases C (PKCs). It has been demonstrated that β3AR
agonists increase glucose uptake in brown adipocytes stimulating conventional and novel PKCs
(Chernogubova et al., 2004). Thus, β3ARs exhibit a dynamic capacity to stimulate divergent
signaling pathways.

To elucidate the signaling pathways controlling IL-6 production in white adipocytes, we
employed a novel method of homogenous reporters (Romanov et al., 2008) and assessed the
activation pattern of 43 transcription factors in response to the β3AR-specific agonist
CL316243. We observed a unique and robust activation of the CRE-response element, but not
NF-κB which is a pivotal regulator of pro-inflammatory cytokine expression (Baldwin,
1996). CRE activation suggested regulation of IL-6 transcription via Gs/cAMP/PKA activity.
However, subsequent experiments demonstrated that IL-6 expression is not mediated through
PKA or NF-κB pathways, but instead requires activation of p38- and PKC-dependent signaling
mechanisms.

2. Materials and Methods
2.1. Cell culture

The C3H10T1/2, 3T3-L1, and HEK 293 cells were obtained from American Tissue Culture
Collection Center (Rockville, MD). Cells were grown in DMEM (Sigma, St Louis, MO)
supplemented with 10% heat-inactivated FBS (Sigma), 2mM L-glutamine (Gibco, Carlsbad,
CA), and 1x penicillin/streptomycin (Gibco) under a humidified atmosphere with 5% CO2 at
37°C. 3T3-L1 fibroblast cells were treated with 0.5 mM IBMX (Sigma), 1 μM dexamethasone
(Sigma), and 10 μg/ml insulin (Sigma) to initiate adipogenesis as described previously (Mizuno
et al., 1999). C3H10T1/2 adipogenesis was induced by incubating cells in growth media
containing 1 μM dexamethasone, 0.5 mM IBMX, 1 μM rosiglitazone, and 10 μg/ml insulin for
2 days, after which cells were allowed to differentiate in growth media with two more boosts
of 1 μM rosiglitazone and 10 μg/ml insulin. After more than 90% of cells became differentiated,
the media containing inducers of differentiation was replaced with growth medium without
inducers, and cells were maintained for two more days in culture. Then adipocytes were treated
with various reagents.

2.2. Factorial homogenous reporter system
The mouse pluripotent fibroblasts C3H10T1/2 were plated at subconfluent density in 6-well
plates and then transfected the next day with the Factorial reporter library as described
previously (Romanov et al., 2008). The C3H10T1/2 cells were selected because we found that
they provide a unique fibroblast cell system that will continue to differentiate into adipocytes
after transfection, a critical step required for the Factorial application. After appropriate
adipocyte differentiation, the cells were stimulated with various reagents, total cellular RNA
was extracted and processed according to the Factorial detection protocol and quantified as
described previously (Romanov et al., 2008).

2.3. Drugs and treatment
CL316243, ICI 118,551, Betaxolol, SR59230A, RO31-8220, PTX, and 8CPT-2’-O-Me-cAMP
were obtained from Tocris Cookson, Ellisville, MI. NBD peptide, MG-132, U0126, and
SB203580 were purchased from Biomol, Plymouth Meeting, PA. CTX was bought from
Calbiochem, La Jolla, CA. An aliquot of each drug solution was added to the medium, and the
final concentration of the vehicle in the medium was adjusted to 0.1% (v/v). The control
medium contained the same amount of the vehicle. For inhibitor experiments, cells were
pretreated with the indicated drug for 1 h prior. Dose-response curves were established for the
agonist and antagonist. Doses within one log unit of the ED50 or ID50 were used for all in
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vitro experiments. The effectiveness of the chosen inhibitor doses was confirmed in our
previous report (Tan et al., 2007).

2.4. Detection of IL-6 by real-time PCR and ELISA
Total RNA was isolated using the RNeasy Mini Kit (Qiagen, Valencia, CA). Prior to reverse
transcription, RNA was treated with 2 units of TURBO DNase I (Ambion, Austin, TX) at 37°
C for 30 min. Reverse transcription was performed using Superscript III (Carlsbad, CA,
Invitrogen) according to the manufacturer’s instructions. IL-6 transcripts were quantified by
real-time PCR using TaqMan Gene Expression Assays (Applied Biosystems, Foster City, CA)
in an ABI PRISM 7000 Sequence Detection System. The expression of cytokine mRNAs was
normalized to the relative abundance of glyceraldehyde-3-phosphate dehydrogenase
(GAPDH). Fold induction was calculated using the 2−ΔΔCt method (Livak and Schmittgen,
2001). Experiments were performed in quadruplicate. IL-6 protein was determined in the
culture supernatant of adipocytes using ELISA kits (R&D Systems, Minneapolis, MN). ELISA
was performed according to the manufacturer’s instructions. Experiments were performed in
triplicate.

2.5. Plasmids and transfections
Reporter vectors containing specific cis-acting DNA sequence fused to secreted alkaline
phosphatase (SEAP), pCRE-SEAP, pAP-1-SEAP, pC/EBPβ-SEAP, pNF-κB-SEAP and
pETS-SEAP, were purchased from Clontech, Inc. (Palo Alto, CA). Mouse β3-AR clone
(GB#BC132000) was purchased from I.M.A.G.E. Consortium Collection (Open Biosystems,
Huntsville, AL) and subcloned into pCMV-SPORT6 expression vector (Invitrogen, Carlsbad,
CA). The 3rd exon of the clone (nucleotides 1239 to 1327) has been replaced with the PCR
amplified cDNA fragment corresponding to 3rd exon of the major β3-AR isoform NM_013462
(nucleotides 1975 to 2042). The functional activity of the clone has been confirmed in
transfection experiments. HEK 293 cells were transfected with Effectene transfection reagent
(Qiagen) according to the manufacturer’s instructions. For normalization of transfection
efficiency, cells were co-transfected with a β-galactosidase plasmid (Clontech). Cell
stimulation experiments were performed 24 h after transfection. Experiments were performed
in triplicate.

2.6. SEAP activity assay
The culture medium was changed to remove the accumulated SEAP prior to treatment of cells
with CL316243. The cells were incubated with CL316243 for 6, 12 or 24 h. Culture medium
was collected and subjected to SEAP activity assays. The SEAP activity in the culture medium
was measured with a Phospha-Light assay kit (Tropix, Foster City, CA), according to the
instructions of the manufacturer. Experiments were performed in triplicate.

2.7. Western blot analyses
Cells were lysed using cell lysis buffer containing phosphatase inhibitors (Cell Signaling
Technologies, Danvers, MA). The amount of protein in the cell lysates were quantified using
the BCA Protein Assay Reagent (Pierce, Rockford, IL). Proteins were resolved on 12% sodium
dodecyl sulfate (SDS) NuPAGE Novex Gels (Invitrogen, Carlsbad, CA). Following gel
electrophoresis, proteins were transferred to nitrocellulose membranes (Amersham, Piscatawy,
NJ). Membranes were blocked with 5% non-fat milk at room temperature for 1 h and then
probed with the specific antibodies at 4°C overnight. Protein expression was determined with
the specific primary antibodies according to the manufacturer’s instructions. Antibodies to p-
p38, pPKCs, pATF-2 and pCREB were obtained from Cell Signaling Technologies, Danvers,
MA, and antibodies to p-PKCε were received from Santa Cruz Biotechnology, Santa Cruz,
CA. The pCREB antibody also detects the pATF-1 at a different size. β-actin was used as the
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loading control. Antibodies were detected with corresponding horseradish peroxidase-linked
secondary antibodies. Blots were developed using Enhanced Chemiluminescent (ECL) reagent
(Perkin Elmer, Waltham, MA) and signals captured using the ImageQuant ECL system
(Amersham). Experiments were performed in triplicate.

2.8. Statistical analysis
Statistical significance was determined by performing an analysis of variance (ANOVA)
followed by Bonferroni test. Data are expressed as mean ± SEM. Differences were considered
significant if P < 0.05.

3. Results
3.1. β3AR activation leads to IL-6 increase in white adipocytes

We first sought to confirm that β3AR stimulation can modulate IL-6 mRNA expression in the
3T3-L1 adipocyte cell model (Green and Kehinde, 1976). 3T3-L1 adipocytes were treated with
CL316243, a specific β3 agonist (Bloom et al., 1992), and real-time quantitative PCR was used
to quantify the level of mRNA transcripts present. Treatment of 3T3-L1 cells with CL316243
(1 μM) resulted in about 30-fold increase in IL-6 transcripts, when compared to untreated cells
(Fig. 1a). In line with previously reported correlation between up-regulation of IL-6 mRNA
and protein secretion (Burysek and Houstek, 1997; Path et al., 2001), this increase in IL-6
mRNA expression was accompanied by a 3.5- and 4.8-fold increase in IL-6 protein secretion
by 24 and 48 h, respectively (Fig. 1b). Similarly, an up-regulation of IL-6 expression was also
observed in the murine white adipocytes C3H10T1/2 (results not shown). The CL316243-
induced up-regulation of IL-6 transcripts was blocked by the specific β3AR antagonist
SR59230A (1 μM), but not by the specific β1AR antagonist betaxolol (0.5 μM) or the specific
β2AR antagonist ICI118,551 (0.5 μM) (Fig. 1a). These results indicate that β3AR stimulation
leads to a significant up-regulation of IL-6 expression in white adipocytes.

3.2. β3AR-mediated IL-6 expression is PKA- and Epac- independent
To identify the regulatory pathways involved in β3AR-mediated signaling, we used a recently
described homogeneous reporter system termed Factorial (Romanov et al., 2008). The system
comprises 43 cis-regulatory reporter transcription units enabling simultaneous functional
profiling of multiple transcription factors present in the cell. We found that of all the Factorial
reporters, the CRE reporter was the only one whose activity was strongly induced (12-fold
induction) by CL316243 (1 μM) in C3H10T1/2 adipocytes (Fig. 2a). Activation of the CRE
reporter in the homogenous reporter experiment together with the presence of a functional CRE
element in the promoter region of IL-6 (Ammit et al., 2002; Edwards et al., 2007; Ray et al.,
1988) led to the expectation that the cAMP/PKA/CREB cascade underlies β3AR-mediated
IL-6 regulation. Surprisingly, however, stimulation of the CRE reporter in adipocytes by
CL316243 was not inhibited by the PKA inhibitor H89 (10 μM) (Fig. 2a). Furthermore, IL-6
mRNA expression was not blocked in 3T3-L1 cells pretreated with the PKA inhibitors H89 or
KT5720 (Fig. 2b), suggesting that the β3AR-dependent signaling pathway(s) leading to IL-6
up-regulation are distinct from the cAMP/PKA regulatory pathway.

We further examined the possibility that cAMP could activate IL-6 production through the
PKA-independent Epac (guanine nucleotide exchange factors directly activated by cAMP)
pathway (de Rooij et al., 1998; Kawasaki et al., 1998b). Epac proteins bind cAMP with high
affinity and activate the Ras superfamily small GPTases Rap1 and Rap2. To determine if Epac
activation results in IL-6 production, 3T3-L1 cells were treated with the Epac agonist, 8CPT-2’-
O-Me-cAMP (CPTOMe, 10 μM), and the level of IL-6 mRNA measured by real-time
quantitative PCR (Fig. 2c). Treatment of cells with CPTOMe failed to promote increased IL-6
mRNA levels. However, similar to previous reports, treatment of 3T3-L1 cells with cholera
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toxin (CTX), an activator of Gs proteins (Cassel and Selinger, 1977), did lead to a 16-fold
increase in IL-6 mRNA levels (Fig. 2c). Together, these data indicate that β3AR-mediated IL-6
production in white adipocytes depends on CRE activation but not PKA or Epac activation.

3.3. β3AR-mediated IL-6 expression is NF-κB-independent
Transcription factor NF-κB is a pivotal regulator of inflammation and has been shown to play
a central role in the transcriptional regulation of pro-inflammatory cytokines (Baldwin,
1996). Therefore, we sought to investigate whether NF-κB stimulation is required for β3AR-
mediated IL-6 expression. In a homogenous reporter system, NF-κB reporter activity was not
affected by CL316243 (1 μM) treatment, though it was strongly induced by TNFα (10 ng/ml)
which served as a positive control for NF-κB activation (Fig. 3a).

As the homogenous reporter assay results did not suggest a contribution of NF-κB in
CL316243-dependent IL-6 up-regulation, we confirmed this conclusion by independent
approaches. NF-κB activity can be inhibited using either NEMO binding peptide (NBD), which
binds to and inactivates IKKγ thereby blocking the phosphorylation and degradation of IκB
(May et al., 2000; Yamaoka et al., 1998), or MG-132, a proteosome inhibitor (Fenteany et al.,
1995; Myung et al., 2001). Pre-treatment of 3T3-L1 cells with NBD (100 μM) or MG-132 (25
and 50 μM) prior to β3AR stimulation with CL316243 (1 μM) did not block IL-6 up-regulation
(Fig. 3b) confirming the mechanism is NF-κB-independent.

In agreement with these results and data from homogenous reporter assay, human embryonic
kidney cell line 293 (HEK 293) co-transfected with the pNF-κB-SEAP reporter vector and
β3AR expression construct did not show significant changes in SEAP reporter activity
following CL316243 (1 μM) treatment (Fig. 3c). Thus, all these experiments strongly indicate
that β3AR stimulation does not result in NF-κB activation.

3.4. Role of MAPK pathways in β3AR-mediated IL-6 expression
It has been reported that β3ARs can activate ERK1/2 and p38 MAPK cascades through
interchangeable coupling to both Gi and Gs (Collins et al., 2004). Although findings from
various studies differ, β3AR coupling with Gi proteins has been implicated in phosphorylation
of ERK1/2 (Cao et al., 2000; Gerhardt et al., 1999; Robidoux et al., 2006; Soeder et al.,
1999). We used pertussis toxin (PTX), which ADP-ribosylates and inactivates Gi proteins, to
test the plausible contribution of this Gi-mediated pathway to β3AR-mediated IL-6 production.
The CL316243-induced IL-6 mRNA up-regulation was not inhibited in cells pretreated with
the PTX (Fig. 4a), excluding the role of Gi-dependent signaling in the regulation of IL-6
expression.

We next examined whether inhibition of the MAPK pathways could block the β3AR-dependent
IL-6 production. Pretreatment of 3T3-L1 cells with the p38 inhibitor SB203580 (5-10 μM)
blocked the CL316243-induced increase in IL-6 mRNA level (Fig. 4b). In contrast,
pretreatment with ERK inhibitor U0126 (10 μM) had no effect on CL316243-induced IL-6
expression (Fig. 4b). In the homogenous reporter assay, activation of the CRE reporter by
CL316243 was also blocked by pretreatment with SB203580 (10 μM; Fig. 4c). Additionally,
p38 phosphorylation following CL316243 treatment was observed in cell lysates by Western
blot analyses (Fig. 4d). Taken together, these results indicate that while no contribution of
Gi-dependent ERK1/2 stimulation was observed, p38 activation is required for β3AR-mediated
IL-6 production.

3.5. Role of the PKC pathway in β3AR-mediated IL-6 expression
Previous work has demonstrated that protein kinases C (PKCs) are essential for β3AR-mediated
glucose uptake regulation (Chernogubova et al., 2004). Thus, we sought to determine the effect
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of PKC inhibition on β3AR-mediated IL-6 production using the specific PKC inhibitor
RO31-8220 which blocks conventional (α, β, γ) and novel (ε and θ) PKC isoforms (Wilkinson
et al., 1993; Yuan et al., 2002). Pretreatment with RO31-8220 (1 and 10 μM) completely
inhibited CL316243-induced IL-6 mRNA expression in 3T3-L1 cells (Fig. 5a) and
significantly inhibited CL316243-mediated activation of the CRE reporter in the homogenous
reporter assay (Fig. 5b). Additionally, CL316243-mediated phosphorylation of several PKC
subtypes was detected applying an antibody specific for a panel of PKCs (α, βI, βII, δ, ε, and
η) phosphorylated at C-terminal residue homologous to serine 660 of PKCβII. In a subsequent
attempt to identify individual PKC isoforms activated by CL316243 treatment,
phosphorylation of PKC α/βII, θ, and ε was observed with the use of isoform-specific antibodies
(Fig. 5c). These findings indicate that conventional and novel isoforms of PKC play a
significant role in β3AR-mediated IL-6 expression.

3.6. Stimulation of β3AR leads to the phosphorylation of transcription factors CREB and
ATF-2

To determine transcription factors that mediate β3AR-dependent IL-6 expression, the
transcription factors which bind to the CRE-response element were investigated. First, to
confirm the results of the homogeneous reporter assay, a pCRE-SEAP reporter vector with the
CRE-response element was co-transfected into HEK293 cells with a β3AR expression
construct (Fig.6a). Cells were treated with CL316243, and SEAP activity was measured over
a 24-hour period. In agreement with the initial screening results, we observed a 5- to 6-fold
increase in CRE-dependent SEAP expression (Fig. 6a). To confirm that other transcription
factors most commonly associated with activation of PKC or p38 pathways are not activated
in response to β3AR stimulation (Buchwalter et al., 2004;Isakov and Altman, 2002;Trautwein
et al., 1993), analogues experiments were conducted with pAP-1-SEAP, pC/EBPβ-SEAP, and
pETS-SEAP reporter vectors. Again, in full agreement with the homogeneous reporter assay,
no significant differences in AP-1, C/EBPβ or ETS activities were found (Fig. 6b-d).

Transcription factors that specifically recognize the CRE-response element include the CREB/
ATF family (Hai and Hartman, 2001). We examined the phosphorylation states of CREB,
ATF-1, and ATF-2 transcription factors in 3T3-L1 adipocytes. An increased phosphorylation
of CREB, ATF-1, and ATF-2 was observed following CL316243 treatment (Fig. 7a).
Pretreatment of cells with the p38 inhibitor SB203580 (10 μM) remarkably reduced the
phosphorylation of both CREB and ATF-2, while administration of the PKC inhibitor
RO31-8220 (10 μM) decreased reduced phosphorylation of ATF-2 only (Fig. 7b). In contrast,
the phosphorylation of ATF-1 was unaffected by either SB203580 or RO31-8220. Thus, our
results suggest that the β3AR-dependent up-regulation of IL-6 transcription in adipocytes is
mediated by the transcription factors CREB and ATF-2.

4. Discussion
Activation of β3ARs in adipocytes and adipose tissue results in increased production of the
proinflammatory cytokine IL-6 (Burysek and Houstek, 1997; Mohamed-Ali et al., 2001; Path
et al., 2001). In the present study, we elucidated the signaling pathways underlying β3AR-
mediated regulation of IL-6 production in white adipocytes. In view of previous reports that
circulating IL-6 concentrations are elevated in obesity and that adipose tissue releases up to
30% of total IL-6 in the circulation (Fried et al., 1998; Mohamed-Ali et al., 1997; Vgontzas et
al., 1997), the molecular mechanisms contributing to enhanced production of this pro-
inflammatory cytokine may play an active role in generating low grade chronic inflammation
in obesity.

Here, we demonstrated that β3AR stimulation in white adipocytes dramatically increases both
mRNA and protein levels of IL-6 (30- and 5-fold, respectively). Adrenergic regulation of IL-6
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release has been reported in several other cell types, including macrophages (Tan et al.,
2007), hepatocytes (Jung et al., 2000), astrocytes (Norris and Benveniste, 1993), cardiac
fibroblasts (Yin et al., 2006), and endothelial cells (Gornikiewicz et al., 2000), although the
relative contribution of these tissues to circulating IL-6 concentrations is unknown. Adipose
tissue is innervated by postganglionic sympathetic nerves releasing norepinephrine, which
promote increased IL-6 levels in humans and animal models (Papanicolaou et al., 1996; Takaki
et al., 1994; Zhou et al., 1993). Thus, elevated systemic concentrations of IL-6 associated with
obesity could be related to higher SNS activity as well as increased adipose tissue mass in
obese subjects (Tentolouris et al., 2006).

To examine the transcriptional pathways involved in β3AR-mediated signaling, we utilized a
novel homogeneous reporter system (Romanov et al., 2008) enabling quantitative assessment
of multiple transcription factor activities in a eukaryotic cell. The robust activation of a single
CRE reporter along with the presence of a functional CRE element in the promoter region of
IL-6 (Ammit et al., 2002; Edwards et al., 2007; Ray et al., 1988), suggested that the cAMP/
PKA/CREB cascade underlies β3AR-mediated IL-6 production. Nevertheless, specific PKA
inhibitors failed to block either the IL-6 mRNA up-regulation induced by CL316243 in
adipocytes or the CRE activation in the homogenous reporter assay. Thus, our findings suggest
that the signaling mechanisms required for β3AR-mediated IL-6 production do not involve the
PKA pathway.

PKAs were considered to be the major effectors of cAMP until the recent discovery of Epacs,
exchange proteins directly activated by cAMP, which have been shown to activate the small
G proteins Rap1 and Rap2 (de Rooij et al., 1998; Kawasaki et al., 1998b). Stimulation of the
β2AR has been reported to induce PKA-independent cell adhesion through Epac and Rap1
(de Rooij et al., 1998). Epac activation produces an inhibitory effect on PKB phosphorylation
in rat white adipocytes (Zmuda-Trzebiatowska et al., 2007) while does not affect glucose
uptake in brown adipocytes (Chernogubova et al., 2004). Using the Epac-specific agonist
CPTOMe, we found no evidence for involvement of an Epac pathway in activation of IL-6
release in our experiments, although CTX treatment significantly elevated IL-6 mRNA
expression. These results suggest that β3AR-induced IL-6 production could be mediated by a
novel cAMP pathway through PKA- and Epac-independent mechanism. Indeed, several
atypical cAMP binding proteins have been described, including the cAMP receptor which
regulates development in Dictyostelium discoideum (Klein et al., 1988) and cyclic nucleotide
gated channels from olfactory neurons (Goulding et al., 1992). Whether atypical cAMP
pathways are involved in IL-6 secretion in adipocytes still needs further investigation.
Interestingly, β3AR-mediated IL-6 production was also independent from another pivotal
regulator of cytokine expression, NF-κB (Baldwin, 1996). The PKA- and NF-κB-independent
nature of β3AR-mediated IL-6 expression in adipocytes is in line with similar reports which
have been recently published regarding β2AR-mediated cytokine production. Secretion of IL-6
after β2AR stimulation is PKA-independent and p38-driven in mouse cardiac fibroblasts (Yin
et al., 2006), while β2AR-mediated release of IL-6 and IL-1β is PKA- and NF-κB-independent
in macrophages (Tan et al., 2007).

It has been reported that β3ARs can interchangeably couple to both Gs and Gi and activate
ERK1/2 via Gi-dependent mechanism in adipocytes (Gerhardt et al., 1999; Soeder et al.,
1999). Unlike β2AR, the β3AR doesn’t require receptor phosphorylation and, instead, recruits
c-Src kinases for ERK activation in PKA-independent manner (Cao et al., 2000; Robidoux et
al., 2006). In contrast, results from other groups argue that β3AR-mediated phosphorylation of
ERK1/2 is Gs- and PKA-dependent (Lindquist et al., 2000; Mizuno et al., 1999; Mizuno et al.,
2000). β3AR signaling is further complicated by alternative splicing of the gene. Two splice
variants, β3a and β3bARs that differ only in their C-termini (Evans et al., 1999), also display
differences in their signaling properties. The β3aAR couples only with Gs, probably due to
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localization in caveolae (Sato et al., 2007), whereas the β3bAR couples with Gs and Gi
(Hutchinson et al., 2002). Together, these reports indicate that β3AR may activate different
signaling mechanisms in different cell systems (white or brown adipocytes, cell lines or primary
cultures). We observed in white adipocyte cell lines that β3AR-mediated IL-6 expression is
Gi- and ERK1/2-independent, but instead is up-regulated by p38 MAPK and PKC pathways
(Fig. 8).

Next, we found that conventional PKCs (α/βII) and novel PKCs (θ and ε) are activated by
CL316243 in adipocytes. Our results are in line with previous work showing that β3AR agonists
increase glucose uptake in brown adipocytes via conventional and novel PKCs (Chernogubova
et al., 2004). Furthermore, up-regulation of IL-6 in a PKA-independent but PKC- and p38-
dependent manner has been previously reported for various G-protein-coupled receptors
(GPCR) in other types of cells, such as P2Y receptors in microglia (Shigemoto-Mogami et al.,
2001) and corticotropin-releasing factor receptor 2β in smooth muscle cells (Kageyama and
Suda, 2003) as well as under inflammatory conditions in astrocytes (Norris et al., 1994). Further
studies are needed to elucidate the exact mechanism of PKC activation by β3AR and its relation
to p38. As PKCs are known to be downstream effectors of phosphatidylinositol 3-kinase (PI3K)
(Standaert et al., 1997), it is plausible that PKCs activated by β3ARs in adipocytes are
downstream of PI3K and not directly activated by elevated cAMP. Interestingly, while p38
and PKC pathways appear to be distinct, our findings reveal that inhibition of either one of
them can completely abolish IL-6 expression, suggesting an interaction of these two pathways
in IL-6 induction, most likely at the level of transcriptional regulation and/or mRNA stability.

The p38 and PKC pathways activate multiple transcription factors including CREB, ATF-1,
ATF-2, AP-1, C/EBPβ, and ETS (Buchwalter et al., 2004; Deak et al., 1998; Isakov and Altman,
2002; Kawasaki et al., 1998a; Li et al., 2006; Lim et al., 2005; Morton et al., 2004; Tan et al.,
1996; Togo, 2004; Trautwein et al., 1993). Besides, the promoter region of IL-6 gene contains
several functional binding sites such as CRE, AP-1, C/EBP, and NF-κB (Ammit et al., 2002;
Edwards et al., 2007; Eickelberg et al., 1999; Zhu et al., 1996). Searching for transcription
factors activated by β3AR agonist CL316243, we found that β3AR stimulation leads to
increased expression of reporter constructs containing CRE, but not AP-1, C/EBP, ETS or NF-
κB binding sites, which is in accord with our results from the homogenous reporter assay.
Furthermore, significant increases in phosphorylation of CREB, ATF-1, and ATF-2
transcription factors were observed in response to β3AR-agonist treatment. These transcription
factors belong to a large ATF/CREB family of the basic region-leucine zipper (bZip) proteins
which are defined by their ability to bind to the consensus CRE site (Hai and Hartman,
2001). We next found that pretreatment with a p38 inhibitor remarkably decreased CREB and
ATF-2 phosphorylation, and that pretreatment with a PKC inhibitor diminished ATF-2
activation alone. Overwhelming evidence indicates that ATF/CREB proteins form selective
homo- and heterodimers (De Cesare and Sassone-Corsi, 2000). Thus, it is plausible that
activation of both CREB and ATF-2 transcription factors is required for IL-6 production, and
that these two factors may work synergistically to regulate cytokine expression in adipocytes.
The exact mechanism of their interaction merits further research. Nevertheless, our results
strongly suggest that the CRE site in the IL-6 promoter is the main target for β3AR-induced
transcription, and that this gene activation is mediated by the actions of CREB and ATF-2
transcription factors.

Our findings have important clinical implications. Converging lines of evidence have revealed
that inflammation is a key feature of obesity and type 2 diabetes (Wellen and Hotamisligil,
2005). Although a causal role of IL-6 in diabetes still needs to be clarified, IL-6 levels correlate
with the degree of insulin resistance in human subjects (Bastard et al., 2002; Kern et al.,
2001) and predict the development of type 2 diabetes (Hu et al., 2004; Thorand et al., 2007).
Additionally, circulating levels of IL-6 are elevated in patients with painful inflammatory and
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musculoskeletal conditions (Liebregts et al., 2007). Selective β3AR antagonists have been
shown to reduce circulating levels of IL-6 and corresponding pain behavior in an animal pain
model (Nackley et al., 2005; Nackley et al., 2007). On the other hand, IL-6 plays protective
role improving adenosinergic signaling and increasing neuronal survival under various
pathological conditions (Biber et al., 2008). Furthermore, experiments with hepatectomy and
hepatic warm ischemia/reperfusion injury demonstrated that IL-6 is a critical component for
hepatocyte proliferation and liver regeneration (Camargo et al., 1997; Cressman et al., 1996).
In pursuit of novel therapeutic approaches a series of human β3AR agonists and antagonists
has recently been generated (Brockunier et al., 2001; Candelore et al., 1999; Mathvink et al.,
2000; Parmee et al., 2000). Thus, this work may promote the development of new therapeutic
avenues for the treatment of obesity, inflammatory pain conditions, brain pathology, and liver
diseases.

5. Conclusions
The present work provides novel insights into signal transduction cascades mediating the
β3AR-dependent release of pro-inflammatory cytokine IL-6 in adipocytes. Here, we report that
this IL-6 increase is Gi-independent and doesn’t rely on ERK1/2, PKA, or NF-κB pathways.
Instead, it’s mediated by p38 and PKC signaling through activation of transcription factors
CREB and ATF-2. Elucidation of cellular network regulating IL-6 expression improves our
understanding of molecular mechanisms in obesity, inflammatory pain, and other pathological
conditions where a significant role for IL-6 is implicated.

Acknowledgments
We thank Kathryn Satterfield for technical assistance. This work was supported by NIH grants R01 DE016558 to L.D.
and P01 NS045685 to W.M.

References
Ammit AJ, Lazaar AL, Irani C, O’Neill GM, Gordon ND, Amrani Y, Penn RB, Panettieri RA Jr. Tumor

necrosis factor-alpha-induced secretion of RANTES and interleukin-6 from human airway smooth
muscle cells: modulation by glucocorticoids and beta-agonists. Am J Respir Cell Mol Biol
2002;26:465–74. [PubMed: 11919083]

Baldwin AS Jr. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol
1996;14:649–83. [PubMed: 8717528]

Bamshad M, Aoki VT, Adkison MG, Warren WS, Bartness TJ. Central nervous system origins of the
sympathetic nervous system outflow to white adipose tissue. Am J Physiol 1998;275:R291–9.
[PubMed: 9688991]

Bastard JP, Maachi M, Van Nhieu JT, Jardel C, Bruckert E, Grimaldi A, Robert JJ, Capeau J, Hainque
B. Adipose tissue IL-6 content correlates with resistance to insulin activation of glucose uptake both
in vivo and in vitro. Journal Clinical Endocrinology Metabolism 2002;87:2084–9.

Biber K, Pinto-Duarte A, Wittendorp MC, Dolga AM, Fernandes CC, Von Frijtag Drabbe Kunzel J,
Keijser JN, de Vries R, Ijzerman AP, Ribeiro JA, Eisel U, Sebastiao AM, Boddeke HW. Interleukin-6
upregulates neuronal adenosine A1 receptors: implications for neuromodulation and neuroprotection.
Neuropsychopharmacology 2008;33:2237–50. [PubMed: 17987062]

Bloom JD, Dutia MD, Johnson BD, Wissner A, Burns MG, Largis EE, Dolan JA, Claus TH. Disodium
(R,R)-5-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]-amino] propyl]-1,3-benzodioxole-2,2-
dicarboxylate (CL 316,243). A potent beta-adrenergic agonist virtually specific for beta 3 receptors.
A promising antidiabetic and antiobesity agent. J Med Chem 1992;35:3081–4. [PubMed: 1354264]

Brockunier LL, Candelore MR, Cascieri MA, Liu Y, Tota L, Wyvratt MJ, Fisher MH, Weber AE, Parmee
ER. Human beta3 adrenergic receptor agonists containing cyanoguanidine and nitroethylenediamine
moieties. Bioorg Med Chem Lett 2001;11:379–82. [PubMed: 11212115]

Tchivileva et al. Page 10

Mol Immunol. Author manuscript; available in PMC 2010 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Buchwalter G, Gross C, Wasylyk B. Ets ternary complex transcription factors. Gene 2004;324:1–14.
[PubMed: 14693367]

Burysek L, Houstek J. beta-Adrenergic stimulation of interleukin-1alpha and interleukin-6 expression in
mouse brown adipocytes. FEBS Lett 1997;411:83–6. [PubMed: 9247147]

Camargo CA Jr, Madden JF, Gao W, Selvan RS, Clavien PA. Interleukin-6 protects liver against warm
ischemia/reperfusion injury and promotes hepatocyte proliferation in the rodent. Hepatology
1997;26:1513–20. [PubMed: 9397992]

Candelore MR, Deng L, Tota L, Guan XM, Amend A, Liu Y, Newbold R, Cascieri MA, Weber AE.
Potent and selective human beta(3)-adrenergic receptor antagonists. J Pharmacol Exp Ther
1999;290:649–55. [PubMed: 10411574]

Cao W, Luttrell LM, Medvedev AV, Pierce KL, Daniel KW, Dixon TM, Lefkowitz RJ, Collins S. Direct
binding of activated c-Src to the beta 3-adrenergic receptor is required for MAP kinase activation. J
Biol Chem 2000;275:38131–4. [PubMed: 11013230]

Cao W, Medvedev AV, Daniel KW, Collins S. beta-Adrenergic activation of p38 MAP kinase in
adipocytes: cAMP induction of the uncoupling protein 1 (UCP1) gene requires p38 MAP kinase. J
Biol Chem 2001;276:27077–82. [PubMed: 11369767]

Cassel D, Selinger Z. Mechanism of adenylate cyclase activation by cholera toxin: inhibition of GTP
hydrolysis at the regulatory site. Proc Natl Acad Sci U S A 1977;74:3307–11. [PubMed: 198781]

Chernogubova E, Cannon B, Bengtsson T. Norepinephrine increases glucose transport in brown
adipocytes via beta3-adrenoceptors through a cAMP, PKA, and PI3-kinase-dependent pathway
stimulating conventional and novel PKCs. Endocrinology 2004;145:269–80. [PubMed: 14551227]

Collins S, Cao W, Robidoux J. Learning new tricks from old dogs: beta-adrenergic receptors teach new
lessons on firing up adipose tissue metabolism. Mol Endocrinol 2004;18:2123–31. [PubMed:
15243132]

Cressman DE, Greenbaum LE, DeAngelis RA, Ciliberto G, Furth EE, Poli V, Taub R. Liver failure and
defective hepatocyte regeneration in interleukin-6-deficient mice. Science 1996;274:1379–83.
[PubMed: 8910279]

De Cesare D, Sassone-Corsi P. Transcriptional regulation by cyclic AMP-responsive factors. Prog
Nucleic Acid Res Mol Biol 2000;64:343–69. [PubMed: 10697414]

de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, Bos JL. Epac is a Rap1
guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 1998;396:474–7.
[PubMed: 9853756]

Deak M, Clifton AD, Lucocq LM, Alessi DR. Mitogen- and stress-activated protein kinase-1 (MSK1) is
directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J
1998;17:4426–41. [PubMed: 9687510]

Edwards MR, Haas J, Panettieri RA Jr, Johnson M, Johnston SL. Corticosteroids and beta2 agonists
differentially regulate rhinovirus-induced interleukin-6 via distinct Cis-acting elements. J Biol Chem
2007;282:15366–75. [PubMed: 17395587]

Eickelberg O, Pansky A, Mussmann R, Bihl M, Tamm M, Hildebrand P, Perruchoud AP, Roth M.
Transforming growth factor-beta1 induces interleukin-6 expression via activating protein-1
consisting of JunD homodimers in primary human lung fibroblasts. J Biol Chem 1999;274:12933–
8. [PubMed: 10212284]

Evans BA, Papaioannou M, Hamilton S, Summers RJ. Alternative splicing generates two isoforms of the
beta3-adrenoceptor which are differentially expressed in mouse tissues. Br J Pharmacol
1999;127:1525–31. [PubMed: 10455305]

Fain JN, Madan AK, Hiler ML, Cheema P, Bahouth SW. Comparison of the release of adipokines by
adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal
adipose tissues of obese humans. Endocrinology 2004;145:2273–82. [PubMed: 14726444]

Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ, Schreiber SL. Inhibition of proteasome activities
and subunit-specific amino-terminal threonine modification by lactacystin. Science 1995;268:726–
31. [PubMed: 7732382]

Fliers E, Kreier F, Voshol PJ, Havekes LM, Sauerwein HP, Kalsbeek A, Buijs RM, Romijn JA. White
adipose tissue: getting nervous. J Neuroendocrinol 2003;15:1005–10. [PubMed: 14622429]

Tchivileva et al. Page 11

Mol Immunol. Author manuscript; available in PMC 2010 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adipose tissues of obese subjects release
interleukin-6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab
1998;83:847–50. [PubMed: 9506738]

Gerhardt CC, Gros J, Strosberg AD, Issad T. Stimulation of the extracellular signal-regulated kinase 1/2
pathway by human beta-3 adrenergic receptor: new pharmacological profile and mechanism of
activation. Mol Pharmacol 1999;55:255–62. [PubMed: 9927616]

Gornikiewicz A, Sautner T, Brostjan C, Schmierer B, Fugger R, Roth E, Muhlbacher F, Bergmann M.
Catecholamines up-regulate lipopolysaccharide-induced IL-6 production in human microvascular
endothelial cells. FASEB J 2000;14:1093–100. [PubMed: 10834930]

Goulding EH, Ngai J, Kramer RH, Colicos S, Axel R, Siegelbaum SA, Chess A. Molecular cloning and
single-channel properties of the cyclic nucleotide-gated channel from catfish olfactory neurons.
Neuron 1992;8:45–58. [PubMed: 1370374]

Green H, Kehinde O. Spontaneous heritable changes leading to increased adipose conversion in 3T3
cells. Cell 1976;7:105–13. [PubMed: 949738]

Guan XM, Amend A, Strader CD. Determination of structural domains for G protein coupling and ligand
binding in beta 3-adrenergic receptor. Mol Pharmacol 1995;48:492–8. [PubMed: 7565630]

Hai T, Hartman MG. The molecular biology and nomenclature of the activating transcription factor/
cAMP responsive element binding family of transcription factors: activating transcription factor
proteins and homeostasis. Gene 2001;273:1–11. [PubMed: 11483355]

Hoch M, Eberle AN, Peterli R, Peters T, Seboek D, Keller U, Muller B, Linscheid P. LPS induces
interleukin-6 and interleukin-8 but not tumor necrosis factor-alpha in human adipocytes. Cytokine
2008;41:29–37. [PubMed: 18060802]

Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006;444:860–7. [PubMed: 17167474]
Hu FB, Meigs JB, Li TY, Rifai N, Manson JE. Inflammatory markers and risk of developing type 2

diabetes in women. Diabetes 2004;53:693–700. [PubMed: 14988254]
Hutchinson DS, Bengtsson T, Evans BA, Summers RJ. Mouse beta 3a- and beta 3b-adrenoceptors

expressed in Chinese hamster ovary cells display identical pharmacology but utilize distinct
signalling pathways. Br J Pharmacol 2002;135:1903–14. [PubMed: 11959793]

Isakov N, Altman A. Protein kinase C(theta) in T cell activation. Annu Rev Immunol 2002;20:761–94.
[PubMed: 11861617]

Jung BD, Kimura K, Kitamura H, Makondo K, Okita K, Kawasaki M, Saito M. Norepinephrine stimulates
interleukin-6 mRNA expression in primary cultured rat hepatocytes. J Biochem 2000;127:205–9.
[PubMed: 10731686]

Kageyama K, Suda T. Urocortin-related peptides increase interleukin-6 output via cyclic adenosine 5’-
monophosphate-dependent pathways in A7r5 aortic smooth muscle cells. Endocrinology
2003;144:2234–41. [PubMed: 12746280]

Kamimura D, Ishihara K, Hirano T. IL-6 signal transduction and its physiological roles: the signal
orchestration model. Rev Physiol Biochem Pharmacol 2003;149:1–38. [PubMed: 12687404]

Kawasaki H, Song J, Eckner R, Ugai H, Chiu R, Taira K, Shi Y, Jones N, Yokoyama KK. p300 and
ATF-2 are components of the DRF complex, which regulates retinoic acid- and E1A-mediated
transcription of the c-jun gene in F9 cells. Genes Dev 1998a;12:233–45. [PubMed: 9436983]

Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, Matsuda M, Housman DE, Graybiel AM.
A family of cAMP-binding proteins that directly activate Rap1. Science 1998b;282:2275–9.
[PubMed: 9856955]

Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G. Adipose tissue tumor necrosis factor and
interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab
2001;280:E745–51. [PubMed: 11287357]

Kishimoto T. Interleukin-6: from basic science to medicine--40 years in immunology. Annu Rev Immunol
2005;23:1–21. [PubMed: 15771564]

Klein PS, Sun TJ, Saxe CL 3rd, Kimmel AR, Johnson RL, Devreotes PN. A chemoattractant receptor
controls development in Dictyostelium discoideum. Science 1988;241:1467–72. [PubMed: 3047871]

Li B, Kaetzel MA, Dedman JR. Signaling pathways regulating murine cardiac CREB phosphorylation.
Biochem Biophys Res Commun 2006;350:179–84. [PubMed: 16996475]

Tchivileva et al. Page 12

Mol Immunol. Author manuscript; available in PMC 2010 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Liebregts T, Adam B, Bredack C, Roth A, Heinzel S, Lester S, Downie-Doyle S, Smith E, Drew P, Talley
NJ, Holtmann G. Immune activation in patients with irritable bowel syndrome. Gastroenterology
2007;132:913–20. [PubMed: 17383420]

Lim JY, Park SJ, Hwang HY, Park EJ, Nam JH, Kim J, Park SI. TGF-beta1 induces cardiac hypertrophic
responses via PKC-dependent ATF-2 activation. J Mol Cell Cardiol 2005;39:627–36. [PubMed:
16125722]

Lindquist JM, Fredriksson JM, Rehnmark S, Cannon B, Nedergaard J. Beta 3-and alpha1-adrenergic
Erk1/2 activation is Src- but not Gi-mediated in Brown adipocytes. J Biol Chem 2000;275:22670–
7. [PubMed: 10770951]

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR
and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402–8. [PubMed: 11846609]

Mathvink RJ, Tolman JS, Chitty D, Candelore MR, Cascieri MA, Colwell LF Jr, Deng L, Feeney WP,
Forrest MJ, Hom GJ, MacIntyre DE, Miller RR, Stearns RA, Tota L, Wyvratt MJ, Fisher MH, Weber
AE. Discovery of a potent, orally bioavailable beta(3) adrenergic receptor agonist, (R)-N-[4-[2-[[2-
hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[4 -[4-(trifluoromethyl)phenyl]thiazol-2-yl]
benzenesulfonamide. J Med Chem 2000;43:3832–6. [PubMed: 11052788]

May MJ, D’Acquisto F, Madge LA, Glockner J, Pober JS, Ghosh S. Selective inhibition of NF-kappaB
activation by a peptide that blocks the interaction of NEMO with the IkappaB kinase complex.
Science 2000;289:1550–4. [PubMed: 10968790]

Mizuno K, Kanda Y, Kuroki Y, Nishio M, Watanabe Y. Stimulation of beta(3)-adrenoceptors causes
phosphorylation of p38 mitogen-activated protein kinase via a stimulatory G protein-dependent
pathway in 3T3-L1 adipocytes. Br J Pharmacol 2002;135:951–60. [PubMed: 11861323]

Mizuno K, Kanda Y, Kuroki Y, Tomiyama K, Watanabe Y. Phosphorylation of extracellular signal-
regulated kinases 1 and 2 in 3T3-L1 adipocytes by stimulation of beta(3)-adrenoceptor. Eur J
Pharmacol 1999;385:63–9. [PubMed: 10594345]

Mizuno K, Kanda Y, Kuroki Y, Watanabe Y. The stimulation of beta(3)-adrenoceptor causes
phosphorylation of extracellular signal-regulated kinases 1 and 2 through a G(s)-but not G(i)-
dependent pathway in 3T3-L1 adipocytes. Eur J Pharmacol 2000;404:63–8. [PubMed: 10980263]

Mohamed-Ali V, Flower L, Sethi J, Hotamisligil G, Gray R, Humphries SE, York DA, Pinkney J. beta-
Adrenergic regulation of IL-6 release from adipose tissue: in vivo and in vitro studies. J Clin
Endocrinol Metab 2001;86:5864–9. [PubMed: 11739453]

Mohamed-Ali V, Goodrick S, Rawesh A, Katz DR, Miles JM, Yudkin JS, Klein S, Coppack SW.
Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J
Clin Endocrinol Metab 1997;82:4196–200. [PubMed: 9398739]

Morton S, Davis RJ, Cohen P. Signalling pathways involved in multisite phosphorylation of the
transcription factor ATF-2. FEBS Lett 2004;572:177–83. [PubMed: 15304344]

Moule SK, Denton RM. The activation of p38 MAPK by the beta-adrenergic agonist isoproterenol in rat
epididymal fat cells. FEBS Lett 1998;439:287–90. [PubMed: 9845339]

Myung J, Kim KB, Crews CM. The ubiquitin-proteasome pathway and proteasome inhibitors. Med Res
Rev 2001;21:245–73. [PubMed: 11410931]

Nackley, AG.; Faison, JM.; Lambeth, BL.; Diatchenko, L.; Maixner, W. Society for Neuroscience.
Washington, D.C.: 2005. Catechol-O-methyltransferase modulates pain behavior and cytokine
production via beta2/3-adrenergic receptor mechanisms.

Nackley AG, Tan KS, Fecho K, Flood P, Diatchenko L, Maixner W. Catechol-O-methyltransferase
inhibition increases pain sensitivity through activation of both beta2-and beta3-adrenergic receptors.
Pain 2007;128:199–208. [PubMed: 17084978]

Norris JG, Benveniste EN. Interleukin-6 production by astrocytes: induction by the neurotransmitter
norepinephrine. J Neuroimmunol 1993;45:137–45. [PubMed: 8392517]

Norris JG, Tang LP, Sparacio SM, Benveniste EN. Signal transduction pathways mediating astrocyte
IL-6 induction by IL-1 beta and tumor necrosis factor-alpha. J Immunol 1994;152:841–50. [PubMed:
7506738]

Papanicolaou DA, Petrides JS, Tsigos C, Bina S, Kalogeras KT, Wilder R, Gold PW, Deuster PA,
Chrousos GP. Exercise stimulates interleukin-6 secretion: inhibition by glucocorticoids and
correlation with catecholamines. Am J Physiol 1996;271:E601–5. [PubMed: 8843757]

Tchivileva et al. Page 13

Mol Immunol. Author manuscript; available in PMC 2010 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Parmee ER, Brockunier LL, He J, Singh SB, Candelore MR, Cascieri MA, Deng L, Liu Y, Tota L, Wyvratt
MJ, Fisher MH, Weber AE. Tetrahydroisoquinoline derivatives containing a benzenesulfonamide
moiety as potent, selective human beta3 adrenergic receptor agonists. Bioorg Med Chem Lett
2000;10:2283–6. [PubMed: 11055339]

Path G, Bornstein SR, Gurniak M, Chrousos GP, Scherbaum WA, Hauner H. Human breast adipocytes
express interleukin-6 (IL-6) and its receptor system: increased IL-6 production by beta-adrenergic
activation and effects of IL-6 on adipocyte function. J Clin Endocrinol Metab 2001;86:2281–8.
[PubMed: 11344240]

Ray A, Tatter SB, May LT, Sehgal PB. Activation of the human “beta 2-interferon/hepatocyte-stimulating
factor/interleukin 6” promoter by cytokines, viruses, and second messenger agonists. Proc Natl Acad
Sci U S A 1988;85:6701–5. [PubMed: 3045822]

Robidoux J, Kumar N, Daniel KW, Moukdar F, Cyr M, Medvedev AV, Collins S. Maximal beta3-
adrenergic regulation of lipolysis involves Src and epidermal growth factor receptor-dependent
ERK1/2 activation. J Biol Chem 2006;281:37794–802. [PubMed: 17032647]

Rockman HA, Koch WJ, Lefkowitz RJ. Seven-transmembrane-spanning receptors and heart function.
Nature 2002;415:206–12. [PubMed: 11805844]

Romanov S, Medvedev A, Gambarian M, Poltoratskaya N, Moeser M, Medvedeva L, Diatchenko L,
Makarov S. Homogeneous reporter system enables quantitative functional assessment of multiple
transcription factors. Nat Methods 2008;5:253–60. [PubMed: 18297081]

Sato M, Hutchinson DS, Evans BA, Summers RJ. Functional domains of the mouse beta(3)-adrenoceptor
associated with differential G-protein coupling. Biochem Soc Trans 2007;35:1035–7. [PubMed:
17956271]

Shigemoto-Mogami Y, Koizumi S, Tsuda M, Ohsawa K, Kohsaka S, Inoue K. Mechanisms underlying
extracellular ATP-evoked interleukin-6 release in mouse microglial cell line, MG-5. J Neurochem
2001;78:1339–49. [PubMed: 11579142]

Skurk T, Alberti-Huber C, Herder C, Hauner H. Relationship between adipocyte size and adipokine
expression and secretion. J Clin Endocrinol Metab 2007;92:1023–33. [PubMed: 17164304]

Slavin BG, Ballard KW. Morphological studies on the adrenergic innervation of white adipose tissue.
Anat Rec 1978;191:377–89. [PubMed: 677491]

Soeder KJ, Snedden SK, Cao W, Della Rocca GJ, Daniel KW, Luttrell LM, Collins S. The beta3-
adrenergic receptor activates mitogen-activated protein kinase in adipocytes through a Gi-dependent
mechanism. J Biol Chem 1999;274:12017–22. [PubMed: 10207024]

Standaert ML, Galloway L, Karnam P, Bandyopadhyay G, Moscat J, Farese RV. Protein kinase C-zeta
as a downstream effector of phosphatidylinositol 3-kinase during insulin stimulation in rat adipocytes.
Potential role in glucose transport. J Biol Chem 1997;272:30075–82. [PubMed: 9374484]

Takaki A, Huang QH, Somogyvari-Vigh A, Arimura A. Immobilization stress may increase plasma
interleukin-6 via central and peripheral catecholamines. Neuroimmunomodulation 1994;1:335–42.
[PubMed: 7671121]

Tan KS, Nackley AG, Satterfield K, Maixner W, Diatchenko L, Flood PM. Beta2 adrenergic receptor
activation stimulates pro-inflammatory cytokine production in macrophages via PKA- and NF-
kappaB-independent mechanisms. Cell Signal 2007;19:251–60. [PubMed: 16996249]

Tan Y, Rouse J, Zhang A, Cariati S, Cohen P, Comb MJ. FGF and stress regulate CREB and ATF-1 via
a pathway involving p38 MAP kinase and MAPKAP kinase-2. EMBO J 1996;15:4629–42. [PubMed:
8887554]

Tentolouris N, Liatis S, Katsilambros N. Sympathetic system activity in obesity and metabolic syndrome.
Ann N Y Acad Sci 2006;1083:129–52. [PubMed: 17148737]

Thorand B, Baumert J, Kolb H, Meisinger C, Chambless L, Koenig W, Herder C. Sex differences in the
prediction of type 2 diabetes by inflammatory markers: results from the MONICA/KORA Augsburg
case-cohort study, 1984-2002. Diabetes Care 2007;30:854–60. [PubMed: 17392546]

Togo T. Long-term potentiation of wound-induced exocytosis and plasma membrane repair is dependent
on cAMP-response element-mediated transcription via a protein kinase C- and p38 MAPK-dependent
pathway. J Biol Chem 2004;279:44996–5003. [PubMed: 15317814]

Tchivileva et al. Page 14

Mol Immunol. Author manuscript; available in PMC 2010 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Trautwein C, Caelles C, van der Geer P, Hunter T, Karin M, Chojkier M. Transactivation by NF-IL6/
LAP is enhanced by phosphorylation of its activation domain. Nature 1993;364:544–7. [PubMed:
8336793]

Vgontzas AN, Papanicolaou DA, Bixler EO, Kales A, Tyson K, Chrousos GP. Elevation of plasma
cytokines in disorders of excessive daytime sleepiness: role of sleep disturbance and obesity. J Clin
Endocrinol Metab 1997;82:1313–6. [PubMed: 9141509]

Vicennati V, Vottero A, Friedman C, Papanicolaou DA. Hormonal regulation of interleukin-6 production
in human adipocytes. Int J Obes Relat Metab Disord 2002;26:905–11. [PubMed: 12080442]

Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest 2005;115:1111–9.
[PubMed: 15864338]

Wilkinson SE, Parker PJ, Nixon JS. Isoenzyme specificity of bisindolylmaleimides, selective inhibitors
of protein kinase C. Biochem J 1993;294(Pt 2):335–7. [PubMed: 8373348]

Wirsen C, Hamberger B. Catecholamines in brown fat. Nature 1967;214:625–6. [PubMed: 5340979]
Yamaoka S, Courtois G, Bessia C, Whiteside ST, Weil R, Agou F, Kirk HE, Kay RJ, Israel A.

Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-
kappaB activation. Cell 1998;93:1231–40. [PubMed: 9657155]

Yin F, Wang YY, Du JH, Li C, Lu ZZ, Han C, Zhang YY. Noncanonical cAMP pathway and p38 MAPK
mediate beta2-adrenergic receptor-induced IL-6 production in neonatal mouse cardiac fibroblasts. J
Mol Cell Cardiol 2006;40:384–93. [PubMed: 16466739]

Yuan J, Bae D, Cantrell D, Nel AE, Rozengurt E. Protein kinase D is a downstream target of protein
kinase Ctheta. Biochem Biophys Res Commun 2002;291:444–52. [PubMed: 11855809]

Zhou D, Kusnecov AW, Shurin MR, DePaoli M, Rabin BS. Exposure to physical and psychological
stressors elevates plasma interleukin 6: relationship to the activation of hypothalamic-pituitary-
adrenal axis. Endocrinology 1993;133:2523–30. [PubMed: 8243274]

Zhu Z, Tang W, Ray A, Wu Y, Einarsson O, Landry ML, Gwaltney J Jr, Elias JA. Rhinovirus stimulation
of interleukin-6 in vivo and in vitro. Evidence for nuclear factor kappa B-dependent transcriptional
activation. J Clin Invest 1996;97:421–30. [PubMed: 8567963]

Zmuda-Trzebiatowska E, Manganiello V, Degerman E. Novel mechanisms of the regulation of protein
kinase B in adipocytes; implications for protein kinase A, Epac, phosphodiesterases 3 and 4. Cell
Signal 2007;19:81–6. [PubMed: 16839743]

Tchivileva et al. Page 15

Mol Immunol. Author manuscript; available in PMC 2010 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
β3AR stimulation up-regulates IL-6 production in adipocytes. 3T3-L1 cells treated with the
β3AR-agonist CL316243 (1 μM for 45 min) showed a significant increase in IL-6 mRNA. The
CL316243-induced increase in cytokine transcripts was completely blocked by pre-treatment
with SR59230A (1 μM for 1 h) but not with betaxolol (0.5 μM for 1 h) or ICI118,551 (0.5
μM for 1 h) (a). 3T3-L1 cells treated with the β3AR-agonist CL316243 (1 μM for 24 and 48
h) showed a significant increase in IL-6 protein measured in cell supernatant (b). ***P<0.001
different from untreated.
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Fig. 2.
β3AR-induced IL-6 expression is PKA- and Epac-independent. C3H10T1/2 cells were
pretreated with H89 (10 μM for 1 h) prior to stimulation with CL316243 (1 μM for 2 h). The
CL316243-induced activation of the CRE reporter was not inhibited by H89 in the homogenous
reporter assay (a). 3T3-L1 cells were treated with KT5720 (10 μM) or H89 (5-10 μM) for 1 h
prior to treatment with CL316243 (1 μM for 45 min). The CL316243-induced up-regulation
of IL-6 mRNA was not inhibited by KT5720 or H89 (b). Treatment of 3T3-L1 with CTX (100
ng/ml for 4 h) led to increases in IL-6 transcript, while treatment with the Epac agonist 8CPT-2’-
O-Me-cAMP (CPTOMe) (10 μM for 45 min) did not enhance IL-6 expression (c). ***P<0.001
and **P<0.01 different from untreated.
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Fig. 3.
β3AR-induced IL-6 expression is not mediated by NF-κB pathway. C3H10T1/2 cells were
treated with CL316243 (1 μM) and TNFα (10 ng/ml) for 2 h. In the homogenous reporter assay,
CL316243 didn’t activate the NF-κB reporter, while TNFα did (a). 3T3-L1 cells were pre-
treated with NBD (100 μM) or MG-132 (25-50 μM) for 1 h prior to treatment with CL316243
(1 μM for 45 min). The CL316243-induced up-regulation of IL-6 mRNA was not inhibited by
NBD or MG-132 (b). SEAP activity was assayed from the culture media of HEK 293 cells co-
transfected with the pNF-κB-SEAP reporter construct and β3AR expression vector. No
significant increase in SEAP activity was observed at 6, 12 and 24 h post-treatment with
CL316243 (1 μM) (c). ***P<0.001 and **P<0.01 different from untreated.
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Fig. 4.
β3AR-induced IL-6 expression is Gi- and ERK1/2-independent and mediated by p38 signaling
pathway. 3T3-L1 cells were pretreated with PTX (100 ng/ml and 200 ng/ml for 1 h) prior to
stimulation with CL316243 (1 μM for 45 min). The CL316243-induced up-regulation of IL-6
transcripts was not blocked by PTX (a). 3T3-L1 cells were pretreated with either U0126 (10
μM) or SB203580 (5-10 μM) for 1 h prior to stimulation with CL316243 (1 μM for 45 min).
The CL316243-induced up-regulation of IL-6 transcripts was blocked by SB203580, but not
U0126 (b). C3H10T1/2 cells were pretreated with SB203580 (10 μM for 1 h) prior to
stimulation with CL316243 (1 μM for 45 min). The CL316243-induced activation of CRE
reporter was inhibited by SB203580 in homogenous reporter assay (c). The cells lysates were
also subjected to Western blot analyses with antibodies to p-p38. Increased phosphorylation
of p38 was observed at 3, 30 and 60 min post-treatment with CL316243. β-actin was used as
the loading control (d). ***P<0.001 and **P<0.01 different from untreated. #P<0.05 different
from CL316243-treated.
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Fig. 5.
β3AR-induced IL-6 expression is dependent on the PKC signaling pathway. 3T3-L1 cells were
pretreated with RO31-8220 (1-10 μM) for 1 h prior to stimulation with CL316243 (1 μM for
45 min). The CL316243-induced up-regulation of IL-6 transcripts was blocked by RO31-8220
(a). C3H10T1/2 cells were pretreated with RO31-8220 (10 μM for 1 h) prior to stimulation
with CL316243 (1 μM for 2 h). The CL316243-induced activation of CRE reporter was
inhibited by RO31-8220 in the homogenous reporter assay (b). The cells lysates were also
subjected to Western blot analyses with antibodies to pPKCpan (βII Ser660), pPKCα/βII
(Thr638/641), pPKCθ (Thr538), and pPKCε (Ser729). Increased phosphorylation of PKCα/
βII was observed at 30 sec and PKCpan, PKCθ and PKCε 45 min post-treatment with
CL316243. β-actin was used as the loading control (c). ***P<0.001 and **P<0.01 different
from untreated. #P<0.05 different from CL316243-treated.
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Fig. 6.
Stimulation of β3ARs results in up-regulation of the reporter construct containing the CRE site.
HEK 293 cells were transiently co-transfected with pCRE-SEAP (a), pAP1-SEAP (b), pC/
EBPβ-SEAP (c), or pETS-SEAP (d) reporter constructs along with the β3AR expression vector.
24 h after transfection, media was changed, and cells were stimulated with CL316243 (1 μM)
for 6, 12 and 24 h. Significant increase in SEAP activity was observed with pCRE-SEAP
construct only. ***P<0.001 different from untreated.
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Fig. 7.
Effect of β3AR agonist stimulation on phosphorylation of CREB, ATF-1, and ATF-2. 3T3-L1
cells were stimulated with CL316243 (1 μM) for 3, 30, and 60 min, then cell lysates were
subjected to Western blot analyses with antibodies to pCREB, pATF-1, and pATF-2.
CL316243 stimulation increased phosphorylation of pCREB, pATF-1, and pATF-2 (a). 3T3-
L1 cells were pretreated with SB203580 (10 μM for 1h) or RO31-8220 (10 μM for 1 h) before
stimulation with CL316243 (1 μM for 45 min). CL316243-induced phosphorylation of CREB
and ATF-2 was attenuated in the presence of SB203580, while ATF-2 phosphorylation was
also decreased in the presence of RO31-8220, although non-specific phosphorylation of ATF-2
also has been observed in presence of inhibitors alone. ATF-1 phosphorylation was not affected
by inhibitor treatment. β-actin was used as the loading control (b).
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Fig. 8.
Schematic diagram of the proposed signaling pathways for activation of IL-6 gene by β3AR
stimulation in white adipocytes.
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