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Abstract
The detection of single nucleotide polymorphisms (SNPs) and insertion/deletions (indels) with
precision from high-throughput data remains a significant bioinformatics challenge. Accurate
detection is necessary before next-generation sequencing can routinely be used in the clinic. In
research, scientific advances are inhibited by gaps in data, exemplified by the underrepresented
discovery of rare variants, variants in non-coding regions and indels. The continued presence of
false positives and false negatives prevents full automation and requires additional manual
verification steps. Our methodology presents applications of both pattern recognition and
sensitivity analysis to eliminate false positives and aid in the detection of SNP/indel loci and
genotypes from high-throughput data. We chose FK506-binding protein 51(FKBP5) (6p21.31) for
our clinical target because of its role in modulating pharmacological responses to physiological
and synthetic glucocorticoids and because of the complexity of the genomic region. We detected
genetic variation across a160 kb region encompassing FKBP5. 613 SNPs and 57 indels, including
a 3.3 kb deletion were discovered. We validated our method using three independent data sets and,
with Sanger sequencing and Affymetrix and Illumina microarrays, achieved 99% concordance.
Furthermore we were able to detect 267 novel rare variants and assess linkage disequilibrium. Our
results showed both a sensitivity and specificity of 98%, indicating near perfect classification
between true and false variants. The process is scalable and amenable to automation, with the
downstream filters taking only 1.5 hours to analyze 96 individuals simultaneously. We provide
examples of how our level of precision uncovered the interactions of multiple loci, their predicted
influences on mRNA stability, perturbations of the hsp90 binding site, and individual variation in
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FKBP5 expression. Finally we show how our discovery of rare variants may change current
conceptions of evolution at this locus.

Keywords
pattern recognition; next-generation sequencing analysis; indels; rare variants; FKBP5; HLA

1. INTRODUCTION
Next-generation sequencing (NGS) presents a powerful technique for sequencing whole
genomes and targeted regions. Its potential for use in personalized medical treatment and to
identify disease causing mutations in patients with hereditary disorders is unprecedented.
The abundance of sequence variation data generated by NGS could provide insight into our
evolution as a species, aid in the discovery of disease related regions and provide knowledge
of currently unexplored areas of the genome [1–5]. An accurate and complete set of genetic
variants is needed however before such advances can become reality.

A 160 kb region on chromosome 6, neighboring the HLA loci [6], has been shown to play a
role in glucocorticoid resistance. The region encompasses FK506 binding protein 51
(FKBP5) (6p21.31); a glucocorticoid receptor (GR)-regulating co-chaperone of heat shock
protein 90 (hsp90). FKBP5 is a member of the immunophilin protein family and contains an
N-terminal peptidyl-prolyl cis-trans isomerase domain and a C-terminal 3 unit
tetratricopeptide repeat (TPR) domain which serves as the binding site for hsp90 [7]. In
humans single nucleotide polymorphisms (SNPs) in FKBP5 have been associated with
altered FKBP5 protein expression and with differences in GR sensitivity and glucocorticoid
signaling [6, 8, 9]. A complete set of genetic variants derived by NGS would be valuable to
further evaluate FKBP5 gene transcription and translation, and to ascertain their role in
individual differences in glucocorticoid resistance.

Current methods however, for variation detection from NGS data, have significant
limitations. First, they can be technically complicated, requiring format changes and
additional scripts to accommodate various aligners, SNP callers and to perform gapped
alignments for insertion/deletion (indel) detection. Output files generated by NGS software
mostly produce lists of potential variants with probability scores and coverage values where
the exact level of accuracy is unknown. Unlike Sanger sequencing, manual inspection of
trace reads for verification is not possible. The NGS viewers of alignments are not
equivalent to the level of accuracy obtained by visual inspection of trace reads produced by
Sanger sequencing [10–13]. Second, in contrast to SNPs which have been studied
extensively, indels have received little attention; consequently few indels have been
identified and validated, despite their importance in human disease [14, 15]. Indels are
challenging to detect and validate, and current methods do not provide adequate solutions
[16, 17]. Third, many genome-wide association studies (GWAS) have shown a large number
of disease susceptibility regions to map to non-coding regions, implying important
functional properties are embedded in these areas. Indeed, some intronic sites in FKBP5
have been identified as binding sites for the GR and as GR-regulated enhancers [18]. In
many NGS studies however, intronic regions are excluded because of the difficulty in
obtaining reliable data in repetitive areas. Our 160 kb region, encompassing FKBP5,
contained repeat elements, including three CpG islands and a 1kb region with 77% GC
content; a percentage substantially higher than the chromosomal average [19, 20] of 43.95%
[21]. This factor made it problematic for current methods. Fourth, efforts to accurately
distinguish false positives (FP) from true positives (TP) are hindered by a lack of definitive
parameter settings [22, 23] which can be applied equally and consistently to highly variable
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input data. Even for an expert, choosing parameter settings is a challenge and once the
parameters are set, they present a major challenge. The parameters require user specified
threshold cut-offs and the threshold cutoffs, which provide an “either/or” option, dictate the
answers which are obtained [24]. For example, if alignment thresholds are too stringent,
variants are missed. If the thresholds are set too low numerous false variants result, leaving
the analyst with either an incomplete dataset or large amounts of information for manual
inspection. In a recent study, if only one set of parameters had been used, the threshold cut-
offs may have led to a false clinical interpretation [23]. All these limitations require time
consuming and costly verification using other methods which can involve multiple
personnel, expertise and resources [25]. In the end, results are still not complete and
accurate, exemplified by the underrepresented discovery of rare variants, indels, variants in
non-coding regions and the continued presence of FP and false negatives (FN).

Because current NGS analysis methods were inadequate, we set out to explore an alternate
and novel approach using applications of both sensitivity analysis and pattern recognition
(PR). We selected FKBP5 as the target for our methodology because of its important role in
modulating hormone response and because of the complexity of the genomic region, which
made it ideal for evaluating our method in repetitive areas such as introns. The goals of our
study were 1) to apply our method using PR to the entire 160 kb and assess the accuracy of
our calls with the current gold standard, Sanger sequencing, and with Affymetrix/Illumina
genotyping arrays 2) to ascertain the robustness of our algorithm which uses multiple
parameters simultaneously, and evaluate its overall generality by cross-validating with test
sets 3) to compare our methodology with existing methods and our results with current
databases such as dbSNP130, HapMap CEU and the 1000 genomes project (1KG) 4) to
discover for the first time a complete set of genetic variants in our Caucasian (CA)
population within the 160 kb region on chromosome 6 and, with access to the large amount
of novel data 5) to give examples where our complete dataset adds new information and
provides direction for future research regarding FKBP5.

2. RESULTS
2.1. Generation of sequence reads using the Illumina platform

The 160 kb targeted sequence was amplified in each of 96 CA samples using long-range
PCR (LR-PCR). Paired-end indexed libraries were prepared. Four indexed libraries per lane
were combined in equimolar amounts and sequenced on Illumina’s Genome Analyzer (GA)
and GAIIx (Supplementary Table 1). The number of raw reads generated per individual was
highly variable, ranging from 1.4 – 4.5 million, (Supplementary Table 2) each 49 bp in
length.

2.2. Feature selection for classification
Two primary features which affect downstream results were selected to distinguish true
from false variants; 1) input read quality and 2) alignment variables (mutation percentage,
coverage, alignment method, matching base percentage) for the selected reads. These
features have been observed to significantly impact accuracy of the alignment, and are most
likely to reflect “real world” variability among samples due to sample processing errors and
the inherent ambiguity and repetitiveness of genomic sequence
(http://www.genomeweb.com/node/919228).

2.3. The multi-parameter model: five in silico experiments
The features were manipulated by varying their cut-off thresholds one at a time for five in
silico experiments (parameter settings) (Table 1). Experiments 1–2 monitored coverage (3
reads versus 10 reads minimum), experiments 2–3 monitored the stringency of alignment

Pelleymounter et al. Page 3

Mol Genet Metab. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.genomeweb.com/node/919228


(50% versus 92% matching bases), experiments 3–4 monitored responses to changes in the
alignment method (BLAT versus BLAST) and experiment 5 monitored effects of paired
ends versus single ends. Running the paired ends together is computationally more difficult
and can result in alignment and assembly errors but also has the advantage of greater depth
of coverage. Experiments 1–4 also monitored effects of “consolidation”, whereas
experiment 5 monitored effects of “elongation”. The consolidation mode corrects errors in
the original reads and increases the lengths of the reads. It also reduces the number of reads
by eliminating redundancy. In the elongation mode, the paired ends of the two reads are
elongated, merged and the gaps filled. Therefore the raw read count is maintained as a
separated count. All experiments used a median quality score threshold ≤ 20 and any reads
containing more than 3 uncalled bases were removed. Multiple parameters were necessary
because of the multi-factorial nature of how software predicts whether a variant is true or
false. The multi-parameter model allowed us to hypothesize if all parameters detected the
same variant, and at the same locus, the variant could be classified as true and we could
ascertain the robustness (insensitivity to changes in parameters increases confidence) of our
model. The multiple parameters also helped identify recurring unstable areas within the
alignment caused by low quality read data and repetitive regions of DNA. In these instances,
if only some parameters detected a variant, specific combinations of settings or “patterns”
would be observed. This allowed for the discovery of variants in low coverage areas from
which a consensus zygosity determination could be inferred from the replicate genotypes.

2.4. Output files from in silico experiments establish 2-D patterns
After steps 1 and 2; (Fig. 1) each individual’s reads generated on the Illumina GA and
GAIIx were converted to FASTA and run through the five in silico experiments using
NextGENe software. Nine output files were produced by the software for each individual
because we separated the paired ends for the first four experimental settings and placed the
paired ends together for the fifth. Each output file (.csv) consisted of a column listing all
sites within the input reference identified as a putative variant for each specific parameter
setting. The columns from the nine output files were then merged, ordered from left to right,
and aligned horizontally, according to the site index number. The merging of the nine
columns per individual resulted in recognizable 2-D patterns (Supplementary Fig. 1). The
next step was to discriminate the TP from FP 2-D patterns (Supplementary Fig. 2).

2.5. Classification of patterns and column rules
Because we wanted to analyze a group of individuals all at one time, we had to contend with
the inherent variability encountered with a real vs. simulated dataset as well as the
variability of 96 samples vs. 1 sample. We hypothesized if the constant variable; (the five
parameters) were applied to each individuals reads, two sets of patterns would emerge
differentiating TP from false and ambiguous ones. If all parameters called a variant, a 2-D
pattern from the sequential merging of all nine columns would result. The identical variant
locations would indicate adequate coverage and unambiguous alignments. On the other
hand, if only some parameters detected a variant, it would indicate difficulty in the
alignment or a lack of quality reads, and low coverage. Since the paired ends were run
separately for experiments 1–4, a setting may not have detected a variant at a site because
sequencing did not reach through the insert. All of these issues would manifest themselves
as distinct 2-D patterns.

To verify this hypothesis we had prior data verified by the Sanger method from 9.6 kb of
non-contiguous sequence of the genomic region under study for all 96 samples. This data
served as our training set. The most frequent pattern (75%) for a TP was pattern 1T (Fig. 2),
where all parameter settings detected the variant. Interestingly, the second most frequent
pattern (9%) for a TP was pattern 3T where experiment 5 alone did not call the variant.
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Experiment 5 had the paired ends run together and much higher raw read count; thus
intimating that a higher number of raw reads does not necessarily correlate with better
alignments and more accurate variant calls. Overall there were 16 TP patterns and 12 FP
patterns from our training set. The FP patterns were of interest because they consistently
displayed perfect classification (i.e. a variant predicted by the software to be true, but which
was actually false, displayed one of the 12 patterns). The TP patterns, on the other hand,
were variable and the number of them expanded and contracted depending on the quality of
the input reads. We therefore designated the FP patterns the “column rules” and removed
from our merged dataset of variants any rows which contained one of the FP patterns. This
served as an initial elimination of FP.

2.6. Population rules preserve genotype accuracy and enable identification of rare variants
After the “column rules” were applied to each individual’s datasets, all datasets across the
population were combined for each potential polymorphic locus. This resulted in output files
of 96 rows (96 samples), 9 columns each; one for each of the called SNPs/indels. For each
of the polymorphic loci, the number of samples which had the variant (n) was calculated; for
instance, was the variant a singleton (called in one sample), or was it found in two, three or
more samples? For each of the loci and for each sample which carried the SNP/indel, the
number of parameter settings which did not call the variant (i.e. failed) was calculated. A
potential SNP/indel was then excluded from the final list of variants if too many
experiments failed. These filters, designated the “population rules” was designed to assure
genotype accuracy across the population; a vital prerequisite for subsequent clinical and
research usage. High percentages of failed experiments were indicative of systematic
alignment difficulties within a region, which would compromise correct zygosity
determinations per sample. Our acceptable percentages of failed experiments were
determined by a Sanger verified subset where (Supplementary Figs. 3 and 4c) a SNP was
considered a FP if the total failed experiments (TFE) ≥ 9n(.25) [n = 1 or 2]; TFE ≥ 9n(.30)
[n = 3]; TFE ≥ 9n(.31) [n = 4–96] and an indel was considered a FP if TFE ≥ 9n(.50).
Correct indels were detected with more failed experiments because of their inherent
alignment difficulties. The application of the “population rules” also enabled the
identification of singletons since sequence data from one individual does not allow for the
distinction between common or rare variants.

2.7. Cross-validation and overall classifier performance
To validate whether we could correctly classify TP from FP, we tested and validated three
additional test sets whose classes were unknown to the algorithm. The first test set consisted
of the same 96 CA samples, but over 66 randomly selected unique sites per individual; none
of which overlapped with the initial 9.6 kb. These sites were in introns, 3′UTR and 3′FR.
The second test set consisted of 43 tumor samples over 9.6 kb per individual, totaling
412,800 loci from which to assess false positives and false negatives. The third test set
consisted of 4 anonymous pooled samples over 5.5 kb per individual, totaling 22,000 loci
from which to assess false positives and false negatives. The 5.5 kb region was on
chromosome 4. In all three test sets, the same patterns emerged. We quantified the
sensitivity TP/(TP+FN), specificity TN/(TN+FP) and (PPV) positive predictive value TP/
(TP+FP) of our multi parameter algorithm. Our results showed a sensitivity of 97.8%,
specificity of 98.4% and a PPV of 98%. These results reflect almost perfect classification
between true and false variants.

2.8. Additional downstream filters required for accurate automated indel detection
Indels and SNPs called by the NextGENe software for each of the five-parameter settings
were separated into two bins. Deletions were further categorized into three types: (1) Simple
(multi) deletions were defined as a ≥ 2 bp deletion of the same nucleotide
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(CGTTTTTTACTG). (2) Single (non-multi) deletions were defined as a 1 bp deletion
(ATCGTCAAT) or (TGCCCCCCCTACG). (3) Complex (multi) deletions were defined as
unique, non repetitive, nucleotide sequences of any size, which consistently appeared as a
unit in each experiment (Supplementary Table 3) (CAGTGAGCCGAGAT) (Fig. 3). Output
files from the software showing ≥ 10 consecutive deletions of the same nucleotide were
considered unreliable and consequently removed. On the other hand, < 10 predicted
consecutive deletions of the same nucleotide were retained and probed by our “poly-X”
program. The “poly-X” program calculated the lengths and locations of homopolymers
within our 160 kb target region. In the examples above, the simple (multi) sequence shows a
2 bp deletion within a homopolymer tract of six T’s and the single (non-multi) shows a 1 bp
deletion within a homopolymer tract of seven C’s. Both would be retained for further
inspection. The 2 bp deletion (TT) would be designated true if the fraction of reads
corresponding to the reference allele had frequencies ≤ 2% of each other [Ref allele = T
(75%); Alternate allele = Del (25%) and Ref allele = T (74%); Alternate allele = Del (26%)].
If both were deleted, they should be appearing as a unit since both are on the reference
allele. Complex (multi) deletions also appeared as units and this concept took precedence
over frequency. For example if the fraction of reads corresponding to all nine reference
nucleotides TGAGCCGAG had allele frequencies ≤ 2% of each other for experiments 1 and
2, it was retained as a 9 bp deletion for those parameters. If the reference nucleotides TGAG
(Supplementary Table 3) each had read allele frequencies of 52.17%, CCCG each had
frequencies of 60%, A had a frequency of 42.11% and G had a frequency of 41.38% for
experiment 3, all nine bp were retained even though they did not meet the 2% criteria. This
is because beginnings and ends of reads vary within the alignment, and the chances of
observing inconsistent frequencies increased with larger units. The fact that the 9 bp unit
appeared together consistently across multiple parameter settings took precedence over the
percentage requirement. We verified both the homozygous and heterozygous forms of this
deletion with Sanger sequencing (Fig. 3). After the application of the “column” and
“population” rules, the remaining putative indels were manually inspected. It should be
mentioned that because larger HPs (>11 bp) were concentrated in two genomic regions:
chr6:35,764,693–35,796,082 and chr6:35,718,599–35,764,558, this method loses indel data
in these two areas only.

2.9. Indels and SNPs discovered
Overall, a total of 57,929 SNPs and 17,258 indels were detected over the 160 kb region by
the five in silico experimental settings for all 96 individuals. The assumption was that all
true variants had been identified by at least one of the in silico experimental settings and the
remainder were false variants. By applying our selective filters, we were able to reduce the
number to 613 SNPs and 57 indels (Supplementary Table 4). Of the 57 indels 16 were
insertions, 41 were deletions, 21 were singletons and 35 had frequencies over 1%. 34 of the
indels were within genomic regions of repetitive elements and 22 were within or
immediately next to a homopolymer. Our largest complex microdeletion was 9 bp in length
and our largest structural variant was 3.3 kb in size. Both of these were verified with Sanger
(Fig. 3a–c). Of the SNPs, 313 were singletons and 300 were common polymorphisms.

2.10. Subtle changes in parameter settings produce different results
For the first four in silico experiments, the initial read length of 49 bp increased on average
to 66 bp after consolidation, and the percent of alignable reads decreased from 94% to 84%.
Interestingly the correlation between read count and percent of alignable reads were not as
expected; for example NA17222 with a lower read count had 95% alignable reads before
consolidation and 91% after. NA17290, with a higher read count had 95% alignable reads
before consolidation and 74% after, thus intimating that although original read count is
important and a certain minimum threshold is necessary, the quality of those reads, as well
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as the insert size [26], is of equivalent importance. The percent alignable reads diminished
on average from 68% to 44% after elongation for experiment 5. When comparing the five in
silico experiments for numbers of called variants, parameter 4 produced the largest number
(1113 calls) and parameter 3 the lowest (97 calls). The sensitivity and specificity of
individual parameters was also assessed before application of the PR methodology. While
parameter 1 displayed the highest sensitivity (90%)-meaning 90% of the called variants
were correctly classified as true, it also showed 65% specificity - an indicator of too many
FP. Parameter 3 displayed the highest specificity (86%). Parameter 5 introduced reads with
sequencing errors into the alignment, resulting in numerous tri-allelic calls and consequent
FP. After application of our PR methodology, a significant improvement was observed with
both specificity and sensitivity increased to 98%.

2.11. Variability in coverage can be biological or due to technical issues
Sequence coverage depth is highly variable with NGS technology. For one individual, the
number of reads mapped to a base within the reference can fluctuate dramatically from <1x
to ≫200x, dependent on variables such as the number of raw reads, quality and length of the
reads, complexity of the genomic region, sequencing technology used, preparation
techniques and human error. This variability is amplified when analyzing 96 unique
individuals simultaneously (Fig. 4). We defined read depth as the number of times a base
within the reference in the region of interest, was covered by a mapped read. We defined
coverage as the number of bases within the target region which were covered by reads.
Experiments 1–4 showed the effects of “consolidation”, where the number of reads was
reduced and the coverage was more uniform. The mean read depth was 52x and the mode
56. Many polymorphic sites were detected below 20x read depth with the lowest in a single
sample after consolidation at 4x. Experiment 5 had the paired ends run together and the raw
read count maintained resulting in a much higher mean read depth of 1533x. FP however
were still found, which was consistent with previous reports [23].

Since the quality of DNA, the library preparations, and the number of raw reads were
inconsistent for each individual, “gaps” or zero coverage locations were also highly variable.
To study this, we produced a so-called population reliability index based on experiment 5
(Supplementary Table 2). The population reliability index ascertained the number of gaps
per individual. Experiment 5, unlike the other experiments maintained the original read
counts and therefore assured us the gaps were not caused by lower read depth because of
consolidation of the reads. Gaps ≥ 100 bp were designated “major” and any gaps < 100 bp
were designated “minor”. Major/minor values were assigned to each of the 96 Caucasians.
For instance NA17292 had values of 21/120, showing that this subject, in experiment 5, had
21 coverage gaps of size ≥ 100 bp and 120 smaller gaps < 100 bp. Overall, NA17292 had an
average coverage of 95.3% across the entire gene. Since the major/minor and average
coverage values did not represent the precise chromosomal locations where zero or low
coverage areas were occurring, a visual representation was made of the reliability index
called the “gap map” (Supplementary Fig. 5). When viewing the population gap map, it is
easy to see where there are consistent coverage problems that most likely are due to
technical issues, or could be biological, such as structural variation. Eight of these areas are
bracketed (Supplementary Table 5), and when inspected, contain repetitive elements. The
chromosomal region also shows possible structural variation and two areas particularly stand
out as being consistent across the samples; regions 4 and 5. At first it was thought these gaps
were true deletions, but region 4 had already been successfully sequenced using Sanger
technology on all of our samples, and no sample showed a deletion. Region 5 was the largest
gap and was also perceived to possibly be a deleted area. We therefore sequenced, using
Sanger technology, through the area on some of our samples, and the results showed a 3.3
kb deletion.
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2.12. Verification of results with other methods
Several measures were taken to validate results. The Sanger method of sequencing, long
considered the “gold standard” for accuracy, was used for the establishment of, and to verify
our NGS training set. Overall, 922 kb were interrogated for FP and TP. Our results showed
all positions in the population correctly identified with the exception of “gap 4”, where there
was zero coverage, and 5 sites which were discordant (Supplementary Fig. 5). This resulted
in a 99% concordance of genotypes between Sanger and NGS.

For verification of the first test set, each of the 96 samples were genotyped using the
Illumina 550Kv3 and 510S SNP chips, as well as Affymetrix 6.0. Of the 5071 genotypes, 81
were discordant between Illumina/Affymetrix and NGS, resulting in 98.4% concordance. It
should be mentioned that two of the SNPs, one from Illumina (rs7749607:C>T) and one
from Affymetrix (rs9470065:G>A) we did not find in any of our samples with NGS. To
validate this further, we used Sanger sequencing and found the NGS results in agreement for
rs9470065 but not for rs7749607. The single sample in which rs7749607 was found had a
reliability index of 3/31, indicating numerous gaps and consequent alignment ambiguities
(Supplementary Table 2).

Two additional sample test sets were verified with Sanger sequencing. The first consisted of
43 anonymized tumor samples over the same 160 kb region on chromosome 6. 9.6 kb for
each sample was verified. All polymorphic and monomorphic sites were correctly identified
except where there was zero coverage in one of the CpG islands and two sites where the
Sanger results were inconclusive and therefore a comparison could not be made. The second
set consisted of 4 anonymized and pooled DNA samples over a 5.5 kb region on
chromosome 4. All variant sites were detected with no missed sites. Additional regions,
totaling 1 kb were sequenced to verify indels.

On a broader scale, heterozygosity, (π) was calculated for the entire 160 kb region, as well
as regions within the gene structure (Table 2). These values were striking, showing a 40-fold
difference (π = 0.00002 – 0.0008) between flanking regions, introns and UTRs, intimating
unique genetic histories at these loci. Higher heterozygosity in GC-rich areas agreed with
previous reports of similar findings [27].

As another form of validation, we looked at dbSNP130. 258 of the SNPs/Indels we found
were also in dbSNP, although the genotypes for our 96 CA individuals, utilizing this
database, were not available to compare. In several cases, the dbSNP variant, although at the
same chromosomal location, did not agree with ours. For instance; at rs35311317 dbSNP
has a C>T SNP while NGS found a C insertion. We validated this and the Sanger results
agreed with our methodology results (Supplementary Fig. 6 a–c).

Our final means of validation was assessing whether our genotypes conformed to Hardy-
Weinberg equilibrium (HWE) expectations. Deviations from HWE can be due to inbreeding
or population stratification, but also can be due to problems with genotyping [28]. Using (P
> 0.001), 22 loci were found to be out of HWE and none of them were in linkage
disequilibrium with each other [29, 30], indicating that the reason they deviated from HWE
most likely was due to genotyping errors among one or more samples. Of the 22 loci, 10
were discovered to be within areas of poor coverage and adjacent to large gaps in
sequencing. The remaining 12 were indels, indicating our zygosity threshold determinations
for indels may not be optimal.

2.13. Comparison with HapMap and 1000 Genomes Project Data
Realizing the genetic variation in the CEU samples may not be identical to that found in
ours, and that the sample sizes are different, we set out to see if the common polymorphisms
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detected by our method for this genomic region on chromosome 6 were also present in the
HapMap and the 1000 genomes (1KG) project data deposited in dbSNP130. All the
HapMap CEU common polymorphic sites were in agreement with our findings with the
exception of (rs3734257:G>A) which in the CEU population had a 1.7% frequency in 120
alleles and was monomorphic in our 192 alleles.

168 common polymorphisms, of which 36% are supported by other platforms such as
dbSNP, Sanger, Illumina and Affymetrix, were detected by our method. These were not
found in the low or deep coverage 1KG pilots as noted in dbSNP130. 83 of these markers
had frequencies greater than 3%. Furthermore, two large gap areas, one of which we had
prior Sanger data on, contained high frequency SNPs. These correspond to gaps 4 and 5 on
the reliability gap map. Gap 4 is a GC-rich area and our method was able to detect 3 out of
the 3 high frequency SNPs within this region; (rs9462103:C>T), (rs13215797:C>T) and
(rs10947564:T>C), although because of very low coverage across the entire population and
therefore unreliable genotypes we excluded all three from our final data set. 1KG detected
rs13215797 alone. Gap 5 contained an Alu and although we were able to verify a 3.3 kb
deletion in some of our samples using Sanger, 1KG also did not detect anything in this area.

2.14. Methodology outperforms existing software
MAQ (http://maq.sourceforge.net/) is an open source and easy-to-use software which has
been used extensively for variation discovery [31–34]. It maps short reads and calls
genotypes. We ran MAQ, version 0.7.1 on 20 of our 96 samples over the 120 kb region on
chr6: 35,768,636–35,648,407. Using the default parameters, the SNP filter and loading both
paired ends, we compared the SNP and indel calls from MAQ to our results. Overall MAQ
detected a total of 435 SNPs and 13953 indels in our 20 samples. Our method identified a
total of 292 SNPs and 24 indels. A variant was considered validated if it was seen in our
Sanger traces, Illumina/Affymetrix data or dbSNP. From our set of 887 validated sites, we
were able to compare the number of FP and FN between the two methods. Our method
showed 0% FP for both SNPs and indels. MAQ showed 9% FP for SNPs, with only 1.1% of
the indels verified as true. As for false negatives, our method showed 0.75% and 0.13% for
SNPs and indels, respectively. MAQ showed 11% FN for SNPs and 0.26% for indels. To
further evaluate our method, we compared our SNP and indel calls on the same 20 samples,
and over the same 120 kb region with SAMtools, version 0.1.16 [35], and GATK, version
1.1–10 [36], respectively. Using BWA, version 0.5.9 as the aligner and the “mpileup”,
“varfilter” and “Unified Genotyper” tools, we obtained FP and FN. Our results, using
SAMtools, showed 7% FP and 55% FN for SNPs. GATK showed 18% FP and 7% FN for
indels. The high FN rate is likely due to this software’s very stringent default parameters for
calling a SNP or indel.

2.15. SNP in hormone response element in LD with silent (synonymous) SNP
Our method identified a SNP (rs73746499:T>C) at a critical position within a HRE [8, 18].
We found rs73746499 to be at relatively high frequency in our study, with 3.1% of our 96
Caucasian subjects carrying the variant. Further inspection showed 22 additional SNPs and
one 5 bp deletion in LD (r2=1) with rs73746499 (Fig. 5, Supplementary Table 6). 22 of the
variants were in introns, one was a synonymous SNP in Exon 10 (rs34866878:C>T), and
one was in the 3′UTR (rs41270080:G>T). Eleven of these variants discovered by our
method, including the deletion, were novel and not reported elsewhere. The LD between
them had also not been discovered or examined.

Since the Exon10 and 3′UTR variants were part of the mRNA and both synonymous SNPs
and 3′UTR variants have been shown to have functional consequences such as inducing
structural changes which could affect protein binding [37–40], drug interactions or alter
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mRNA stability, we used Mfold 3.1 [41] to predict the secondary structures for the full-
length wild-type, Exon 10, 3′UTR, and (Exon 10-3′UTR) haplotype mRNA transcripts. The
Exon 10 synonymous SNP showed a change in calculated free energy and secondary
structure, whereas the wild-type, 3′UTR and (Exon 10-3′UTR) haplotype SNPs showed no
changes (Fig. 6).

Since RNAs generally adopt multiple conformations, we used SNPfold [42] to determine
whether our SNPs had a large effect on the RNAs structural ensemble. SNPfold computes
all the possible suboptimal conformations of the RNA strand and determines the probability
of base-pairing for each nucleotide. By evaluating all possible mRNA structures, we
predicted if the SNPs had an affect on the probability of base-pairing (accessibility) of
critical interaction sites on the mRNA when compared to the wild-type. According to
SNPfold, the Exon 10, 3′UTR, and haplotype (Exon 10-3′UTR) variants significantly
disrupted the RNA structural ensemble in specific regions of the mRNA (Figs. 6 and 7).
Notably, the Exon 10 variant, which is part of TPR3, also disturbed an adjacent region
corresponding to TPR1; an effect not observed with the 3′UTR variant alone. The
interaction of immunophilins like FKBP5 with hsp90 occurs through the TPR domain and is
conserved in plants as well as the animal kingdom [43]. We found this area conserved, and
not polymorphic, with the exception of the single synonymous SNP in Exon 10.

2.16. Variants in RBP and RNP binding sites may affect posttranscriptional gene regulation
Because RNA-binding proteins (RBPs) and ribonucleoprotein complexes (RNPs) partly
control gene expression by regulating RNA transcript translation and stability, we used data
obtained by the PAR-CLIP (Photoactivable-Ribonucleoside-Enhanced Crosslinking and
Immunoprecipitation) [44] method to explore whether the FKBP5 mRNA was bound by
RBPs and RNPs. Data showed Argonaute (AGO) and trinucleotide repeat-containing
(TNRC6) proteins, both part of the miRNA induced silencing complexes [45], binding to
segments of RNA within the 3′UTR of FKBP5. AGO and miR-124, one of the most
conserved and abundantly expressed miRNAs in the adult brain [46], were bound to the
same site in Exon 9. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BFs) was
the most abundant RBP, binding to sites predominantly in the 3′UTR. Our methodology
uncovered genetic variants within seven of these binding sites; 5 of which were novel
(Supplementary Table 7a–b).

2.17. Discovery of rare variants impacts evolutionary conclusions
Our method detected 267 novel rare variants (<1%) within the chromosomal region
encompassing FKBP5. The negative Tajima’s D value of −1.44 conflicted with previous
reports of this region on chromosome 6 as being under balancing selection and upon
inspection, the dissimilar reports were based on small datasets which disregarded low
frequency variants [47, 48]. Our complete NGS data showed a dramatic increase in low
frequency polymorphisms, thus changing the landscape of evolutionary conclusions.

3. DISCUSSION
Current methods for the analysis of next-generation sequencing data mostly involve a one-
size-fits-all solution, where either default settings or one set of parameters are used. This
would be adequate if there was no variability in the DNA quality, LR-PCR primer design
and conditions, fragmentation, library preparation, cluster differentiation determination,
insert size and platform used. All these factors contribute to the integrity of the reads which
eventually are assembled and aligned to the reference. A one-size-fits-all strategy can lead to
incorrect genotypes and the detection of false variants as well as missed de novo variants.
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Our method, using pattern recognition 1) reduced the number of false variants resulting in
near perfect classification between true and false positives 2) detected 313 singletons, 267 of
which were novel, 3) detected variants in variable read depth coverage regions ranging from
4x to over 100x, 4) determined genotypes with 99% concordance with other platforms, 5)
detected 57 indels, 36 of which were novel, 6) analyzed multiple individuals simultaneously
which allowed us to calculate LD without the need for imputation 7) was amenable to
automation, which is a prerequisite for clinical usage and 8) was amenable to individual labs
without the need for extra personnel or resources.

While this study represents a novel approach to analysis, it also serves as an example of the
biological insights that can be gained by a comprehensive dataset as exemplified by our
method using PR. The level of detail and accuracy we achieved could not have been
obtained using current methods for analysis of high-throughput data, by using imputation, or
by selecting SNPs from databases such as dbSNP, HapMap or 1KG where rare variants,
indels and variants in non-coding regions are severely underrepresented and restricted to the
available populations.

Our method enabled the discovery of genetic variants within FKBP5 mRNA binding sites.
SNPs can alter mRNA secondary structure and expose regions of RNA to binding of
proteins, which could inhibit translation, thereby affecting individual posttranscriptional
gene regulation. Although the PAR-CLIP siRNA knockdown experiments designed to
assess whether IGF2BP proteins stabilized their target mRNAs were not performed on
FKBP5, the clustered selective binding of IGF2BP to the 3′UTR of FKBP5 mRNA suggests
it may be regulating the gene. IGF2BP has been associated clinically with altered glucose
levels [49].

Our method enabled the discovery of an intronic SNP within a HRE. The HRE SNP was in
perfect LD with 22 noncoding variants, and one coding SNP. Because conservation of LD
may be a marker of functionally important allelic combinations [50], and evidence of
selection, we aligned the nucleotide sequences of 9 mammals, including 4 non-human
primates. Both the Exon 10 and 3′UTR loci showed the same consensus nucleotides as the
human wild-type. Two exceptions were the mouse and guinea-pig (hystricomorph rodent),
which showed the human variant at both loci (Supplementary Table 8). Interestingly both
the Exon 10 and 3′UTR loci, across 9 mammals, had the same consensus nucleotides (when
the wild-type nucleotide was present in Exon 10, it was also present in the 3′UTR; when the
variant nucleotide was present in Exon 10, it was also present in the 3′UTR), implying some
association between the two loci.

In addition, when examining the partition function for the Exon 10 SNP, it predicted that the
variant perturbs more than one of the 3 unit repeats within the TPR domain of FKBP5. This
suggests the synonymous Exon 10 SNP may be affecting a critical region necessary for
function. Differences in conformation at sites where drugs and modulators interact may
appear subtle at the molecular level, but can produce significant biological results [51].
Since RNA interactions are identified by both computational and biochemical approaches,
and similar results were obtained using two different algorithms (Mfold and SNPfold);
biochemical assays (in vitro or in vivo) will be needed to determine the phenotype of this
haplotype and which of the 24 variants, if any, is dominant in exerting an effect.

A comprehensive dataset, as achieved by our methodology, could enable the identification
of rare disease causing variants. It could also change the way future assays are designed. The
microscopic view, where a single variant is investigated in isolation could be replaced by a
more global view, where variants are investigated in the context of their genetic
environment, for their interactions with each other and for their combined impact on
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function and influence on disease risk. The use of LD as a purely statistical tool in
imputation and GWAS could evolve into the investigation of the biological effects of LD
and the examination of the underlying reasons behind it; one of which is selection. This has
special significance since complex diseases are most likely influenced by the interactions of
multiple loci. Our findings may be clinically relevant. We report for the first time, a
synonymous SNP within FKBP5 which is predicted to alter mRNA stability, to be in perfect
LD with a regulatory region determined to impact GR sensitivity and bioavailability. Since
FKBP5 serves as a modulator of steroid receptor function, and the expression of the gene is
a key determinant in that regard, we hypothesize our findings may in part explain regulation
through interactions with hsp90, or by impacting protein translation efficiency. For example,
synonymous SNPs, such as in the P-glycoprotein, have been shown to alter the translation
kinetics of mRNA and produce a conformationally changed protein [52]. It should also be
noted we did not find any carriers of the homozygous variant in our population. In addition,
there are reported ethnic differences between CA and African Americans (AA) regarding
their sensitivity to glucocorticoids [53]. Interestingly, in a study of 96 AA (unpublished
data), the AA had a significantly higher Exon 10 variant allele frequency (20%) than CA
(3%), and carried the homozygous variant.

3.1. Improvements and limitations
There are a number of potential improvements and limitations to our methodology in its
present state. Our study focused on a 160 kb targeted region. The overall PR concept could
be adapted to a whole genome, but faster aligners which use Burrows-Wheeler transform
(BWT) would need to be evaluated for their performance, since alignment was a crucial
feature in our design.

Our detection of indels involved some manual inspection for verification. Although we did
not automate this part for the present study, it could be done. Our detection of indel loci was
accurate, with 47% of our indels verified, but the percentage cut-offs for zygosity
determination, whether heterozygous or homozygous, were not optimal and need to be
improved. Unlike most methods, which designate lower and upper allele frequency
boundaries, we omitted a lower boundary for the nucleotide(s) that are deleted or inserted.
Our upper boundary for simple (multi) and single (non-multi) deletions and insertions is
<80% for heterozygotes and ≥ 80% for homozygotes. More samples with indels need to be
tested for further optimization.

We were able to analyze 96 individuals over a 160 kb region in only 1.5 hours and with one
computer. Our output included chromosomal locations, frequencies, genotypes, HWE
calculations and RefSNP ID from dbSNP. If adding the run-time for the 5 experimental
settings using NextGENe’s batch processing option, it would take ~2 days to complete 96
individuals. This is significantly faster and less expensive than using methods which require
additional verification [25]. The total run-time could even be reduced to 2 hours if the
experiments were run in parallel rather than sequentially on one computer.

Two major technical issues in this study which caused a loss of information and inaccurate
results, were the presence of “gaps” or no coverage regions and preferential allelic
imbalance; both issues of DNA quality, PCR and sequencing. While shorter and overlapping
LR-PCR amplicons as well as careful PCR primer design can offset the allelic imbalance,
the gaps were puzzling and seemed to consistently occur in repetitive regions. To investigate
possible causes, we increased the number of raw reads, reasoning that a higher read count
may reduce the number of gaps and increase coverage, but in some cases, the exact opposite
occurred. It should be noted that we were able to achieve saturation levels of reads per
individual whether multiplexing or loading a single sample on a flow cell (unpublished
observations). We did not find a higher read count correlating with more uniform and

Pelleymounter et al. Page 12

Mol Genet Metab. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



complete coverage across the region of interest. This reinforces the principle that coverage is
associated with both quality of reads and sequence context rather than just raw read count.
Therefore the high cost which is often cited as a prerequisite for high read counts and
consequent greater coverage may be avoidable.

4. CONCLUSION
Our PR method is novel in that it introduces for the first time an alternative way to detect
SNPs and indels from high-throughput data. Other methods use a “top-down” approach,
which produce either too many FP or too many FN, depending on the threshold values
chosen. The thresholds, which are unavoidable when using software, provide an “either/or”
solution, and the final outcome is dictated by those choices (parameter settings) [54]. The
genetic variants detected by other methods are a result of one set of conditions. With one set
of conditions it is impossible to select the right combinations to accommodate the many
unknowns (input read quality), complexities (genomic sequence) and variables (sample
preparations and human error) encountered and expect to achieve a precise and accurate set
of variants. In contrast, the genetic variants obtained by our method result from multiple sets
of parameters which are designed to mimic “real world” unknowns and inconsistencies;
unknowns which most likely will always be present in DNA, because of its inherent
repetitiveness and ambiguity, and sample preparation techniques.

With longer and more accurate reads as well as improved target enrichment methods [55–
57], we believe the data input will become of higher quality and sequencing through
repetitive regions, thereby eliminating gaps, will be solved. Therefore this method of
analysis will produce consistent, fast and reliable results for research and clinical purposes
[58]. It is our hope that the general pattern recognition concept presented here represents one
small step towards bridging the gap between sequencing and analysis [59] and the dataset in
this study provides information for future research.

5. MATERIALS AND METHODS
5.1. Human DNA samples

DNA samples from 96 Caucasian-Americans were obtained from the Coriell Cell
Repository (Camden, NJ), Human Variation Panel – Caucasian Panel of 100
(www.coriell.org/). In addition, 43 tumor samples and 4 anonymized clinical samples were
used. Written and informed consent was obtained from all subjects on their use. Our studies
were reviewed and approved by the Mayo Clinic Institutional Review Board.

5.2. Public databases and software
The human reference genome was obtained from NCBI, Build 36 v3. NT_007592.14;
subsequence 26,398,617–26,558,272 and NT_016354.19; subsequence 89,146,844–
89,218,953. The cDNA reference sequences were NM_004117.2, NM_004117.3,
BC042605.1 and NM_000297.2. HapMap data for the CEPH (Utah residents with ancestry
from northern and western Europe) was downloaded from http://hapmap.org. The 1000
Genomes project data was obtained from http://browser.1000genomes.org/, and dbSNP
Build 130. Software used for analysis was NextGENe v1.04 and 1.10 (SoftGenetics, LLC,
State College, PA).

5.3. Short-range PCR for Sanger sequencing
Eleven amplicons, totaling 9.6 kb which targeted 1 kb of the 5′FR, all exons and 152 bp of
the 3′UTR of the FKBP5 gene were produced in each of the 96 Caucasian Coriell samples
and 43 tumor samples. Four additional amplicons which targeted 1 kb of intronic regions
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were also produced in the Coriell samples. Each of the 15 reactions was performed in 20 μl
containing 10~15 ng genomic DNA, 5 pmol each of forward and reverse primers
(Supplementary Table 1) and FastStart Taq DNA polymerase (Roche, Indianapolis, IN).
PCR cycling parameters included 95ºC for 5 min, 30 cycles at 95ºC for 30 s, 55~59ºC for 30
s, 72ºC for 30~120 s, and a final extension at 72ºC for 7 min. PCR products were
subsequently purified with ExoSAP-IT (USB Corporation, Cleveland, OH). Amplicons were
sequenced on both strands with an ABI 3730 DNA sequencer using ABI BigDye Terminator
sequencing chemistry. All chromatograms were analyzed using Mutation Surveyor v 2.2
(SoftGenetics, LLC, State College, PA). Both the forward and reverse strands were
manually inspected. The PCR primers and conditions for the 4 anonymized clinical samples
were as previously described [60].

5.4. Statistical analysis
An exact test was used to test Hardy-Weinberg equilibrium. Linkage disequilibrium was
calculated as the D’ and r2 measures. π (average difference between nucleotide pairs) and
Tajima’s D measures were estimated as in [61]. Agreement of next-generation sequencing
and other genotyping techniques was calculated as the number of sites in agreement between
the platforms over total number of sites considered. A confidence interval for this agreement
measure was constructed using a sandwich estimator assuming compound symmetric
covariance, where clusters were individual samples.

5.5. Threshold determinations
When building a model with real and uncertain datasets, it is impossible to accurately define
optimal parameter thresholds; therefore logical estimates must be chosen. Using concepts
from SA and knowledge of performance metrics of the Illumina platform, we selected
thresholds for three features; mutation percentage, coverage and matching base percentage.
The mutation percentage remained constant, at 20%, while the coverage included parameter
settings with levels >3x and >10x. The coverage values were derived from the 1KG deep
coverage trio pilot (pilot 2); with an average coverage of 10x for Solexa/Illumina platform
centers, and low coverage (pilot 1); with an average coverage of 3x. The mutation
percentage, calculated after duplicates were removed, was set at >20% to remove random
and systematic sequencing errors. Both the mutation percentage and coverage thresholds had
to be exceeded for a variant to be called real at that position. The matching base percentage
minimum and maximum levels were selected so that the probability of an actual value being
outside that range was ~10%. The range (50%–92%) was representative of the variability
encountered in real-world datasets. Thus, the 50%, less stringent alignment setting in
experiments 1 and 2, acted as a “catch-all” threshold, detecting false positives as well as true
positives. Concurrently, it served as an eliminator of false negatives.

5.6. Method implementation
The “poly-X” and downstream filter programs are available upon request. A Java program;
designated “poly-X”, calculated the chromosomal location(s) and lengths of each
homopolymer tract [poly (dA), poly (dT), poly (dG), poly (dC)] within the reference of a
specified target region. A HP was defined as a single nucleotide repeat ≥5 bp [62].
Information from the “poly-X” program was then integrated into the detection of deletions.
Only simple (multi)and single (non-multi) deletions detected in homopolymer regions ≤ 11
bp were considered putative true variants. A Perl program parsed the nine NextGENe
reports produced by the five experiments for each sample, merged them and applied
“column-based” rules to filter out false polymorphic sites. A preliminary summary report of
the polymorphisms that met the thresholds was produced for each sample. A Java program
then collected all of the sample summary reports and applied “population-based” rules to
further determine the true polymorphic sites across the population. For a structured
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flowchart (Nassi-Schneiderman diagram) of the overall algorithm, column and population
rules see (Supplementary Fig. 4a–c). The “poly-X” and downstream filter programs required
input files in FASTA and .csv, respectively.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
This work was supported in part by the following grants; NIH grant U19 GM61388 (The Pharmacogenomics
Research Network), NIDDK grant 1R21 DK083669-01A1, NIGMS grant R00 GM079953 and NIMH grant, R21
MH087336. We thank M. Hafner (T.Tuschl lab) for additional IGF2BP PAR-CLIP information. We thank G.
Jenkins for statistical support and W.Q. Wei for supplemental programming. Invaluable manuscript advice and
technical assistance were provided by J.A. Gilbert and L.F. Wussow. We also thank W.R. Hartman for organizing
the outliers data and R.C. Piper, R.M. Weinshilboum, S.M. Sine, N.L. Pereira, F. Li, S.J. Hebbring and A. Matimba
for insightful feedback regarding the manuscript. Finally, thanks to Y. Ji for inspiration.

References
1. Chakravarti A. Population genetics--making sense out of sequence. Nat Genet. 1999; 21:56–60.

[PubMed: 9915503]
2. Sabeti PC, Schaffner SF, Fry B, Lohmueller J, Varilly P, Shamovsky O, Palma A, Mikkelsen TS,

Altshuler D, Lander ES. Positive natural selection in the human lineage. Science. 2006; 312:1614–
1620. [PubMed: 16778047]

3. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I,
Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke
A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J. Comprehensive mapping of long-range
interactions reveals folding principles of the human genome. Science. 2009; 326:289–293.
[PubMed: 19815776]

4. Marguerat S, Wilhelm BT, Bähler J. Next-generation sequencing: applications beyond genomes.
Biochem Soc Trans. 2008; 36(Pt5):1091–1096. [PubMed: 18793195]

5. Kidd JM, Sampas N, Antonacci F, Graves T, Fulton R, Hayden HS, Alkan C, Malig M, Ventura M,
Giannuzzi G, Kallicki J, Anderson P, Tsalenko A, Yamada NA, Tsang P, Kaul R, Wilson RK,
Bruhn L, Eichler EE. Characterization of missing human genome sequences and copy-number
polymorphic insertions. Nat Methods. 2010; 7:365–371. [PubMed: 20440878]

6. Chen Y, Cicciarelli J, Pravica V, Hutchinson IV. Long-range linkage on chromosome 6p of VEGF,
FKBP5, HLA and TNF alleles associated with transplant rejection. Mol Immunol. 2009; 47:96–100.
[PubMed: 19233472]

7. Pratt WB, Toft DO. Steroid receptor interactions with heat shock protein and immunophilin
chaperones. Endocr Rev. 1997; 18:306–360. [PubMed: 9183567]

8. Hubler TR, Scammell JG. Intronic hormone response elements mediate regulation of FKBP5 by
progestins and glucocorticoids. Cell Stress Chaperones. 2004; 9:243–252. [PubMed: 15544162]

9. Binder EB. The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis
and therapy of affective and anxiety disorders. Psychoneuroendocrinology. 2009; 34:S186–S195.
[PubMed: 19560279]

10. Bao H, Guo H, Wang J, Zhou R, Lu X, Shi S. MapView: visualization of short reads alignment on
a desktop computer. Bioinformatics. 2009; 25:1554–1555. [PubMed: 19369497]

11. Bell CJ, Dinwiddie DL, Miller NA, Hateley SL, Ganusova EE, Mudge J, Langley RJ, Zhang L,
Lee CC, Schilkey FD, Sheth V, Woodward JE, Peckham HE, Schroth GP, Kim RW, Kingsmore
SF. Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci
Translat Med. 2011; 3:65ra64.

12. Carver T, Böhme U, Otto TD, Parkhill J, Berriman M. BamView: viewing mapped read alignment
data in the context of the reference sequence. Bioinformatics. 2010; 26:676–677. [PubMed:
20071372]

Pelleymounter et al. Page 15

Mol Genet Metab. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



13. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP.
Integrative genomics viewer. Nat Biotechnol. 2011; 29:24–26. [PubMed: 21221095]

14. Mills RE, Luttig CT, Larkins CE, Beauchamp A, Tsui C, Pittard WS, Devine SE. An initial map of
insertion and deletion (INDEL) variation in the human genome. Genome Res. 2006; 16:1182–
1190. [PubMed: 16902084]

15. Chuzhanova NA, Anassis EJ, Ball EV, Krawczak M, Cooper DN. Meta-analysis of indels causing
human genetic disease: mechanisms of mutagenesis and the role of local DNA sequence
complexity. Hum Mutat. 2003; 21:28–44. [PubMed: 12497629]

16. Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads and calling variants using mapping
quality scores. Genome Res. 2008; 18:1851–1858. [PubMed: 18714091]

17. Mullaney JM, Mills RE, Pittard WS, Devine SE. Small insertions and deletions (INDELs) in
human genomes. Human Molecular Genetics. 2010; 19:R131–R136. [PubMed: 20858594]

18. Paakinaho V, Makkonen H, Jaaskelainen T, Palvimo JJ. Glucocorticoid receptor activates poised
FKBP51 locus through long-distance interactions. Mol Endocrinol. 2010; 24:511–525. [PubMed:
20093418]

19. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. The human
genome browser at UCSC. Genome Res. 2002; 12:996–1006. [PubMed: 12045153]

20. Zhao Z, Boerwinkle E. Neighboring-nucleotide effects on single nucleotide polymorphisms: a
study of 2.6 million polymorphisms across the human genome. Genome Res. 2002; 12:1679–1686.
[PubMed: 12421754]

21. Mungall AJ, Palmer SA, Sims SK, Edwards CA, Ashurst JL, Wilming L, Jones MC, Horton R,
Hunt SE, Scott CE, Gilbert JG, Clamp ME, Bethel G, Milne S, ARAJP, AKD, ATD, Ashwell
RIBA, Bagguley CL, Bailey J, Banerjee R, Barker DJ, Barlow KF, Bates K, Beare DM, Beasley
H, Beasley O, Bird CP, Blakey S, Bray-Allen S, Brook J, Brown AJ, Brown JY, Burford DC,
Burrill W, Burton J, Carder C, Carter NP, Chapman JC, Clark SY, Clark G, Clee CM, Clegg S,
Cobley V, Collier RE, Collins JE, Colman LK, Corby NR, Coville GJ, Culley KM, Dhami P,
Davies J, Dunn M, Earthrowl ME, Ellington AE, Evans KA, Faulkner L, Francis MD, Frankish A,
Frankland J, French L, Garner P, Garnett J, Ghori MJ, Gilby LM, Gillson CJ, Glithero RJ,
Grafham DV, Grant M, Gribble S, Griffiths C, Griffiths M, Hall R, Halls KS, Hammond S, Harley
JL, Hart EA, Heath PD, Heathcott R, Holmes SJ, Howden PJ, Howe KL, Howell GR, Huckle E,
Humphray SJ, Humphries MD, Hunt AR, Johnson CM, Joy AA, Kay M, Keenan SJ, Kimberley
AM, King A, Laird GK, Langford C, Lawlor S, Leongamornlert DA, Leversha M, Lloyd CR,
Lloyd DM, Loveland JE, Lovell J, Martin S, Mashreghi-Mohammadi M, Maslen GL, Matthews L,
McCann OT, McLaren SJ, McLay K, McMurray A, Moore MJ, Mullikin JC, Niblett D, Nickerson
T, Novik KL, Oliver K, Overton-Larty EK, Parker A, Patel R, Pearce AV, Peck AI, Phillimore B,
Phillips S, Plumb RW, Porter KM, Ramsey Y, Ranby SA, Rice CM, Ross MT, Searle SM, Sehra
HK, Sheridan E, Skuce CD, Smith S, Smith M, Spraggon L, Squares SL, Steward CA, Sycamore
N, Tamlyn-Hall G, Tester J, Theaker AJ, Thomas DW, Thorpe A, Tracey A, Tromans A, Tubby
B, Wall M, Wallis JM, West AP, White SS, Whitehead SL, Whittaker H, Wild A, Willey DJ,
Wilmer TE, Wood JM, Wray PW, Wyatt JC, Young L, Younger RM, Bentley DR, Coulson A,
Durbin R, Hubbard T, Sulston JE, Dunham I, Rogers J, Beck S. The DNA sequence and analysis
of human chromosome 6. Nature. 2003; 425:805–811. [PubMed: 14574404]

22. Raca G, Jackson C, Warman B, Bair T, Schimmenti LA. Next generation sequencing in research
and diagnostics of ocular birth defects. Mol Genet Metab. 2010; 100:194–192.

23. Chou LS, Liu CS, Boese B, Zhang X, Mao R. DNA sequence capture and enrichment by
microarray followed by next-generation sequencing for targeted resequencing: neurofibromatosis
type 1 gene as a model. Clin Chem. 2010; 56:62–72. [PubMed: 19910506]

24. Mitchell AA, Zwick ME, Chakravarti A, Cutler DJ. Discrepancies in dbSNP confirmation rates
and allele frequency distributions from varying genotyping error rates and patterns.
Bioinformatics. 2004; 20:1022–1032. [PubMed: 14764571]

25. Cirulli ET, Goldstein DB. Uncovering the roles of rare variants in common disease through whole-
genome sequencing. Nat Rev Genet. 2010; 11:415–425. [PubMed: 20479773]

26. Harismendy O, Frazer K. Method for improving sequence coverage uniformity of targeted
genomic intervals amplified by LR-PCR using Illumina GA sequencing-by-synthesis technology.
Biotechniques. 2009; 46:229–231. [PubMed: 19317667]

Pelleymounter et al. Page 16

Mol Genet Metab. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



27. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, Sherry S, Mullikin
JC, Mortimore BJ, Willey DL, Hunt SE, Cole CG, Coggill PC, Rice CM, Ning Z, Rogers J,
Bentley DR, Kwok PY, Mardis ER, Yeh RT, Schultz B, Cook L, Davenport R, Dante M, Fulton L,
Hillier L, Waterston RH, McPherson JD, Gilman B, Schaffner S, Van Etten WJ, Reich D, Higgins
J, Daly MJ, Blumenstiel B, Baldwin J, Stange-Thomann N, Zody MC, Linton L, Lander ES,
Altshuler D, Group ISMW. A map of human genome sequence variation containing 1.42 million
single nucleotide polymorphisms. Nature. 2001; 409:928–933. [PubMed: 11237013]

28. Weinberg CR, Morris RW. Invited commentary: Testing for Hardy-Weinberg disequilibrium using
a genome single-nucleotide polymorphism scan based on cases only. Am J Epidemiol. 2003;
158:401–403. discussion 404–405. [PubMed: 12936893]

29. Wigginton JE, Cutler DJ, Abecasis GR. A note on exact tests of Hardy-Weinberg equilibrium. Am
J Hum Genet. 2005; 76:887–893. [PubMed: 15789306]

30. Consortium TIH. A haplotype map of the human genome. Nature. 2005; 437:1299–1320.
[PubMed: 16255080]

31. Clement NL, Snell Q, Clement MJ, Hollenhorst PC, Purwar J, Graves BJ, Cairns BR, Johnson WE.
The GNUMAP algorithm: unbiased probabilistic mapping of oligonucleotides from next-
generation sequencing. Bioinformatics. 2010; 26:38–45. [PubMed: 19861355]

32. Bansal V, Harismendy O, Tewhey R, Murray SS, Schork NJ, Topol EJ, Frazer KA. Accurate
detection and genotyping of SNPs utilizing population sequencing data. Genome Res. 2010;
20:537–545. [PubMed: 20150320]

33. Ahn SM, Kim TH, Lee S, Kim D, Ghang H, Kim DS, Kim BC, Kim SY, Kim WY, Kim C, Park
D, Lee YS, Kim S, Reja R, Jho S, Kim CG, Cha JY, Kim KH, Lee B, Bhak J, Kim SJ. The first
Korean genome sequence and analysis: full genome sequencing for a socio-ethnic group. Genome
Res. 2009; 19:1622–1629. [PubMed: 19470904]

34. The 1000 Genomes Project Consortium, A map of human genome variation from population-scale
sequencing. Nature. 2010; 467:1061–1073. [PubMed: 20981092]

35. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R,
Subgroup GPDP. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;
25:2078–2079. [PubMed: 19505943]

36. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler
D, Gabriel S, Daly M, DePristo MA. The Genome Analysis Toolkit: a MapReduce framework for
analyzing next-generation DNA sequencing data. Genome Res. 2010; 20:1297–1303. [PubMed:
20644199]

37. Nackley AG, Shabalina SA, Tchivileva IE, Satterfield K, Korchynskyi O, Makarov SS, Maixner
W, Diatchenko L. Human catechol-O-methyltransferase haplotypes modulate protein expression
by altering mRNA secondary structure. Science. 2006; 314:1930–1933. [PubMed: 17185601]

38. Duan J, Wainwright MS, Comeron JM, Saitou N, Sanders AR, Gelernter J, Gejman PV.
Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and
synthesis of the receptor. Hum Mol Genet. 2003; 12:205–216. [PubMed: 12554675]

39. Hunt R, Sauna ZE, Ambudkar SV, Gottesman MM, Kimchi-Sarfaty C. Silent (synonymous) SNPs:
should we care about them? Methods. Mol Biol. 2009; 578:23–39.

40. Sauna ZE, Kimchi-Sarfaty C, Ambudkar SV, Gottesman MM. Silent polymorphisms speak: how
they affect pharmacogenomics and the treatment of cancer. Cancer Res. 2007; 67:9609–9612.
[PubMed: 17942888]

41. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids
Research. 2003; 31:3406–3415. [PubMed: 12824337]

42. Halvorsen M, Martin JS, Broadaway S, Laederach A. Disease-associated mutations that alter the
RNA structural ensemble. PLoS Genet. 2010; 6:e1001074. [PubMed: 20808897]

43. Owens-Grillo JK, Stancato LF, Hoffmann K, Pratt WB, Krishna P. Binding of immunophilins to
the 90 kDa heat shock protein (hsp90) via a tetratricopeptide repeat domain is a conserved protein
interaction in plants†. Biochemistry. 1996; 35:15249–15255. [PubMed: 8952474]

44. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M
Jr, Jungkamp A-C, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T.

Pelleymounter et al. Page 17

Mol Genet Metab. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Transcriptome-wide identification of RNA-binding protein and MicroRNA target sites by PAR-
CLIP. Cell. 2010; 141:129–141. [PubMed: 20371350]

45. Chen C-YA, Zheng D, Xia Z, Shyu A-B. Ago-TNRC6 triggers microRNA-mediated decay by
promoting two deadenylation steps. Nat Struct Mol Biol. 2009; 16:1160–1166. [PubMed:
19838187]

46. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-
specific MicroRNAs from mouse. Curr Biol. 2002; 12:735–739. [PubMed: 12007417]

47. Kreitman M, Di Rienzo A. Balancing claims for balancing selection. TRENDS in Genetics. 2004;
20:300–304. [PubMed: 15219394]

48. Zan Q, Wen B, He Y, Wang Y, Xu S, Qian J, Lu D, Jin L. Complete sequence data support lack of
balancing selection on PRNP in a natural Chinese population. J Hum Genet. 2006; 51:451–454.
[PubMed: 16565881]

49. Lee Y-H, Kang ES, Kim SH, Han SJ, Kim CH, Kim HJ, Ahn CW, Cha BS, Nam M, Nam CM, Lee
HC. Association between polymorphisms in SLC30A8, HHEX, CDKN2A/B, IGF2BP2, FTO,
WFS1, CDKAL1, KCNQ1 and type 2 diabetes in the Korean population. J Hum Genet. 2008;
53:991–998. [PubMed: 18991055]

50. Guryev V, Smits BMG, de Belt Jv, Verheul M, Hubner N, Cuppen E. Haplotype block structure is
conserved across mammals. PLoS Genet. 2006; 2:e121. [PubMed: 16895449]

51. Kimchi-Sarfaty C, Oh JM, Kim I-W, Sauna ZE, Calcagno AM, Ambudkar SV, Gottesman MM. A
“silent” polymorphism in the MDR1 gene changes substrate specificity. Science. 2007; 315:525–
528. [PubMed: 17185560]

52. Fung KL, Gottesman MM. A synonymous polymorphism in a common MDR1 (ABCB1)
haplotype shapes protein function. Biochim et Biophys Acta. 2009; 1794:860–871.

53. Frazier B, Hsiao CW, Deuster P, Poth M. African Americans and Caucasian Americans:
differences in glucocorticoid-induced insulin resistance. Horm Metab Res. 2010; 42:887–891.
[PubMed: 20839152]

54. Devil in the details. Nature. 2011; 470:305–306.
55. Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A, Howard E, Shendure J,

Turner DJ. Target-enrichment strategies for next-generation sequencing. Nat Methods. 2010;
7:111–118. [PubMed: 20111037]

56. Chaisson MJ, Brinza D, Pevzner PA. De novo fragment assembly with short mate-paired reads:
Does the read length matter? Genome Res. 2009; 19:336–346. [PubMed: 19056694]

57. Quail MA, Kozarewa I, Smith F, Scally A, Stephens PJ, Durbin R, Swerdlow H, Turner DJ. A
large genome center’s improvements to the Illumina sequencing system. Nat Methods. 2008;
5:1005–1010. [PubMed: 19034268]

58. Morgan JE, Carr IM, Sheridan E, Chu CE, Hayward B, Camm N, Lindsay HA, Mattocks CJ,
Markham AF, Bonthron DT, Taylor GR. Genetic diagnosis of familial breast cancer using clonal
sequencing. Hum Mutat. 2010; 31:484–491. [PubMed: 20127978]

59. McPherson JD. Next-generation gap. Nat Methods. 2009; 6:2–5.
60. Rossetti S, Chauveau D, Walker D, Saggar-Malik A, Winearls CG, Torres VE, Harris PC. A

complete mutation screen of the ADPKD genes by DHPLC. Kidney Int. 2002; 61:1588–1599.
[PubMed: 11967008]

61. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism.
Genetics. 1989; 123:585–595. [PubMed: 2513255]

62. Ball EV, Stenson PD, Abeysinghe SS, Krawczak M, Cooper DN, Chuzhanova NA. Microdeletions
and microinsertions causing human genetic disease: common mechanisms of mutagenesis and the
role of local DNA sequence complexity. Hum Mutat. 2005; 26:205–213. [PubMed: 16086312]

Appendix A. Supplementary data
Supplementary data associated with this article can be found, in the online version at doi:
…………………..

Pelleymounter et al. Page 18

Mol Genet Metab. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Highlights

• Pattern recognition approach produces higher accuracy than current methods

• We are able to detect rare variants and indels

• We show perturbations in a critical binding site of FKBP5 mRNA

• We provide possible explanation for individual differences in GR sensitivity
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Figure 1. General Workflow
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Figure 2. Categorization of patterns
The patterns fell into two main groups. Group 1 patterns were those found for true variants.
Only five patterns (1T-5T), where “T” stands for true, are shown here. Group 2 patterns
were those found for false variants. Only five patterns (1F-5F), where “F” stands for false,
are shown here. There were some patterns shared by both groups. This is represented by the
shaded oval. Beneath the pattern discovery is an example of one sample where four variants
were detected. The variants were detected at sites 3660, 4623, 5220 and 114409. These
numbers represent chromosomal locations within the reference sequence of the genomic
region of interest. Site 3660 is representative of pattern 1T and site 114409 is representative
of pattern 2T. These patterns were found in group1 and were therefore retained. Sites 4623
and 5220 are representative of patterns 1F and 5F, respectively. They were found in group 2
and therefore eliminated. The final output for this sample shows true variants at
chromosomal locations 3660 and 114409.
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Figure 3. 9bp deletion (a–c)
a) NextGENe output of heterozygote deletion of TGAGCCGAG for sample NA17208. This
was our largest complex indel. b) Sanger chromatogram of the same deletion for sample
NA17208. c) Sample NA17204 did not show a deletion at this site as verified by Sanger
chromatogram.

Pelleymounter et al. Page 22

Mol Genet Metab. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4. Variability of Coverage
Variants were discovered at variable read depths. The x-axis shows the location of each
variant discovered, from 5′(left) to 3′(right). The y-axis is the average read depth across all
96 individuals. SNPs at the highest read depth, (above 100x) and the lowest (below 20x) are
circled.
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Figure 5. Variants in LD
Schematic diagram illustrating FKBP5 genomic organization (NM_004117.2) and the
location of 3 of the 24 variants in linkage disequilibrium (r2=1).
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Figure 6. Effects of silent and 3′UTR SNPs on predicted mRNA secondary structures (a–h)
a through h are the mRNA folding structures predicted by Mfold. a) and b) are the wild-type
structure with snapshots of the Exon 10 (a) and 3′UTR (b) local stem-loop structures; ΔG =
−995.33 kcal/mol. c) and d) are the Exon 10 variant (c) and 3′UTR wild-type (d) structures;
ΔG =−986.64 kcal/mol. The c and d haplotype codes for the least stable structure. e) and f)
are the Exon 10 wild-type (e) and 3′UTR variant (f) structures; Δ G =−995.22 kcal/mol. g)
and h) are the Exon 10 variant (g) and 3′UTR variant (h) structures; Δ G = −991.97 kcal/
mol. The boxes in the left-hand corners of c, e and g are from SNPfold and represent the c–
d, e–f, and g–h haplotypes. The x-axis is the nucleotide position of the mRNA and the y-axis
is the average change in partition function. This is determining the extent to which the wild-
type and SNP matrices differ, as well as where the base-pairing probabilities are most
different.
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Figure 7. The “silent” SNP affects base-pairing probabilities within TPR domains
SNPfold graph is a zoomed-in view of the “silent” SNP (green vertical line) and its affects
on the mRNA. Nucleotides 960–1059 of the mRNA correspond to TPR1 when translated
(first pink shaded area). Second pink shaded area corresponds to TPR2 when translated.
Third pink shaded area corresponds to TPR3 when translated. Note the absence of
perturbations within TPR2 and areas preceding the TPR domain.
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