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Summary

Modern medical and hygienic practices have greatly improved human health and longevity;

however, increased human lifespan occurs concomitantly with the emergence of metabolic and

age-related diseases. Studies over the past decade have strongly linked host inflammatory

responses to the etiology of several metabolic diseases including atherosclerosis, type 2 diabetes

(T2D), obesity and gout. A common immunological factor to these diseases is the activation of the

inflammasome and release of pro-inflammatory cytokines that promote disease progression. Here

we review the molecular mechanism(s) of inflammasome activation in response to metabolic

damage associated molecular patterns (DAMPs) and discuss potential targets for therapeutic

intervention.

Introduction to Inflammasomes and Metabolic Diseases

The incidence of metabolic disorders such as type 2 diabetes (T2D), obesity, gout and

cardiovascular disease have dramatically increased. Recent studies provide strong evidence

suggesting an essential role of chronic inflammation in the pathogenesis of metabolic

disorders. Elevated levels of circulating inflammatory mediators including cytokines and

chemokines are hallmarks of chronic inflammation and are now found to promote the

initiation and progression of metabolic diseases. The inflammasome complex, which leads

to the processing of inactive pro-IL-1β and IL-18 into their mature forms, has been found to

regulate chronic inflammation and modify physiological metabolic processes. This area of

research provides promise because understanding the mechanism(s) of inflammasome

activation should shed light on the development of new therapeutic regimens. This review

will focus on the role of inflammasome activation in key metabolic diseases.
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The discovery of conserved gene families with structural similarity has led to the revelation

of important pathways in innate immunity, including the Toll-like receptors and c-type lectin

receptors, which are primarily membrane associated and respond to pathogen-associated

products (Takeuchi and Akira, 2010). An important advance is the discovery of the NLRs

(nucleotide-binding domain, leucine-rich repeat containing, also known as nucleotide-

oligomerization domain-like receptors) that encompass a large gene family encoding

intracellular proteins that respond to changes in cellular homeostasis and/or microbial

infection. As designated by the name, NLRs have an evolutionarily conserved arrangement

of nucleotide binding domain (NBD) followed by a leucine rich region (LRR). These genes

are evolutionarily conserved in both plants and animals, but unlike TLRs found in

Drosophilia, NLRs are not present in lower organisms including fruit flies and nematodes,

and represent a unique family of signaling molecules for higher eukaryotes (Ting and Davis,

2005). However NLRs are abundant in plants, and are classified as disease resistance (R)

genes, which represent a major force to combat pathogens (Jones and Dangl, 2006). Plant

NLRs also act through an intracellular route and reside in both the cytoplasm and nucleus. In

animals, the NLR family includes four subgroups with distinguishing N-terminal domains:

acidic transactivation, pyrin, CARD (caspase activation and recruitment domain),

baculoviral inhibitory repeat (BIR)-like domain. There are variations where additional

domains are found in the C-terminus. An example is the human NLRP1 protein which

encodes C-terminal FIIND and CARD domains.

The NLR family includes 22 members with broad and divergent functional roles. These

include two that have been found to serve as master transcriptional regulators of class I and

II Major Histocompatibilty Complex (MHC) gene transcription, several that are positive or

negative regulators of key signaling pathways such as NFκB and MAPK, and multiple that

exhibit functions in mechanisms of cell death ranging from pyroptosis, apoptosis, necrosis

and autophagy (Wen et al., 2013). Certain NLRs have more than one role in the cell and it is

likely that their functional repertoire will expand with further investigation (Lupfer and

Kanneganti, 2013).

The most-extensively studied NLR sub-family remains those that trigger the inflammasome

leading to the activation of the cysteine protease CASPASE-1 and subsequent cleavage of

pro-IL-1β and pro-IL-18 by CASPASE-1 to their mature forms, and this topic has been

extensively reviewed (Latz et al., 2013; Strowig et al., 2012; Wen et al., 2013). Although

there are ten NLRs with inflammasome function in response to an array of agonists (NLRP1,

NLRP2, NLRP3, NLRP6, NLRP7, NLRP12, NOD2, NLRC4/IPAF, NAIP2, NAIP5), the

protein NLRP3 which represents a pyrin-containing NLR, remains the most extensively

studied due to its broad functional impact in numerous disease models.

NLRP3 variants with gain-of-function mutations were first found to underlie a form of

inherited periodic condition characterized by arthritis, fever, skin rashes and increased serum

IL-1β/IL-18 (Hoffman and Wanderer, 2010). These mutations are found in a spectrum of

auto-inflammatory diseases collectively referred to as FCAS (Familial Cold Auto

inflammatory Syndrome) or CAPS (Cryopyrin-associated Periodic Syndrome), which

remarkably are successfully treated with the IL-1 receptor antagonist (IL-1Ra), Anakinra/

Kineret (Hoffman and Wanderer, 2010). These genetic analyses in patients provided clinical
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evidence linking NLRP3 to IL-1β. The inflammasome was first defined in vitro though

studies of NLRP1, and later NLRP3, using cell free lysates enriched for NLRP1, the adaptor

ASC (apoptosis-associated speck-like protein containing CARD) and pro-CASPASE-1/5.

The assembly of these components resulted in the proteolytic cleavage of CASPASE-1 and

is referred to as the inflammasome complex. Biochemically, the adaptor ASC which

contains both pyrin and CARD domains respectively interact with the pyrin domain of

NLRP1 and the CARD domain of pro-caspases to form the inflammasome (Martinon et al.,

2002). Complex assembly leads to the auto-catalytic cleavage of CASPASE-1, which then

processes pro-IL-1β and pro-IL-18 to their mature forms (Hoffman et al., 2001; Sutterwala

et al., 2006). Studies of Nlrp3−/− mice indicate that this gene is pivotal for the secretion of

IL- 1β and IL-18 by myeloid macrophage cell lineages in response to a spectrum of

pathogen or microbialderived products, called pathogen- or microbial-associated molecular

patterns (PAMPs or MAMPs) and products from damaged cells, referred to as damage-

associated molecular patterns (DAMPs) (Feldmann et al., 2002; Hoffman et al., 2001).

Many of the metabolic byproducts associated with metabolic diseases are thought to serve as

DAMPs, resulting in sterile inflammation that is not caused by microbial agents. In contrast

to NLRP3, other inflammasome NLRs such as NLRC4/NAIP and NLRP1 have a more

restricted repertoire of cognate ligands or agonists (Agostini et al., 2004; Mariathasan et al.,

2004; Meylan et al., 2006; Miao et al., 2006); (Fink et al., 2008; Hsu et al., 2008; Moayeri et

al., 2012; Newman et al., 2010) and the non-NLR inflammasome AIM2 (absence in

melanoma2) senses and binds DNA. These have either not been studied in the context of

metabolic diseases or have not been found to have a role in metabolic diseases. Consistent

with the study in other fields, analysis of metabolic disorders and their link to the

inflammasome has focused almost entirely on the NLRP3 protein, with evidence that

NLRP6 also plays a role in non-alcoholic fatty liver disease models (Henao-Mejia et al.,

2012). In this review, our focus will be on the study of inflammasome in four metabolic

disease models in mice, representing atherosclerosis, T2D, obesity and gout. Key findings in

humans will be underscored to indicate translational relevance of these findings.

The Inflammasome in Atherosclerotic Disease

Atherosclerosis is the progressive narrowing of arterial vessels due to combinatorial effects

of dietary, genetic and immune factors. Disease progression can take decades and occurs

through a series of stages in which fatty cholesterol deposits accumulate at branch points

along the arterial wall (Weber and Noels, 2011). Macrophages are recruited to these sites

and become “foam cells” due to their altered morphology following high cholesterol intake

and storage as lipid droplets. The crystalline form of cholesterol is believed to rupture foam

cells resulting in extracellular cholesterol deposition and further recruitment of immune cells

with continued lesion expansion (Grebe and Latz, 2013). The center of the lesion is

comprised of dying cells and particulate cholesterol with a fibrotic cap of collagen and

smooth muscle cells. The destabilization of the cap leads to thrombosis and ischemia,

resulting in acute myocardial infarction, stroke or other tissue injury (Grebe and Latz, 2013;

Weber and Noels, 2011).

Cholesterol is carried through the blood via low density lipoproteins (LDL), which are

endocytosed using the LDL-receptor and either immediately utilized by the cell or stored in
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lipid droplets as cholesterol esters (Grebe and Latz, 2013). Some lipoproteins (e.g.

apolipoprotein E (APOE)) are important for clearing cholesterol-rich LDL from the blood.

APOE loss-of-function mutations in humans lead to elevated serum cholesterol and targeted

Apoe gene deletion in mouse models greatly increases progression of atherosclerosis when

combined with cholesterol-rich diets (Cladaras et al., 1987; Zhang et al., 1992). Studies

using Apoe−/− and the related Ldlr−/− (LDL-receptor deficient) mice, have implicated innate

and adaptive immune cells in both exacerbation and protection from atherosclerosis, and

have recently been reviewed (Libby et al., 2013). This section will focus on innate immune

responses during atherogenesis with an emphasis on the role of the NLRP3 inflammasome

and IL-1 signaling.

Early studies treating Apoe−/− mice with recombinant IL-1R antagonists showed that

blocking IL-1 signaling reduces atherosclerosis (Elhage et al., 1998). The complimentary

experiment of deleting the endogenous IL-1 receptor antagonist (IL1-Ra) gene resulted in

worse disease (Devlin et al., 2002; Isoda et al., 2004; Nicklin et al., 2000). Almost 10 years

later, Duewell et al. provided a direct link between cholesterol, IL-1 signaling and

atherosclerosis by discovering that cholesterol crystals (CC) activate the NLRP3

inflammasome resulting in robust IL-1β release (Duewell et al., 2010; Rajamäki et al.,

2010). Subsequent studies confirmed and expanded the notion that CC activates the NLRP3

inflammasome in both mouse and human (Jiang et al., 2012; Rajamäki et al., 2010; Usui et

al., 2012). The mechanism for NLRP3 activation by CC includes a requirement for crystal

engulfment, release of lysosomal cathepsins, generation of ROS and K+ efflux (Duewell et

al., 2010; Rajamäki et al., 2010).

Autophagy has been implicated in protection from atherosclerosis and may work at multiple

levels of the disease. Autophagosomes are double membrane vesicles that form around

damaged organelles or intracellular pathogens and proceed to fuse with lysosomes to recycle

host components and/or clear infection (Ma et al., 2013). Macrophage-specific deletion of

Atg5 (an essential gene for autophagosome formation) exacerbates atherogenesis in the

Apoe−/− mice and correlates with increased IL-1 β production (Razani et al., 2012). The

authors suggest that autophagy protects from atherosclerosis by multiple mechanisms with

one possibility being that autophagy promotes cholesterol efflux and mitigates macrophage

foam cell formation, which would reduce CC formation and subsequent triggering of the

inflammasome. A second possibility is that autophagic removal of damaged mitochondria

and/or lysosomes decreases intracellular ROS and subsequently reduces NLRP3 activation

and IL-1β release.

The ROS for inflammasome activation is hypothesized to be mitochondrial derived (mROS)

and allows for downstream release of NLRP3 co-activators. A sensor of oxidative stress

associated with NLRP3 activation is NFE2-related factor 2 (NRF2), which is a known

transcriptional regulator that is activated in response to oxidative stress and upregulates

expression of anti-oxidant genes to restore homeostasis (Ma, 2013). Freigang et al. reported

that Nrf2−/− mice have decreased atherosclerotic disease correlating with decreases in both

IL-1α and IL-1β release by dendritic cells following CC treatment (Freigang et al., 2011).

NRF2 is induced by LPS stimulation and is present in both cytosolic and nuclear

compartments (Piantadosi et al., 2011). Therefore, one possibility is that NRF2 is directly
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involved in assembly of NLRP3 inflammasomes in the cytosol following CC treatment.

Alternatively, NRF2 may function in the nucleus to prime inflammasome activation by

inducing transcription of inflammasome related genes (e.g. Nlrp3, Casp1, Il1b). Cholesterol

treatment induced expression of NRF2 target genes, suggesting that NRF2 is activated in

response to CC; however, mRNA levels of inflammasome-related genes were not reported

(Freigang et al., 2011; Ma, 2013). Further experimentation using Nrf2−/− cells will be

necessary to determine its mechanistic role during NLRP3 inflammasome activation.

Cardiolipin was recently identified as a mitochondrial derived phospholipid capable of

activating the NLRP3 inflammaosme in response to mitochondrial damage. During normal

homeostasis cardiolipin resides on the mitochondrial innermembrane (IM) and re-localizes

to the outermembrane (OM) in response to mitochondrial stress where it is suggested to bind

NLRP3 via the LRR domain (Iyer et al., 2013). Perturbing cardiolipin synthesis in vitro

decreases IL-1β responses and reduces NLRP3 association with the mitochondria. This

occurs using both mROS dependent and independent NLRP3 inflammasome activators (e.g.

silica and linezolid, respectively)(Iyer et al., 2013). More studies are required to determine if

cardiolipin functions exclusively as a scaffold for inflammasome assembly or if it directly

activates NLRP3. Due to its prokaryotic origins, cardiolipin is suggested to be an

“endogenous PAMP” with the capacity to induce apoptotic and inflammatory signaling

following changes in mitochondrial structure. The generation of mROS following

phagocytosis of CC is a potential trigger for cardiolipin re-localization and NLRP3

activation. Further studies will be needed to determine if cardiolipin is involved in NLRP3

activation during atherosclerosis and other metabolic diseases.

Macrophages have been found to de novo synthesize CC following treatment with oxidized-

LDL (ox-LDL), which suggests that innate immune cells not only mount inflammatory

responses to pre-formed CC, but are also contributors to arterial cholesterol accumulation

(Duewell et al., 2010). Recent studies describe the process by which ox-LDL is recognized

by the cell surface receptor CD36 and facilitates intracellular CC formation (Sheedy et al.,

2013). The ability to convert ox-LDL to CC was independent of Tlr4, Tlr6 or Nlrp3;

however, the ability to sense newly formed crystals via the inflammasome required all of

these genes (Sheedy et al., 2013). This is consistent with a previous report that CD36

combined with TLR signaling responds to ox-LDL by inducing NF-κB-mediated

transcription of Il1b, which is a key step for inflammasome priming (Stewart et al., 2010).

The above studies provide a mechanism by which select DAMPs associated with

atherosclerosis, e.g. ox-LDL, are sufficient to provide both signal 1 and 2 for inflammasome

activation. These data are also consistent with a previous report showing that atherosclerosis

in germfree mice occurs independently of microbial colonization or infection (Wright et al.,

2000). Together, these studies indicate that microbial PAMPs are not required for

atherogenesis and provide a mechanism for how CC alone can trigger NLRP3

inflammasome activation in a sterile environment (Figure 1)(Sheedy et al., 2013). This does

not rule out the possibility that infection can aggravate atherosclerotic lesions; in fact some

studies have linked atherosclerosis with certain pathogens (e.g. C. pneumoniae, herpes virus

infection)(Ross, 1999). It is unknown whether macrophages in vivo respond exclusively to

CC formed inside the cell, or if they also respond following phagocytosis of preformed
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crystals. One of the major pathogenic factors of atherosclerosis is the continuous

accumulation of CC in lesions that ultimately pierce through and destabilize the fibrotic cap

leading to thrombosis. Therefore, blocking macrophage mediated CC formation may be

equally, if not more, important than blocking the downstream inflammatory responses

leading to atherogenesis.

The discovery that CC activates the NLRP3 inflammasome has favored the hypothesis that

IL-1β and IL-18 are major contributors of atherosclerosis (Duewell et al., 2010; Elhage et

al., 2003). Some groups have failed to find a role for the NLRP3 inflammasome using both

Apoe−/− and Ldlr−/− mouse models of disease and they suggest that IL-1α is the major

pathogenic factor in atherogenesis (Freigang et al., 2013; Menu et al., 2011). IL-1α and

IL-1β share a common receptor, but their mechanisms of maturation and release differ.

Direct processing of IL-1β requires formation of caspase-1 containing inflammasomes,

whereas the processing and secretion of IL-1α remains unclear and may occur through

multiple mechanisms. One study suggests that release of intracellular IL-1α also requires

inflammasome activation and release of processed IL-1β with the hypothesis that mature

IL-1β serves as a carrier for intracellular IL-1α through the unconventional secretory

pathway (Fettelschoss et al., 2011). A second study suggests that IL-1α release can occur in

an inflammasome independent manner that requires calcium influx and calpain-like

proteases (Gross et al., 2012). A recent study used chimeric mice in which WT, IL1a−/− or

IL1b−/− bone marrow was transplanted into the atherosclerosis susceptible Ldlr−/− mouse

strain combined with a cholesterol rich diet. Atheroma lesion size was reduced in mice

receiving either IL1a−/− or IL1b−/− bone marrow; however, only the decrease observed with

IL1a−/− transplantation achieved statistical significance (Freigang et al., 2013). The authors

further showed that IL-1α is produced in response to highly abundant unsaturated fatty acids

(uFA) found in atheromas (including oleic, linoleic, and arachidonic acid). Mechanistically

their studies suggest that these uFAs trigger mitochondrial uncoupling and release of

intracellular Ca2+ stores to promote IL-1α release via calpain proteases. Ucp2−/−

macrophages (deficient in mitochondrial uncoupling protein 2) have partial decreases in

Ca2+ mobilization and IL-1α release, suggesting that mitochondrial uncoupling is involved;

however, the incomplete phenotype suggests other factors contribute to this process

(Freigang et al., 2013). Further studies are needed to determine the pathway by which select

uFA trigger IL-1α release, in particular which receptors and downstream molecules in

conjunction with UCP2 lead to mitochondrial uncoupling and Ca2+ mobilization.

The immune component in atherosclerosis is undeniable; nevertheless, it is only part of

disease progression and studies in mice regarding whether IL-1α or IL-1β is the main

pathogenic factor remain controversial and ultimately the combinatorial effects of both

cytokines likely contribute to disease (Ross, 1999). The discrepancies may be attributed to

differences in experimental design; including mouse strain, type of diet, and duration of

study. It is clear that treating mouse macrophages with CC activates the NLRP3

inflammasome and simultaneously results in release of IL-1β and IL-1α (Duewell et al.,

2010; Freigang et al., 2013). In contrast, experiments treating human monocytes and

macrophages with CC show enhanced release of IL-1β, but no change in IL-1α (Rajamäki et

al., 2010). Additionally, most patients will likely enter the clinic after atherosclerotic
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plaques have formed, which will require a multifaceted treatment approach including

changes in diet, exercise, cholesterol lowering medication and immune modulating

therapeutics. Further studies assessing the cytokine profiles in human atherosclerotic lesions

will be instrumental in determining which molecules of the IL-1 axis will be the most

effective targets for disease treatment. Perhaps targeting CD36 will be beneficial for

combating atherogenesis by reducing CC formation and atherosclerotic plaque expansion

through decreased availability of cholesterol and uFA that trigger downstream inflammatory

responses.

Inflammasome and Type 2 Diabetes

T2D is among the most common human health problems worldwide and recent studies have

demonstrated that chronic inflammation is a key feature of disease. Elevated levels of

circulating inflammatory mediators, such as tumor necrosis factor (TNF), interleukins and

cytokine-like proteins known as adipokines, are hallmarks of chronic inflammation in T2D

(Donath and Shoelson, 2011; Hotamisligil, 2010). Recently, IL-1β has been strongly linked

with the pathogenesis of T2D and mechanistically has been shown to work by multiple

means. First, IL-1β-induced JNK activation induces serine phosphorylation of insulin

receptor substrate-1 (IRS1) and blunts the activity of the insulin-PI3K-Akt signaling

pathway in insulin targeted tissues and cells. Second, IL-1β can efficiently evoke the

expression of other inflammatory mediators through IL-1R signaling and provides the basis

for a self-amplifying cytokine network (Arend et al., 2008 IL-18, and IL-33 families of

cytokines). Third, IL-1β induces cell stress, such as ER stress and oxidative stress, both of

which have been tightly linked to the pathogenesis of T2D (Cardozo et al., 2005; Verma and

Datta, 2010). These findings highlight IL-1β as a potential therapeutic target for the

treatment of T2D and small-scale studies employing recombinant IL-1 receptor antagonist

(IL-1Ra) provide encouraging data in the treatment of T2D (Larsen et al., 2007).

Based on the potential importance of IL-1β in the pathogenesis of T2D, many studies have

been focused on the identification of endogenous and exogenous ligands that activate the

inflammasome in murine models. Evidence exists for multiple endogenous DAMPs relevant

to T2D that activate the NLRP3 inflammasome. For example, islet amyloid polypeptide

(IAPP; also known as amylin) is a hormone that is co-secreted with insulin. In patients with

T2D, IAPP can form an amyloid structure that is deposited in the islet interstitium. Amyloid

IAPP is an inducer of NLRP3 inflammasome in mouse macrophages involving mechanisms

that require IAPP phagocytosis and lysosome destabilization (Figure 2)(Masters et al.,

2010). Therefore, IAPP has been considered a significant DAMP for T2D (Westermark et

al., 2011). Interestingly, the surface receptor CD36 (described in the atherosclerosis section)

also facilitates the conversion of soluble IAPP to its amyloid form and may also be a critical

target for T2D therapeutics (Sheedy et al., 2013).

Another significant danger signal in T2D is a high level of circulatory glucose, which has

been reported to induce IL-1β production by pancreatic β-cells in vitro and in turn causes

functional impairment and apoptosis of β-cells in an autocrine manner (Maedler et al., 2002;

Zhou et al., 2010). In myeloid cells glucose is required for NF-κB-dependent, but NLRP3

inflammasome-independent, pro-IL-1β and IL-6 production without altering IAPP-induced
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IL-1β release (Masters et al., 2010). Therefore, the molecular mechanism underlying the

glucose-induced IL-1β release by islets remains to be determined. Recent studies also

reported that products of long chain saturated fatty acid metabolism such as palmitate and

ceramide can induce NLRP3 inflammasome activation (Vandanmagsar et al., 2011; Wen et

al., 2011). Mechanistically, palmitate signals through an AMP-activated protein kinase

(AMPK)-autophagy-mROS pathway to activate the NLRP3 inflammasome, and provides an

example of a T2D-associated DAMP that might affect NLRP3 inflammasome activation and

promote insulin resistance (Figure 2)(Wen et al., 2011). Interestingly, two widely used anti-

diabetic drugs also provide a link between insulin resistance and NLRP3 inflammasome

activation. For example, glyburide has been shown to inhibit NLRP3 inflammasome

activation (Lamkanfi et al., 2009), and metformin may decrease IL-1β levels by activating

AMPK (Lee et al., 2013).

Linking insulin resistance to the NLRP3 inflammasome has been extended to gene-deletion

mouse strains (Stienstra et al., 2010; Stienstra et al., 2011; Vandanmagsar et al., 2011; Wen

et al., 2011; Zhou et al., 2010). Deficiency in Nlrp3 or inflammasome-associated genes such

as Asc/Pycard and Casp1 improved glucose tolerance and insulin sensitivity following

exposure to a high fat diet (HFD). This was accompanied by lower inflammatory cytokines

in the serum and metabolic tissues (e.g. liver and adipose tissue) of inflammasome deficient

mice, with increased signaling though the insulin-PI3K-Akt pathway. These studies provide

a direct link between the NLRP3 inflammasome, chronic inflammation and insulin

resistance.

The mechanism of NLRP3 inflammasome activation downstream of oxidative and ER stress

has gained special attention since both of these signals are implicated in the pathogenesis of

T2D (Hotamisligil, 2010; Wellen and Thompson, 2010). ROS has been shown to activate

the NLRP3 inflammasome by either promoting interactions between NLRP3 and

thioredoxin-interacting protein (TXNIP)(Zhou et al., 2010) or by increasing Nlrp3

expression at the transcriptional level (Bauernfeind et al., 2009). ER stress induced by

various pharmacological agents results in the activation of the NLRP3 inflammasome;

however, none of the known signal transducers downstream of ER stress (PERK, IRE1α and

ATF6) seem to be required for ER stress-induced NLRP3 inflammasome activation.

Another two recent studies confirmed that ER stress activates the NLRP3 inflammasome

and further implicates ER stress induced inflammasome signaling as an essential pathway

leading to β-cell death and inflammation (Lerner et al., 2012; Oslowski et al., 2012).

Additionally, it is known that ER stress elevates cytosolic Ca2+ concentrations raising the

possibility that ER stress activates the NLRP3 inflammasome through a Ca2+- dependent

manner. These studies establish a link between cell stress responses and inflammation and

suggest the former could be a major driving force in the progression of T2D.

Other potential regulatory mechanisms of inflammasome activation during insulin resistance

include decreased autophagic activity and altered mitochondrial respiration. Autophagy is

linked to T2D through studies with both genetic (ob/ob) and HFD-induced obesity models

using mouse strains with impaired autophagy (Yang et al., 2010). Deletion of either the

Atg16l1 or Atg7 autophagic genes results in the activation of the NLRP3 inflammasome and

is believed to result from disrupted mitochondrial homeostasis (Nakahira et al., 2011; Saitoh
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et al., 2008; Wen et al., 2011; Zhou et al., 2011). These studies provide evidence that

autophagy negatively regulates NLRP3 inflammasome activation by elimination of

unhealthy mitochondria, thereby decreasing intracellular ROS. AMPK and/or motor

signaling pathways may be upstream modulators of autophagic activity through the direct

phosphorylation of ATG1 (Egan et al., 2011; Kim et al., 2011). Therefore, a reasonable

possibility is that defective autophagy associated with insulin resistance may promote

inflammasome activation resulting in a self-amplifying inflammatory response in insulin

target tissues.

Another recent study reported that the increased ratio between glycolysis and mitochondrial

oxidative phosphorylation (OXPHOS) is essential for optimal Il1b transcription through the

effect of hypoxia-inducible factor-1α (HIF-1) and suggests an indirect regulatory

mechanism for IL-1β production. (Tannahill et al., 2013). Activation of macrophages with

LPS induces a metabolic reprogramming process known as the “Warburg effect” that

increases aerobic glycolysis and decreases mitochondrial OXPHOS, leading to the

accumulation of TCA cycle intermediate metabolites (Rodríguez-Prados et al., 2010;

Tannahill et al., 2013). Of these, succinate induces the accumulation of HIF-1α and

consequently promotes Il1b transcription. Based on the high level of circulating glucose

associated with T2D, one could hypothesize that macrophages in T2D patients maintain a

heightened state of inflammasome priming due to maximal IL1B transcription downstream

of glycolysis and HIF1α. It is tempting to speculate that the inflammasome activation in

these highly primed macrophages would occur following exposure to host DAMPs (e.g.

IAPP, palmitate, ceramide, glucose) and provides a working model for sterile inflammation

associated with T2D.

Obesity and the Inflammasome

The rise of obesity due to over-nutrition and reduced activity is a major underlying cause of

multiple metabolic diseases, and a key discovery is the concept that inflammation and

obesity interact in a vicious cycle to exacerbate each other’s impact on health (Gregor and

Hotamisligil, 2011). The above sections have described many of the studies where HFD

induces cholesterol crystal formation, insulin resistance and/or pancreatic changes

associated with atherosclerosis or diabetes. This section will focus on the impact of

inflammasome activation and its products on obesity per se.

Obesity in mice is studied using either a genetic model (e.g., ob/ob or db/db) or with chow

representing a HFD. Extensive studies support the concept that adipose tissue is a source of

proinflammatory cytokines and chemokines that exacerbate inflammation (Gregor and

Hotamisligil, 2011). Several seminal studies have reinforced this idea by linking

inflammasome with obesity in a bidirectional fashion, where metabolic byproducts of

obesity activate the inflammasome and inflammasome associated cytokines influence the

outcome of obesity. Studies using HFD have shown that the inflammasome components

ASC, NLRP3 and CASPASE-1 govern adipocyte differentiation and adipogenic gene

expression, which promote obesity. Furthermore, inflammasome expression is not only

elevated in the macrophage population found in adipose tissues (Stienstra et al., 2012;

Stienstra et al., 2011), but also in isolated adipocytes which can produce IL-1β (Koenen et
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al., 2011). Thus the inflammasome can be activated in both adipocytes and adipose-

associated innate immune cells.

Adipocyte differentiation in both human and mouse is associated with increased

CASPASE-1 expression and cleavage, which can induce an insulin resistant status (Stienstra

et al., 2012; Stienstra et al., 2011). The major impact of inflammasome activation on obesity

has been attributed to influences of IL-1β. Preadipocytes lacking either the gene encoding

CASPASE-1 or NLRP3 are more metabolically active with improved adipogenesis. In

addition to in vitro cell culture studies, treatment of whole animals with a CASPASE-1

inhibitor increased insulin resistance, and Casp1 deletion changes adipose tissue

morphology represented by smaller adipocytes, reduced body fat mass and free fatty acids,

and increases in key metabolic regulators of insulin sensitivity (e.g. PPARγ, adiponectin and

GLUT4)(Stienstra et al., 2010). A separate study showed that leptin-deficient adipocytes

from the visceral abdominal and subcutaneous adipose tissues (VAT and SAT, respectively)

of (ob/ob and db/db) obese mice also exhibit increased Asc, Casp1 and Nlrp3 expression in

VAT, with less consistent increases in SAT (Giordano et al., 2013). The authors found that

adipocytes from obese mice also display morphology consistent with pyroptosis, an

inflammatory cell death frequently associated with inflammasome activation, and

furthermore Casp1 was not found in a transgenic strain where adipocytes die from

apoptosis. These experiments dissociate apoptosis from inflammasome activation, and

suggest that inflammasome activation in adipocytes leads to pyroptosis in obese mice.

Various inducers of inflammasome activation in fatty tissues have been described in the

T2D section, however deletion of the P2X7 gene, which encodes a cell-membrane ion

channel receptor for extracellular ATP that causes potassium efflux, had no effect on

inflammasome activation in adipose tissues (Sun et al., 2012).

One of the outcomes of a HFD and subsequent obesity is a prevalence of non-alcoholic fatty

liver disease (NAFLD) (Marchesini et al., 2003), which can progress to non-alcoholic

steatohepatitis (NASH). In mice, the disease can be modeled by using a diet deficient in both

methionine and choline or by feeding a HFD. Clinical outcomes include steatosis, cirrhosis,

hepatitis and fibrosis. Recently, a link between NLRs that exhibit inflammasome function

and NAFLD has been reported. One study found that ASC, NLRP3 and a new

inflammasome NLR, NLRP6, can all protect against NAFLD and NASH progression via

IL-18 dependent and IL-1β independent mechanism (Henao-Mejia et al., 2012).

Interestingly, the tissue origin of the inflammasome that protects against disease symptoms

resides in the non-myeloid and non-hepatic cells. Disease is exacerbated in inflammasome-

deficient strains and is transmissible to wildtype strains by co-housing, and is attributed to

microbiota transfer. In contrast to this study, another report used HFD to induce NASH and

found an opposing role for the inflammasome in that Casp1−/− deficient mice showed

improved disease outcome and attenuated HFD-induced hepatitis injuries (Dixon et al.,

2013). The most likely reason for these opposing findings resides in how NASH was

induced in the two studies, the former by a methionine-choline deficient diet, and the latter

by HFD.

However the association of inflammasome activation with obesity is complex, and not all

inflammasome and CASPASE-1 cleaved products enhance obesity or insulin resistance. A
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case-in-point is the very intriguing roles of IL-18 in obesity. IL-18 was found to control food

intake, and Il18−/− mice and Il18r−/− mice exhibited hyperphagia (increased food intake),

insulin resistance and hyperinsulinemia (Netea et al., 2006; Zorrilla et al., 2007). These

overt phenotypes of Il18−/− mice were also associated with increased gluconeogenesis gene

expression and defective STAT3 phosphorylation (Netea et al., 2006). As proof of principle

of the importance of IL-18, administration of recombinant IL-18 into Il18−/− mice reversed

hyperglycemia and increased STAT3 phosphorylation. However in addition to hyperphagia,

adult Il18−/− mice gained significantly more weight (2- to 3-fold) than control mice based

on per unit of energy consumed regardless of the fat content of the diet (Zorrilla et al.,

2007), indicating that IL-18 reduced feed efficiency. Another report showed an additional

level by which IL-18 could affect metabolism, in that Il18−/− mice exhibited reduced

skeletal AMPK, a key metabolic regulator (Lindegaard et al., 2013). Treating skeletal

muscle cells with IL-18 activated AMPK and increased fat oxidation, and more important, in

vivo introduction of IL-18 into the skeletal muscle resulted in increased AMPK activation

and reduced weight gain. These findings collectively indicate multiple roles of IL-18 in

regulating food intake, energy expenditure, fat oxidation, obesity and insulin sensitivity

(Zilverschoon et al., 2008). Paradoxically, weight loss has been correlated with decreased

IL-18 in humans, while increased circulating IL-18 has been found to correlate with

enhanced body mass index, adiposity, triglycerides, serum glucose and insulin resistance in

a variety of metabolic syndromes (Esposito et al., 2002; Olusi et al., 2003; Trøseid et al.,

2010). It was discovered that leukocytes isolated from obese or T2D patients showed

defective responses to IL-18, leading the authors to advance a hypothesis that resistance of

IL-18 led to increased IL-18 levels in these patients (Trøseid et al., 2010; Zilverschoon et al.,

2008).

As additional correlates to the murine studies, several groups have linked inflammasome

activation or expression with obesity in humans and revealed a complex scenario. Although

the human studies were restricted to correlative analyses and primarily focused on mRNA

expression, these reports showed evidence of heightened inflammasome activity in obese

humans, with caveats described below. Experiments in animals have found that mice fed an

ad libitum diet showed significantly higher Il1b, Nlrp3 and Asc expression in both VAT and

SAT when compared to mice placed on caloric restriction diet. Impressively a correlating

pattern was observed in human SAT from ten obese T2D patients undergoing weight loss

that showed significant reductions in IL1B, NLRP3 and ASC expression (Vandanmagsar et

al., 2011). This change was accompanied by a reduction in CD4+ and CD8+ effector T cells

in adipose tissue. Another study of twenty one patients who underwent laparoscopic

adjustable gastric banding to achieve weight loss showed decreased Il1b mRNA in SAT six

months after the procedure following significant weight loss, but Il18 and Nlrp3 expression

in SAT was unaffected. Weight loss also affected liver inflammasome gene expression with

a reduction of IL1B and IL18 expression accompanied by elevated IL37. IL-37 is generally

found to be anti-inflammatory, thus suggesting that weight loss results in an anti-

inflammatory state. Another study revealed extra layers of complexity by examining

inflammasome components and products in VAT versus SAT in ten overweight individuals

(Koenen et al., 2011). VAT contained significantly higher ASC and CASPASE-1 activity

and increased proinflammatory cytokines/chemokines (e.g. IL-1β, IL-18, IL-8, IL-6),
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accompanied by increased CD8 T cell infiltration. A recent study of ten obese men with

insulin resistance and impaired glucose tolerance showed that adipose tissue transcripts for

CASP1, the TH1 marker TBX21 and TH17 marker RORC were significantly elevated

compared to normal weight controls. Whether elevated inflammasome expression precedes

changes in inflammatory T effectors, or vice versa, will be important in establishing a causal

relationship between inflammasome and T cell activation (Goossens et al., 2012).

Another analysis reinforces the association of inflammasome components with the

heterogeneous outcome of obesity in humans. This study analyzed inflammasome

expression in VAT, but differentiated between obese individuals with metabolic

complications versus those who are metabolically normal and healthy. The study showed

that IL1B and NLRP3 mRNA expression and IL-1β protein secretion were increased in VAT

of obese individuals with metabolic abnormalities compared to those without metabolic

complications (Esser et al., 2013). Increased inflammasome gene expression in the

unhealthy population was accompanied by increased adipose tissue macrophages which also

showed increased CASP-1 and IL1B expression. The exact agonist(s) leading to VAT

inflammasome gene expression and activation remains unclear and further definition of

these agonist(s) in unhealthy obese individuals will provide crucial information for

delineating why obesity does not lead to metabolic abnormalities in all individuals. Thus,

further study of the inflammasome in obese humans will provide a first step towards

translating murine studies to clinical applications. Larger cohorts grouped by gender, age,

weight and the existence of metabolic complications coupled with refined analysis of

different adipose and inflammatory components are needed to understand the relationship

between inflammasome activation and obesity in humans. Furthermore, a holistic picture

including changes in inflammasome activity combined with other key inflammatory

cytokines (e.g. TNF, IL-6) and T effector populations is ultimately necessary to provide a

more complete understanding of obesity-related inflammation (Moschen et al., 2010).

Inflammasomes and Gouty Arthritis

Gout has been recognized for centuries as a metabolic and inflammatory disease; however, it

was only 50 years ago that monosodium urate (MSU) was identified as the etiological agent

(Shi et al., 2010). Recent studies have focused on the immunological aspects of this disease,

specifically on how MSU is recognized as a DAMP (Rock et al., 2013). Formation of MSU

crystals is believed to occur when levels of uric acid (UA) in serum (sUA) reach a saturation

point (~6-7mg/dl) and combine with Na+ ions to form crystals. Alternatively, these crystals

form following the robust release of UA during cell death (Ghaemi-Oskouie and Shi, 2011;

Rock et al., 2013). In either case, the crystallization process is likely facilitated by serum

antibodies that bind UA and form nucleating crystals that eventually expand and accumulate

in the articular/peri-articular tissue of peripheral joints (Ghaemi-Oskouie and Shi, 2011).

Elevated sUA levels are associated with rich diet, alcohol consumption and genetic

background (Rider and Jordan, 2010). Interestingly, elevated sUA/MSU crystals are not

sufficient for gout development as many individuals with high sUA are asymptomatic,

therefore other host and/or pathogen factors combined with MSU deposition fuel the

inflammation associated with this debilitating disease (Tao et al., 2013).
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Cellular recognition of MSU occurs through variety of non-mutually exclusive mechanisms

that likely depend on how and where the crystals form. MSU specific antibody is detectable

in many gout patients and it has been reported to bind complement proteins, which have the

capacity to enhance MSU uptake by phagocytic cells (Ghaemi-Oskouie and Shi, 2011). Cell

surface receptor binding of MSU to CD14, TLR2 and TLR4 results in inflammatory

signaling through p38 phosphorylation and NF-κB signaling, in particular enhanced

transcription of Il1b, which is required for priming inflammasome responses (Figure 3)

(Scott et al., 2006). More recent studies indicate that MSU can bind the surface of dendritic

cells and activate the SYK/PI3K signaling cascade in a receptor independent manner (Figure

3) (Ng et al., 2008). This occurs through a process called “lipid sorting” in which cholesterol

rich lipid rafts interact with MSU electrostatically and order the membrane in such a way to

activate downstream signaling events through immunoreceptor tyrosine-based activation

motif (ITAM) containing receptors. Clustering triggers ITAM phosphorylation and provides

docking sites for kinases (e.g. SYK) to propagate downstream signals resulting in enhanced

phagocytosis (Figure 3)(Ng et al., 2008). Other studies have shown that select saturated fatty

acids (C18:0) can significantly augment MSU induced IL-1β release in a TLR2 dependent

manner and further strengthens the notion that metabolic by-products can synergize to

instigate and/or amplify inflammatory diseases (Joosten et al., 2010).

Research in the last decade has elucidated the molecular mechanisms that make MSU such

an inflammatory substance through release of cytokines/chemokines (e.g. IL-1β, IL-6,

CXCL1 and CXCL2) resulting in inflammatory cell recruitment. Studies by Martinon et al.

demonstrated that IL-1β and IL-18 maturation and release in response to MSU is dependent

on NLRP3, ASC, CASPASE-1 and MyD88 using both human and mouse ex-vivo

monocyte/macrophage cultures (Martinon et al., 2006). In vivo studies demonstrated that

inflammasome deficient and Il1r−/− mice had significantly less neutrophil recruitment

compared to WT controls in response to peritoneal MSU injection, suggesting the

importance of inflammasome and IL-1β in responses to MSU (Martinon et al., 2006). The

importance of IL-1 in MSU mediated inflammation is also highlighted by an experiment in

which WT BM was adoptively transferred into Il1r−/− mice and failed to recruit neutrophils

following peritoneal MSU injection, whereas the reciprocal transfer (Il1r−/− BM into WT

recipient) resulted in normal inflammation. These data support a model in which IL-1β is

produced initially by innate immune cells; however, it is the signaling through IL-1R on

non-hematopoietic cells that ultimately leads to secretion of chemotactic factors and

neutrophil influx following MSU challenge. The above studies have led to the hypothesis

that NLRP3 is a predominant sensor of MSU and that IL-1β is the major effector cytokine

produced in gout. In contrast, another report suggests that in vivo the combination of fatty

acid C18:0 and MSU triggers local IL-1β release in manner that appears to bypass the need

for NLRP3, but still requires CASPASE-1 and ASC, suggesting that inflammasomes other

than NLRP3 could be involved (Joosten et al., 2010).

The sensing of MSU requires the LRR–domain of NLRP3, but has not been shown to occur

through direct interaction with MSU crystals, similar to other findings with NLRP3 agonists

(Hoffman et al., 2010). Rather, the prevailing hypothesis is that NLPR3 activation results

from changes in cellular homeostasis (e.g. intracellular redox state, or potassium levels).
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One study suggests that leukotriene B4 (LTB4) is an intermediary molecule linking MSU

and NLRP3 inflammasome activation. Mice deficient in the enzyme that synthesizes LTB4

are impaired for IL-1β and CXCL-1 production and have reduced neutrophil infiltration

following MSU challenge in mouse model of knee joint inflammation. Further in vitro

studies showed that LTB4 is sufficient to induce CASPASE-1 cleavage and IL-1β secretion,

and that this activity is dependent on the ability of LTB4 to generate ROS (Figure 3). The

mechanism by which ROS activates the inflammasome is still unclear, but the origin of ROS

appears to be mitochondrial as mutating a major subunit of the phagosomal NADPH oxidase

does not affect inflammasome activation by MSU (Hornung et al., 2008; Zhou et al., 2011).

Another proposed mechanism for NLRP3 activation in response to MSU is depletion of

intracellular potassium (K+). One group suggests that low pH in the phagolysosome

dissociates MSU crystals back into Na+ ions and UA. The resultant rise of intracellular Na+

forces water influx into the cell and reduces the apparent K+ levels to the threshold for

NLRP3 activation (Figure 3)(Schorn et al., 2011). Indeed activation of the inflammasome

was reduced with inhibitors of lysosomal acidification and aquaporins, and the

inflammasome activation by MSU required sodium based uric acid crystals while crystals

generated with K+ (MKU) did not induce IL-1β secretion (Schorn et al., 2011). These

studies were extended in vivo using a subcutaneous air-pouch model measuring local IL-1β

release after MSU injection with or without chloroquine to block lysosomal acidification.

The authors reported that chloroquine treated mice had significantly reduced levels of local

IL-1β compared to PBS injected controls (Schorn et al., 2011). Another study suggests that

the NLRP3 inflammasome senses the attenuation of protein synthesis downstream of K+

efflux from a variety of NLRP3 agonists including MSU. These authors discuss the

possibility that NLRP3 antagonistic proteins are produced constitutively and that global

blockage of translation leads to rapid loss of these inhibitors in a proteasome dependent

manner with subsequent activation of NLRP3 (Vyleta et al., 2012).

NLRP3 inflammasome activation has also been shown to occur following lysosomal rupture

after uptake of particulate matter, including MSU. The release of IL-1β required lysosomal

acidification, the lysosomal cathepsin proteases, as well as NLRP3 and ASC (Figure 3)

(Hornung et al., 2008). It is still unclear how cathepsins mediate the full potential of the

NLRP3 inflammasome, but one hypothesis is that active cathepsins in the cytosol allow for

cleavage of an NLRP3 inhibitory protein resulting in inflammasome activation (Latz, 2010).

Ultimately, NLRP3 inflammasome activation in response to MSU could occur using any

combination of the above mechanisms and may be context dependent.

Initial studies suggest that MSU mediated activation of the NLRP3 inflammasome is

independent of the P2RX7 receptor and ATP sensing (Martinon et al., 2006). A recent

review provides a different perspective where ATP sensing may be synergistic with MSU

regarding inflammasome activation. The authors argue that many of the risk factors for

increasing UA levels (e.g. excessive food or alcohol consumption, temperature change,

vigorous exercise) also affect ATP release which when sensed by P2RX7 could augment

NLRP3 inflammasome activation by MSU (Tao et al., 2013). This reinforces the idea that

multiple inflammasome signals likely contribute to the sum of disease symptoms and should

be considered when developing therapeutics.
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In most cases MSU acts as a second signal to activate the inflammasome after priming with

a TLR ligand such as LPS or Pam3Cys (Giamarellos-Bourboulis et al., 2009; Martinon et

al., 2006; Mylona et al., 2012). Therefore, gout may be a disease in which a chronic signal II

for inflammasome activation (MSU crystals) is always present and that disease flare ups

result from transient priming of innate immune cells by signal I (low-grade TLR stimulation

or abundant release of saturated fatty acids). Periodic microbial exposure that induces signal

I could explain the unpredictable and transient nature of acute gout, and may also explain

why some individuals are asymptomatic even if they have high levels of sUA or MSU

deposition. Current prophylactic treatments for gout are aimed at lowering the levels of sUA

or enzymatic break down MSU crystals in affected areas, which would be an effective way

to eliminate the chronic signal II and reduce NLRP3 inflammasome activation. Interestingly,

the drug colchicine, which inhibits microtubule assembly, is a common treatment for both

acute and chronic gout (Rider and Jordan, 2010). The mechanism of action for colchicine

was initially attributed to blocking MSU uptake by phagocytic cells; however, a recent study

determined that colchicine also blocks NLRP3 inflammasome assembly by preventing

microtubule mediated shuttling of mitochondrial-associated ASC to NLRP3 at the

endoplasmic reticulum (Misawa et al., 2013). Therefore, colchicine not only works at level

of MSU uptake, but is also critical for preventing NLRP3 inflammasome assembly and

downstream release of IL-1β.

Concluding Remarks

The development of vaccines and modern hygienic practices combined with the discovery of

antibiotics has nearly doubled human life expectancy since the 1700’s (Finch, 2010). The

consequence of increased longevity is the emergence of age related metabolic diseases,

including atherosclerosis, T2D, obesity-related diseases and gout. Currently, circulatory

disease and diabetes are the leading causes of hospitalization and are estimated to affect over

60 million people in the in the United States alone, with a collective cost of approximately

500 billion dollars annually. These trends are likely to continue with the incidence of

metabolic diseases on the rise. According to the CDC, coronary heart disease accounts for 1

in 4 deaths making it the leading cause of mortality in the United States. Obesity and T2D

are major risk factors for developing heart disease and currently 35% of American adults

and 15% of children are considered obese. Additionally, the estimated number of people

over 65 years of age suffering from T2D is 27% with 35% of Americans over 20 years of

age considered as pre-diabetic (50% for people over 65). T2D is also the leading cause of

kidney failure, non-traumatic lower-limb amputation and blindness in adults (Association,

2013). Gout incidence has also increased over the past two decades (estimated to affect 8.3

million Americans) and is also correlated with obesity, T2D and atherosclerosis related

illness with 53%, 26% and 35% co-morbidity, respectively (Zhu et al., 2011).

The rising frequency of metabolically related diseases makes them of utmost importance for

development of novel therapeutic and preventative treatments with the consideration that

each has dietary, genetic and immunological aspects. Effective treatment regimens will

likely require changes in diet and exercise, as well as novel therapeutics that ameliorate the

associated immunopathogy. The NLRP3 inflammasome and its products, IL-1β and IL-18,
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are leading candidates for development of novel therapeutics since they are generated in

response to a diverse array of DAMPs associated with metabolic disease.
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Figure 1. Sterile Priming and Activation of the NLRP3 Inflammasome by Ox-LDL and
Cholesterol Crystals
Signal 1, Inflammasome priming (blue arrows); ox-LDL is endocytosed by the scavenger

receptor CD36 and is transformed into cholesterol crystals (CC) that are sensed by TLR4

and TLR6, which induce NF-κB dependent transcription of Il1b and inflammasome genes.

Signal 2, Inflammasome assembly and activation (red arrows); CC induce phagolysosome

destabilization and release of lysosomal cathepsins. Assembly of the NLRP3 inflammasome

in response to CC also requires mROS and K+ efflux, however the kinetics of these events

are unknown. The activated inflammasome processes pro-IL-1β into its mature form that is

subsequently secreted. The example depicted represents a model of sterile inflammation by

CC in atherosclerosis; however, CD36 was also shown to facilitate conversion of IAPP into

an amyloid form known to activate the NLRP3 inflammasome in T2D.
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Figure 2. NLRP3 Inflammasome Activation in Response to T2D-associated Metabolic DAMPs
IAPP is co-secreted with insulin from pancreatic β-cells and the amyloid form of IAPP is

internalized by macrophages (soluble IAPP can also become the amyloid form via CD36

mediated internalization*) and destabilizes the phagolysosome resulting in cathepsin release.

Palimitate was shown to increase mROS by reducing autophagy through blockade of AMPK

signaling. The precise mechanisms by which mROS, cathepsins and ceramide activate the

NLRP3 inflammasome remain unknown (dashed lines). Glucose and possibly IAPP can also

stimulate NLRP3 activation in β cells by a mechanism that involves mROS and TXNIP

activation. Release of IL-1β downstream of NLRP3 activation induces β cell death and

blocks insulin receptor (IR) signaling in insulin target cells leading to T2D. (High serum

glucose levels are hypothesized to contribute to T2D by maximizing Il1b mRNA expression

through the ‘Warburg Effect’ downstream of glycolysis/HIF1α signaling (not depicted).

Robbins et al. Page 24

Mol Cell. Author manuscript; available in PMC 2015 April 24.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. NLRP3 Activation Downstream of MSU Crystal Formation
High serum UA levels combined with Na+ ions allows for MSU crystallization, which can

be facilitated by MSU specific IgG. MSU crystals prime the inflammasome (signal 1, blue

arrows) though PRRs (TLR2, TLR4, CD14) and is enhanced in the presence of select sFA

(e.g. C18:0). Induction of pro-IL1β may also occur in response to transient PAMP exposure

during infection. MSU binding directly to the plasma membrane activates ITAM-containing

receptors in a process called “lipid sorting” followed by binding of adaptor molecules (e.g.

SYK) that trigger enhanced MSU uptake. Break down of MSU in acidified endosomes is

hypothesized to increase intracellular Na+ levels, draw H2O into the cell and effectively

lower the apparent intracellular K+ concentration resulting in NLRP3 inflammasome

activation (signal 2, red arrows). High ATP concentrations correlating with high sUA levels

may enhance K+ efflux via the P2RX7 receptor. MSU crystals can also rupture the

phagolysosome resulting in cathepsin release combined with ROS downstream of LTB4

signaling leading to inflammasome activation. The combined effects result in processing and

secretion of mature IL-1β, which promotes local inflammation associated with gouty

arthritis.
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