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Abstract

The SWI/SNF chromatin-remodeling complex regulates gene expression and alters chromatin

structures in an ATP-dependent manner. Recent sequencing efforts have shown mutations in

BRG1 (SMARCA4), one of two mutually exclusive ATPase subunits in the complex, in a

significant number of human lung tumor cell lines and primary non-small cell lung carcinoma

(NSCLC) clinical specimens. To determine how BRG1 loss fuels tumor progression in NSCLC,

molecular profiling was performed after restoration of BRG1 expression or treatment with an

HDAC inhibitor or a DNMT inhibitor in a BRG1-deficient NSCLC cells. Importantly, validation

studies from multiple cell lines revealed that BRG1 re-expression led to substantial changes in the

expression of CDH1, CDH3, EHF and RRAD that commonly undergo silencing by other

epigenetic mechanisms during NSCLC development. Furthermore, treatment with DNMT
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inhibitors did not restore expression of these transcripts indicating that this common mechanism of

gene silencing did not account for their loss of expression. Collectively, BRG1 loss is an important

mechanism for the epigenetic silencing of target genes during NSCLC development.
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Implications

Inactivation of the SWI/SNF complex provides a novel mechanism to induce gene silencing

during NSCLC development.

Introduction

Lung and bronchus carcinoma remain two of the most lethal cancers in the United States

with over 90% of affected individuals succumbing to this disease. Over 85% of these

cancers will be classified as non-small cell lung carcinoma (NSCLC) making them the

primary clinical focus. For many cancers, treatments for early stage tumors have proven

effective while metastatic disease often carries a very poor prognosis (most patients with

metastatic lung carcinoma show an overall survival rate of <5% at 5 years). During the last

25 years, investigators have identified many of the genetic changes underlying the

appearance of NSCLC including mutations of BRAF, KRAS, EGFR, FHIT, HER2/NEU, RB,

p16INK4A, and p53 (1, 2). In addition, epigenetic silencing of the p16INK4A and CDH1 also

plays a role (3). A study demonstrating the poor survival of patients with 4 epigenetically

silenced genes further emphasizes the importance of understanding the contribution of

epigenetic mechanisms to NSCLC development (4).

Recent next generation sequencing studies have shown that mutations in components of the

SWI/SNF complex occur frequently in NSCLC samples (5). This complex, first discovered

in S. cerevisiae, shows strong conservation from yeast to Drosophila to mammals and

contains approximately 10–12 components (6, 7). The complex contains only one of the two

mutually exclusive ATPases, BRG1/SMARCA4 or BRM/SMARCA2, to fuel its remodeling

activity (8). Perturbation of chromatin remodeling is an emerging theme in cancer

progression as evidenced by the discovery of mutations in multiple members of the complex

in human cancers including NSCLC, malignant rhabdoid tumors, ovarian carcinomas and

renal cell carcinomas (8–14). In NSCLC, mutations often arise in one of the genes coding

for the ATPase component that fuels the complex, BRG1/SMARCA4 (15, 16). However,

how mutational inactivation of this gene contributes to NSCLC progression remains an open

question.

We have previously shown that re-expression of BRG1 in human cell lines lacking

expression of both mutually exclusive ATPases, BRG1 and BRM/SMARCA2, induces

expression of genes often associated with epigenetic silencing (17–20). We also observed

some overlap between genes activated by BRG1 expression and those activated by treatment

with the DNA methyltransferase (DNMT) inhibitor 5dAzaC (17). However, we did not

Song et al. Page 2

Mol Cancer Res. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



assess the effects of histone acetylation in this study, another mechanism for gene silencing

(21). Because we only examined a limited number of genes, we could not determine how

commonly genes activated by BRG1 expression overlapped with those induced by DNMT

inhibition or by HDAC inhibition.

To address the question of how BRG1 inactivation contributes to NSCLC development, we

carried out a gene expression array analysis on a BRG1/BRM-deficient cell line treated with

a DNMT inhibitor, a HDAC inhibitor or infected with an adenovirus expressing BRG1. An

analysis of the results showed that BRG1 re-expression activated a greater number of genes

than either chemical reagent. Furthermore, the number of genes activated by both BRG1 and

HDAC inhibition was greater than the number induced by both BRG1 and DNMT

inhibition. We also did not observe global changes in DNA methylation patterns after BRG1

re-expression. Therefore, it appears that BRG1 loss contributes to gene silencing during

NSCLC development via a mechanism independent of changes in DNA methylation. We

also identified several important cancer-associated genes that may represent key

downstream targets for SWI/SNF complex activity. These findings provide further insight

into the role of aberrant SWI/SNF complex activity during NSCLC progression as well as

opening new avenues for treatment of the patients.

Material and Methods

Cell culture

The human NSCLC cell lines H460, H522 and A427 and the human adrenal carcinoma cell

line SWI3 were obtained from the ATCC and were grown in RPMI1640 with 10% FBS

(Gibco, Life Technologies). All experiments were performed with cell lines within 20

passages of receipt (<3 months) to ensure the identity of each cell line. For BRG1 re-

expression, we used an adenovirus expressing BRG1 and GFP, kindly provided by Dr.

Bremner, Toronto Western Research Institute (22, 23). As a control we used an adenovirus

expressing GFP alone provided by the UNC Vector Core Facility, (24). Adenovirus

infection followed our previously published protocol (24).

Microarray analyses

Total RNA was extracted from H522 cells either untreated or treated with vehicle, dimethyl

sulfoxide (DMSO), 5µM 5-aza-2'-deoxycytidine (5dAzaC), 100nM Trichostatin A (TSA) or

infected with adenovirus expressing GFP-tagged BRG1 or GFP alone for 48 hours. RNA

was labeled with Cy3 (treated or infected) and Cy5 (untreated) and hybridized to 4×44

whole human genome microarrays (cat#G4112F, Agilent Technologies, Wilmington,

Delaware, USA) by the UNC Lineberger Genomics Core for Agilent microarray analysis.

After acquiring the raw images from the Agilent Microarray Scanner with SureScan

Technology (Agilent Technologies), the raw data from captured image files was extracted

using Agilent Extraction Software (Agilent Technologies) and uploaded into UNC

Microarray Database (UMD). The normexp background correction and loess normalization

procedures were applied to the probe-level data (25). Expression measurements for each

gene were calculated by computing the mean of the normalized intensity values for all

probes mapping to that gene, as specified in a gene annotation database. This produced
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expression values for 19,749 genes. These data are available at GEO (http://

www.ncbi.nlm.nih.gov/geo/), under accession number GSE54033.

The SAMR package was used to detect differentially expressed genes by comparing the

expression values in the 5dAzaC-treated and TSA-treated cells to the expression values in

the DMSO treated cells, while Ad-BRG1-GFP infected cells were compared to Ad-GFP

infected cells in an effort to isolate the effect of BRG1 re-expression. (26). Gene expression

values were first standardized within each array. For each of the above comparisons, we

then identified differentially expressed genes using a median FDR threshold of .001. R

2.15.1 (27) was used to perform statistical analyses as well as create gene expression

heatmaps and Venn diagrams using the gplots and VennDiagram packages, respectively (28,

29).

Gene transfection

For validation studies, we carried out transient transfections using either Fugene 6

(Promega) or Lipofectamine 2000 (Invitrogen), according to the manufacturer’s instructions.

Either the pBJ5-BRG1 plasmid expressing BRG1 or the empty vector pcDNA was

transfected to each plate, and the cells were harvested for both RNA and protein 48 hours

post-transfection as previously described (30).

Immunoblotting

Immunoblotting was performed as previously described (31). Protein lysates were subjected

to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred

to PVDF. The membrane was incubated in blocking buffer and then with a primary antibody

overnight at 4°C. After washing, the membrane was incubated with an HRP-conjugated

secondary antibody in blocking buffer. The primary antibodies included: BRG1

(A300-813A, Bethyl laboratories), CDH1 (610281, BD Transduction Laboratories), CDH3

(2130, Cell Signaling technology), CD44 (Dr. Larry Sherman, Oregon Health Sciences

University), CK18 (DC-10, SCBT), RRAD (Dr. C. Ronald Kahn, Joslin Diabetes Center and

Harvard Medical School), and β-ACTIN (A2066, Sigma). Proteins of interest were

visualized with ECL Western blotting substrate (GE Healthcare) or a CCD camera imaging

system (ChemiDoc™ XRS+, BIO-RAD).

Quantitative RT-PCR

Total RNA was extracted using the RNeasy mini kit (Qiagen) according to manufacturer’s

protocol, and was quantified by nanodrop spectrophotometry. 1 µg was used for cDNA

synthesis and reverse transcription was performed using M-MLV reverse transcriptase

(Invitrogen) with random primers (Invitrogen) and dNTP mix according to manufacturer’s

instructions. We determined the amount of cDNA using ABI 7900HT sequence detection

system (Applied Biosystems) with TaqMan Universal PCR Master Mix reagents and relative

quantification was analyzed by the 2−ΔΔCt method with β-actin as an endogenous control.

The primers used to detect the expression of CDH1 (Hs00170423_m1), CDH3

(Hs00354998_m1), RRAD (Hs00188163_m1), EHF (Hs00171917_m1), CD44

(Hs01075861_m1), SMARCA4 (Hs00946396_m1) and β-ACTIN (Hs01060665_g1) were

purchased from Life Technologies.
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Restriction Genomic Landscape Scanning (RGLS)

We used the RLGS technique as previously described (32, 33). Briefly, 48 hours after

transfection with empty vector or pBJ5-BRG1 into H522 or A427, cells were harvested for

high molecular weight genomic DNA using Proteinase K digestion followed by phenol

chloroform extraction and ethanol precipitation as previously described (34). DNA was

digested with NotI and EcoRV for first dimension separation followed by in-gel HinfI

digestion prior to second dimension separation, and ~2000 sites visually compared.

Differential methylation was detected by either the absence or decrease in signal intensity

(>50%). Each gel is internally controlled for successful restriction digests. In an incomplete

digest, the strong RLGS spots representing rDNA sequences would show a laddering

pattern. Those spots are only present if all restriction digests worked.

Genome-wide DNA methylation data

Dr. David Shames and Dr. Pan Du (Genentech) kindly provided genome-wide DNA

methylation data for the H522 and A427 cell lines that was obtained using the Illumina

HumanMethylation450 platform (35). Beta values ranging from 0 (lowest) to 1 (highest)

measured DNA methylation levels at over 485,000 sites across the genome.

Results

Re-expression of BRG1 and BRM in BRG1/BRM-deficient NSCLC cell lines leads to re-
expression of epigenetically silenced genes

We have previously shown that cell lines and genetically engineered mice lacking functional

BRG1 or BRM do not express the CD44 transmembrane glycoprotein, a cell adhesion

protein which can be epigenetically silenced in some human tumors (18–20, 36). When we

transfected these cells with BRG1 or BRM or treated with a DNA demethylating agent, 5-d-

Azacytidine (5-dAzaC), we observed induction of endogenous CD44 transcription (17–20).

These initial results suggested that restoration of SWI/SNF complex activity in deficient

human tumor cells might reactivate expression of epigenetically silenced genes by affecting

DNA methylation. Therefore, we checked whether another gene that commonly undergoes

epigenetic silencing in human cancer, CDH1 or E-CADHERIN, behaved in a similar fashion

to CD44. As shown in Figure 1, either treatment with TSA or 5-dAzaC or re-expression with

BRG1 or BRM induced expression of CDH1 protein in 2 BRG1/BRM-negative cell lines,

SW13, derived from an adrenal carcinoma and H522, derived from a NSCLC. In contrast,

treatment with a dominant-negative form of BRG1 (DNBRG1) that lacks ATPase or with

vehicle (DMSO) had no effect.

Analysis of BRG1 re-expression on gene expression in the H522 NSCLC cell line

To further address the relationships among BRG1 re-expression, DNA methylation and

histone acetylation, we carried out a gene expression array analysis on the BRG1/BRM-

deficient human H522 NSCLC cell line after infection with Ad-BRG1-GFP or Ad-GFP or

treatment with vehicle (DMSO), 5µM 5-dAzaC or 100nM TSA. For this analysis, we used

5µM 5-dAzaC to avoid toxicity problems we observed after treatment with 50µM. Similarly,

we did not observe toxicity with BRG1 re-expression or 100nM TSA as previously reported
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(18, 37–43). All cells were treated or infected for 48 hours. After hybridization to Agilent

whole human genome microarrays, the data was processed as described in the Material and

Methods. Expression data for a total of 19,749 genes was available for analysis.

We first analyzed these data by hierarchically clustering both the genes and the arrays in the

expression data and then creating a heat map to look for common patterns of gene

expression. As shown in Figure 2, the 4 replicates from each treatment group clustered

together, which shows consistency of gene expression patterns among the replicates. Of

interest, the groups infected with adenovirus showed greater similarity to each other than to

either TSA or 5-dAzaC treatments. It also appeared that infection with Ad-GFP alone

caused unique changes in gene expression compared to the other treatment groups.

Furthermore, the DMSO treatment control showed the least similarity to any of the other

treatment groups while TSA and 5-dAzaC treatments showed the most similarity. Therefore,

for gene expression altered by TSA or 5-dAzaC treatments, we searched for differential

expression between each treatment group and the DMSO treated cells. We identified genes

whose expression was induced by BRG1 re-expression by comparing the Ad-BRG1-GFP

infection to the Ad-GFP infection.

We first looked for genes that showed changed expression after Ad-BRG1 infection. Our

results found expression levels for 5527 genes increased and 6510 decreased after BRG1-

GFP re-expression normalized to GFP expression alone (Supplemental Table 1). However,

this number represents an over estimation because some genes showed decreased expression

under all treatment conditions (Supplemental Table 1). In a similar vein, expression of 2436

genes increased and 2763 genes decreased after 5-dAzaC treatment (Supplemental Table 2).

In contrast, we observed fewer changes in gene expression after TSA treatment, where 560

genes went up and 995 genes went down (Supplemental Table 3).

We also identified genes whose expression increased after 2 different treatments. We

observed 429 genes that showed increased expression after either 5-dAzaC treatment or

BRG1 re-expression (Supplemental Table 4). However, to be conservative in these analyses,

we first focused only on those genes whose expression increased >2 fold compared to the

parental cell line. Of these 429 genes, Table 1 lists the 145 genes that increased more than 2

fold after BRG1 re-expression including genes such as CDH3 and GDF15 that are

associated with human tumor development (44, 45). Interestingly, GDF15 was previously

reported to undergo silencing by histone acetylation (46). In a similar analysis for genes

whose expression increased after TSA treatment or BRG1 re-expression, we found 186

genes (Supplemental Table 5). Of 140 genes from this group that went up by more than 2-

fold after BRG1 re-expression, CDH1 showed the most robust increase in expression while

CD44, KRT4, KRT8 and KRT18 also showed strong induction (Table 2). Finally, we looked

for genes whose expression went up under all three conditions. This group contained the

fewest genes (86), of which 55 genes increased by more than 2 fold after BRG1 re-

expression (Table 3, Supplemental Table 6). Interestingly, GADD45A, a stress responsive

gene, showed strong induction under all 3 conditions (Supplemental Table 6) (47). Finally,

we identified genes that showed increased expression after TSA or 5-dAzaC treatment but

not BRG1 (Supplemental Table 7). We found 170 genes, of which 148 increased by at least

2-fold after TSA treatment. These results are summarized in a Venn diagram in Figure 2B.
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Validation of gene expression array data

One caveat from studies using adenovirus infection to express proteins is the significant

production of protein by the adenovirus infection. To address this issue, we re-expressed

BRG1 in the H522 cell line by gene transfection to minimize overexpression. We also

included a second BRG1/BRM-deficient NSCLC cell line, A427, where we have previously

shown induction of CD44 after BRG1 expression (20). We examined expression of CDH1,

CD44 and CK18, as well as potentially novel BRG1 regulated genes, CDH3, EHF and

RRAD. A previous report showed that RRAD, a member of the RAS superfamily, is

epigenetically silenced by DNA methylation in a large percentage of NSCLC while EHF, a

member of the ETS transcription factor family, is silenced in prostate cancer (48, 49). CDH3

(P-cadherin) maps next to CDH1 and can also undergo silencing during human tumor

development (45).

As shown in Figure 1B, we observed increased expression of these genes in H522 consistent

with microarray data. However, we found increases only in CD44, EHF and RRAD

expression after BRG1 re-expression in the A427 cell line, indicating differences between

these 2 NSCLC cell lines. We also assessed protein expression by Western blot analysis for

genes with available antibodies (Figure 1C). The Western blot data in Figure 1C

recapitulates the qPCR data in panel B i.e. a more robust induction of target protein

expression with BRG1 in the H522 cell line versus the A427 cell line (notice the ratio of

protein expression to the β-ACTIN control in the 2 cell lines). Thus, the Western blot results

appeared consistent with the qPCR findings.

Gene expression changes after BRG1 re-expression in BRG1/BRM-deficient NSCLC cells
does not correlate with DNA methylation levels

To further investigate the relationship between BRG1 loss and DNA methylation, we asked

whether BRG1 re-expression altered DNA methylation in NSCLC cell lines. We used

restriction landmark genomic scanning (RLGS) to detect DNA methylation changes in the 2

BRG1/BRM-deficient NSCLC cell lines after BRG1 re-expression (32, 33). RLGS uses

two-dimensional gel electrophoresis system to detect radiolabeled methylation sensitive

restriction endonuclease sites and create “landmarks” seen on the resulting autoradiograph.

This approach has been successfully used to detect changes in DNA methylation in primary

NSCLC samples (50). We first demonstrated that our treatment conditions with 5-dAzaC led

to re-expression of methylation-silenced CDH1 in the H460 NSCLC cell line as previously

reported (Figure 3A)(51). In contrast, only treatment with TSA +/− 5-dAzaC or infection

with Ad-BRG1 led to CDH1 and CD44 expression in H522 cells, in agreement with the

gene expression array results (Figure 3A).

RLGS analysis of H522 cells transfected with vector or BRG1 revealed only three

prominent landmarks that appeared after BRG1 re-expression (Figure 3B). However,

sequencing of these DNAs revealed that they originated from the BRG1 transgene and not

from changes in methylation of the H522 cellular DNA. Similar results were observed for

the A427 cell line (Supplementary Figure 1). We could not detect any additional changes

after BRG1 re-expression. Therefore, this “snapshot” of global DNA methylation did not

Song et al. Page 7

Mol Cancer Res. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



show major changes after BRG1 re-expression. We cannot, off course, exclude that DNA

methylation changes below the detection limit of about 5% change occurred.

Finally, we examined whether the DNA methylation status of these genes would predict

their response to BRG1 re-expression i.e. do high levels of DNA methylation inhibit the

effects of BRG1 re-expression? To address this issue, we took advantage of a recent study

that used DNA methylation arrays to compare the patterns among 69 human NSCLC cell

lines including H522 and A427 (35). We compared the methylation patterns on 4 genes that

showed increased expression in one or both cell lines, CD44, CDH1, RRAD and CDH3. As

shown in Figure 4, A427 cells displayed significantly more DNA methylation along the

length of the CD44 gene than H522 cells. However, BRG1 re-expression induced CD44

expression only in the A427 cell line (Figure 1B). In contrast, H522 cells showed

significantly less methylation in the promoter region of CDH3 than A427 cells, consistent

with BRG1 re-expression inducing its expression in H522 alone. Furthermore, RRAD basal

expression was higher in A427 cells despite the presence of significantly more DNA

methylation along the entire promoter and coding region. Similarly, we did not observe an

association between CDH1 methylation and expression. Taken together, our results support

the notion that DNA methylation correlates poorly with altered gene expression after BRG1

re-expression.

Discussion

Epigenetic alterations are generally accepted as critical components of neoplastic

transformation (52, 53). Most studies have focused upon the mechanisms of DNA

methylation and histone modifications as inducers of gene silencing. In this study, we

provide evidence that loss of SWI/SNF complex activity via mutations in the ATPase

components may provide another mechanism for gene silencing during lung tumor

development. This role for aberrant SWI/SNF complex activity may account for the

significant number of mutations found in most of the subunits across a large number of

human tumors (5, 14)

How could decreased expression or loss of SWI/SNF complex activity lead to changes in

gene expression? One potential mechanism could involve altered activity of transcription

factors associated with the SWI/SNF complex. Previous studies have shown interactions

between various SWI/SNF complex members and transcription factors including c-MYC,

NRF2, p53 and NFkB (54–57). These studies also established that loss of BRG1 or SNF5

altered downstream signaling of these transcription factors. Several recent reports have also

demonstrated global changes in nucleosome positioning after loss of BRG1 expression (55,

58, 59). Therefore, alterations in SWI/SNF complex activity could affect gene expression by

either causing nucleosome positioning changes at gene promoters or at transcription factor

binding sites.

Our studies also showed that treatment with a HDAC inhibitor or re-expression of BRG1

could increase expression of several genes frequently silenced in NSCLC, such as CDH1

and CD44. This brings up the possibility that loss of BRG1 and BRM proteins, the critical

ATPase subunits of the SWI/SNF complex, could influence gene silencing by affecting the
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activity of other histone or chromatin modifying complexes. Multiple examples exist in the

literature illustrating the interdependence between components of the SWI/SNF complex

and other chromatin remodeling complexes (60, 61). Thus, loss of SWI/SNF complex

activity could lead to gene silencing through the repressive effects of other complexes such

as the ISWI or polycomb complexes.

The SWI/SNF complex can also associate with different histone-modifying enzymes. The

SWI/SNF complex cooperates with histone acetyl transferases to promote epigenetic marks

at histones (62, 63). Therefore, loss of SWI/SNF complex activity could also lead to loss of

histone acetylation marks in tumor cells. In the NUMAC complex (nucleosomal methylation

activation complex), members of the SWI/SNF complex including BRG1 interact with the

co-activator-associated arginine methyltransferase-1 (CARM1) to regulate activity for

histone methylation (64). This again provides another mechanism where loss of SWI/SNF

complex function could potentially lead to loss of activating marks on histones. The

SWI/SNF complex also cooperates with other histone-modifying enzymes such as histone

deacetylases-3 (HDAC3) and the transcriptional co-repressors KAP-1 (Krab associated

protein 1) within the NCoR-1 (Nuclear receptor corepressors-1) complex (65). Therefore,

loss of BRG1 and BRM could alter their activities by potentially increasing their repression

of gene transcription.

Although existing next generation sequencing studies have found a significant number of

BRG1 mutations and deletion in squamous cell and adenocarcinomas of the lung, their

effects on SWI/SNF complex activities remain unknown. Many of the mutations result in

truncated forms of BRG1 that appear to be degraded (11, 18). However, in these cohorts,

five of eight mutations in squamous cell and ten out of twenty mutations in

adenocarcinomas are missense. Therefore, determining the effects of these single amino

acids changes on protein function becomes imperative. Importantly, several recent reports

have shown that missense mutations in BRG1 can dramatically alter its biological activity

(30, 66). Whether these BRG1 mutant proteins can also result in gene silencing remains an

important unanswered question.

Our current study implicates BRG1 loss as another route for epigenetic silencing during

NSCLC development. The large number of changes in gene expression associated with

BRG1 re-expression compared to treatment with a DNMT or HDAC inhibitor appears

consistent with this notion. While the mechanism for this effect requires further study,

experiments identifying changes in BRG1 binding sites by ChIP-seq and nucleosome

positioning by MNase-seq should help resolve this issue. Furthermore, the validation of

additional BRG1 target genes should lead to the generation of new treatment approaches for

individuals with BRG1-deficient NSCLC. Our results also strongly suggest that treatment

with DNMT or HDAC inhibitors may not prove efficacious in patients with BRG1-deficit

NSCLC. The cell lines developed in this study as well as genetically-engineered mouse

models for BRG1-induced tumor development will accelerate the translation of future

treatment options into clinical practice (67, 68).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Re-expression of silenced genes in BRG1/BRM-deficient cell lines
(A) SW13 or H522 cells were either treated with 5-dAzaC and/or TSA or transfected with

the empty expression vector pcDNA3 or expression vectors for BRG1, DNBRG1 or BRM.

After 72 hours, protein was extracted, separated and immunoblotted for the indicated

proteins as described in the Material and Methods. β-actin served as the loading control. (B)

& (C) H522 and A427 cells were transfected with BRG1 (pBJ5-BRG1) or empty vector

(pcDNA3). After 48 hours, cells were harvested for either total RNA or protein. Gene

expression was then evaluated by qPCR using ABI primers (B) or by western blotting (C).

For qPCR, expression for each gene was normalized to β-actin levels; for western blotting,

β-actin served as a loading control. * means P-value< 0.05, and error bars represent +S.E.M.
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Figure 2. Characterization of gene expression changes in H522 NSCLC cells
Gene expression analysis using array technology was carried out as described in the Material

and Methods. (A) Heatmap of gene expression data in H522 NSCLC cells after

standardizing expression values within arrays, median centering within each gene and

hierarchically clustering both genes and arrays (gene dendrogram not displayed). Expression

values for 19,749 genes are shown. (B) Venn diagram displaying counts of differentially up-

regulated genes according to the comparison groups described in the Material and Methods.
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Figure 3. Changes in DNA methylation does not account for gene expression changes after BRG1
re-expression in H522 and A427 cells
(A) H522 cells were infected with adenovirus expressing human BRG1 and/or GFP as

described in the Material and Methods. H522 and H460 cells were treated with DMSO, 5µM

5-dAzaC or 100nM TSA as described in the Material and Methods. After 48 hours, dishes

were harvested for total protein. Expression of CDH1, CD44 and CK18 was then measured

by Western blotting. β-actin served as a loading control and the H460 cell line served as a

positive control for 5-dAzaC treatment (51). (B) H522 cells were transfected with BRG1

(pBJ5-BRG1) or empty vector (pcDNA3). After 48 hours, cells were harvested for DNA and

used for RLGS as described in the Material and Methods.
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Figure 4. DNA methylation does not correlate with gene expression changes after BRG1 re-
expression in H522 and A427 cells
Beta values ranging from 0 (lowest) to 1 (highest) show DNA methylation levels at sites

across four representative BRG1 target genes, CD44, CDH1, RRAD, and CDH3, for both

H522 and A427 cell lines. Methylation levels are coded as follows: low (green, beta < 0.3),

intermediate (white, 0.3 < beta < 0.7), high (red, beta > 0.7).
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Table 1
Genes up-regulated by both 5-dAzaC treatment and BRG1 re-expression

Differentially expressed genes were identified, as described in Material and Methods. Of the 429 genes up-

regulated in both 5-dAzaC treatment vs. DMSO and BRG1-GFP re-expression vs. GFP, the 145 genes that

increased more than two fold after BRG1 re-expression are shown.

ABCG4 GALNAC4S-6ST MAPKAPK3 SESN2

ABHD11 GALNTL4 MCFD2 SHC2

AIM1L GCC1 METRNL SLC1A4

AKAP8 GDF15 MGLL SMOX

APLN GJB2 MMP1 SPEG

ARHGAP22 GOT1 MMP19 STC2

ARHGEF3 GPIHBP1 MORC4 STX4

ASB2 GPN1 MPPED1 TCF7

ATP6V1D GPRIN2 MRPL18 TICAM1

BLCAP GPT2 MSI2 TMEM130

BMP5 GRB10 MT1E TMEM198

C10orf49 GUCA1B MYLK2 TNFRSF10B

C15orf52 HIVEP3 MYO5B TNFRSF8

C18orf25 HMGCS1 NEFM TNNC2

C21orf34 HSPA4 NPPB TPD52L1

C6orf145 HSPH1 NR3C1 TPRXL

C7orf29 IDH1 NUPR1 TRIP6

CABLES1 IFFO2 OGDHL TSSC4

CAMK2N1 IFRD1 OR3A3 UPP1

CARD10 IL11 P2RY2 VDR

CBS IL17D PCBP4 WARS

CCDC130 INHBB PDZD2 YKT6

CCDC3 KCNA7 PHLDB3 ZFAND2A

CDH3 KCNQ1 PINK1 ZNF354A

CEBPB KIAA1199 PMAIP1 ZNF592

CKMT1A KIAA1683 PREX1

CXorf40B KRT19 PRR17

DKFZp547K054 LEPREL1 RAB3B

DNAJA4 LGALS8 RAGE

DUSP2 LHFP RBKS

DYNC1H1 LHX6 RBP4

DYSF LIMK2 REEP1

EIF4G2 LOC387763 RGS16

ELF4 LOC392335 RHBDL3

ENO3 LOC732215 ROM1

ETS2 LONRF2 RRP12

FAM101A LYG1 S100A13
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FCGBP LZTS1 S100A16

FGFBP3 MAL SAT1

FHL2 MALT1 SCEL
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Table 2
Genes up-regulated by both TSA treatment and BRG1 re-expression

Differentially expressed genes were identified, as described in Material and Methods. Of the 186 genes up-

regulated in both TSA treatment vs. DMSO and BRG1-GFP re-expression vs. GFP, the 140 genes that

increased more than two fold after BRG1 re-expression are shown.

A4GALT ETV7 LOC149501 TBC1D9

AFAP1 F3 LOC441376 TGFA

AGPS FAM127A LOC442249 TKT

AK2P2 FAM151A LOC54492 TMEM37

AKR1C3 FAM174B LOC647954 TNNC1

ANKRD13A FAM65B MAP1B TRIM2

ARL4D FLJ40504 MAP4K4 TSPAN5

ASMTL GATA6 MYLIP TTYH1

BAMBI GDPD5 MYO10 TUBA4A

BTG2 GLDC MYO1E TUBB2A

C11orf67 GSN MYOF TUFT1

C19orf33 GUK1 NACAD TXNIP

C1orf167 HABP4 NCRNA00087 TXNRD1

C1orf226 hCG_1988300 NPPC VSTM2L

CALB2 HDAC5 NPTX2 WNT10A

CAPN2 HEATR5A OBFC2A WNT4

CCL2 HIST1H2AD OSGIN1 WNT6

CCND1 HRCT1 P4HA3 ZCCHC12

CD44 HS3ST2 PEG10 ZCCHC17

CDH1 HTRA1 PGD ZNF365

CDKN1A IGSF3 PGM2L1

CITED4 IL18 PLCD3

CLU JAKMIP1 PMEPA1

CNN1 JUN PPL

COL16A1 KLK10 PRAGMIN

CPE KRT18 PRSS23

CPM KRT18P19 PTRF

CRMP1 KRT18P28 RAB11FIP1

CRTAC1 KRT18P30 RELL1

CTSL1 KRT18P33 RGL1

CXCR4 KRT18P40 RNF144B

CYP2U1 KRT18P42 S100A4

DAPL1 KRT18P49 S100P

DDIT4 KRT4 SH3BP5

DHRS3 KRT8 SIK1

DLK1 LBH SLN

DUSP5 LCN2 SNTA1
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EFHD1 LGI2 SUSD2

ENC1 LIPH SYT17

ERRFI1 LOC100128116 TAGLN2
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Table 3
Genes up-regulated by 5-dAzaC treatment, TSA treatment, and BRG1 re-expression

Differentially expressed genes were identified, as described in Material and Methods. Of the 86 genes up-

regulated in 5-dAzaC treatment vs. DMSO, TSA treatment vs. DMSO, and BRG1-GFP re-expression vs. GFP,

the 55 genes that increased more than two fold after BRG1 re-expression are shown.

ANKRD6 GFOD1 GLIPR2 NDRG1 RAB31

ANXA2 GFPT2 ID3 NGEF RASSF2

ATF3 DDX58 ID4 NMNAT2 RHOU

BCL6 EGR2 KIF5C OCC-1 RIPK4

BIK EMILIN2 KRT18P34 ODC1 S100A2

C16orf45 FAM89A LAMB3 PAQR9 SLC30A3

C6orf114 FEZ1 LGALS3 PEA15 SMAD3

CCK FTL LMCD1 PLCE1 SRXN1

CD83 FYN LOC26010 PODXL SULF2

CGNL1 GABARAPL1 MEG3 PPP1R14C TPM1

CHST2 GADD45A MTM1 RAB11FIP5 WWC3
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