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Abstract

Recent human clinical trials results demonstrated successful treatment for certain genetic forms of 

cystic fibrosis (CF). To extend treatment opportunities to those afflicted with other genetic forms 

of CF disease, structural and biophysical characterization of CF transmembrane conductance 

regulator (CFTR) is urgently needed. In this study, CFTR was modified with various tags, 

including a His10 purification tag, the SUMOstar (SUMO*) domain, an extracellular FLAG 

epitope, or an enhanced green fluorescent protein (EGFP), each alone or in various combinations. 

Expressed in HEK293 cells, recombinant CFTR proteins underwent complex glycosylation, 

compartmentalized with the plasma membrane, and exhibited regulated chloride-channel activity 

with only modest alterations in channel conductance and gating kinetics. Surface CFTR 

expression level was enhanced by the presence of SUMO* on the N-terminus. Quantitative mass-

spectrometric analysis indicated approximately 10% of the total recombinant CFTR (SUMO*-

CFTRFLAG-EGFP) localized to the plasma membrane. Trial purification using dodecylmaltoside 

for membrane protein extraction reproducibly recovered 178 ± 56 μg SUMO*-CFTRFLAG-EGFP 
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per billion cells at 80% purity. Fluorescence size-exclusion chromatography indicated purified 

CFTR was monodisperse. These findings demonstrate a stable mammalian cell expression system 

capable of producing human CFTR of sufficient quality and quantity to augment futrure CF drug 

discovery efforts, including biophysical and structural studies.
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INTRODUCTION

Cystic fibrosis (CF) is the most common fatal genetic disease in the western world, with an 

incidence of approximately 1 in 2500 births (1). CF is caused by mutations in the cystic 

fibrosis transmembrane conductance regulator (CFTR) gene that encodes a chloride channel 

belonging to the ATP-binding cassette (ABC) transporter superfamily (2, 3). Defects of 

CFTR channel function compromise epithelial transcellular fluid regulation in the lungs, 

pancreas and other organs, and lead to thickening of mucus in the lungs, and eventually 

tissue sequelae and death. Other complications of CF include malnutrition due to pancreatic 

insufficiency, electrolyte imbalances, diabetes and male infertility. The most frequent 

genetic mutation associated with clinical CF disease is deletion of phenylalanine at position 

508 (ΔF508) in CFTR. The ΔF508 mutation results in aberrant folding of the CFTR protein, 

retention of CFTR in the endoplasmic reticulum and premature CFTR protein degradation 

(4). Interestingly, wild-type CFTR (wtCFTR) appears to fold, mature, and reach the plasma 

membrane less efficiently compared to other ABC transporters (5-7). Cellular quality 

control appears to be quite stringent, and even mature CFTR at the cell-surface is 

endocytosed at a rate of ~10% per min in normal cells (8). N-glycosylation is intimately 

linked with CFTR folding in the endoplasmic reticulum, and maturation in the Golgi 

apparatus of glycan chains from the core-glycosylated form (band B) of CFTR to the final 

complex-glycosylated form (band C) often is used experimentally as a surrogate for proper 

CFTR folding and trafficking to the cell-surface (6, 9).

The architecture of CFTR is similar to that of other ABC transporters, consisting of 

transmembrane domains harboring the chloride pore, connected by cytoplasmic loops to two 

nucleotide binding domains (NBDs) that hydrolyze ATP (10, 11). CFTR features a unique 

regulatory (R) region that, when phosphorylated, regulates ATP hydrolysis-mediated 

channel gating (7, 12). Limited insights toward understanding this complex structure, 

interactions between subdomains, and preliminary functional models have been provided by 

low resolution structures of full-length CFTR, crosslinking experiments, nuclear magnetic 

resonance studies of partial molecules, and molecular modeling based on crystal structures 

of other ABC transporters (13-16).

Drug discovery efforts based on a variety of CFTR ‘correctors’ that improve trafficking of 

misfolded protein to the plasma membrane or ‘potentiators’ that improve channel function 

(17) were initially disappointing due to poor potency of the compounds (18-20). However, 

the recent FDA approval and clinical success using ivacaftor to treat CF patients with CFTR 
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gating mutations (http://www.fda.gov/drugs/scienceresearch/researchareas/

pharmacogenetics/ucm290088.htm) firmly validates rationale for the discovery of small-

molecule CF drugs. Since patients with gating mutations and other mutations that can be 

treated with Ivacaftor represent fewer than 15% of the over 1900 CF-causing mutations 

identified to date (http://www.cftr2.org/), it seems likely that numerous CF drugs will be 

needed to extend treatment opportunities to greater numbers of individuals afflicted with CF 

(21). To augment drug discovery, direct structural and biophysical characterization of wild-

type and mutated forms of CFTR is urgently needed, but has been impeded by both 

difficulties producing significant quantities of CFTR and the limited stability of purified 

protein. The goal of the present study was to characterize a molecular expression strategy 

that was conceived to facilitate the identification and derivation of stable cell lines for high-

level production of full-length CFTR. Our results demonstrated robust expression in human 

embryonic kidney (HEK) epithelial cells of exogenous full-length human CFTR comprising 

various domains and tags that facilitate the derivation of stable high-producer cell lines, 

assessment of CFTR biogenesis, and characterization of recombinant CFTR protein. These 

findings are significant as they demonstrate a mammalian cell expression system capable of 

producing human CFTR of sufficient quality and quantity to support biophysical and 

structural studies.

MATERIALS AND METHODS

CFTR expression vectors

Schematics of the HIV-1-based lentiviral vectors used in these studies are shown in Fig. 1. 

The basic molecular genetic structure of these vectors included LTR-ψ-RRE-CTS/PPT-

TRE-MCS-IRES-Puro-WPRE-ΔU3.LTR (LTR, long-terminal repeat; ψ, psi/RNA genome 

packaging signal; RRE, Rev response element; CTS, central termination sequence; PPT, 

polypurine tract; TRE, tetracycline response element; MCS, multiple cloning site; IRES, 

internal ribosome entry site; Puro, puromycin N-acetyl-transferase gene; WPRE, woodchuck 

hepatitis virus post-transcriptional regulatory element; and ΔU3.LTR, deletion in the U3 

sequence of the LTR). Most of these genetic elements have been described previously 

(22-28). The arrangement of the TRE and IRES allows genes inserted into the MCS and 

those downstream of the IRES to be expressed from a single mRNA transcript.

The TRE-CFTR-IRES-Puro.T2A.EGFP vector (K2933) was derived from a wtCFTR 

expression vector described previously (29) by inserting a Puro element followed by a 

Thosea asigna 2A-like peptide (T2A) coding sequence upstream and in-frame with 

enhanced green fluorescent protein (EGFP) (30-32). The CFTR FLAG-containing 

expression vector, TRE-CFTRFLAG-IRES-Puro (K3103) was created by polymerase chain 

reaction (PCR) amplification of a CFTR sequence containing the FLAG octapeptide epitope 

(DYKDDDDK) after residue N901 (33, 34), and its ligation into the 5’ NheI and 3’ XhoI 

sites of the lentiviral vector. Published studies indicate that inclusion of a FLAG tag in the 

4th extracellular loop (proximal to residue 901) enables cell surface localization of CFTR 

without altering its expression (33, 34). The expression vector, TRE-CFTRFLAG-EGFP-

IRES-Puro (K3290), was generated by ligating an A206K mutated EGFP (25) sequence in-

frame and downstream of CFTRFLAG. The translational stop codon of CFTR was eliminated 
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and a tobacco etch virus (TEV) protease cleavage site (underlined) (35) and a glycine-serine 

hinge were introduced between the CFTRFLAG and EGFP genes (CFTRFLAG-

ENLYFQGGGGSGGSS-EGFP). The TRE-SUMO*-CFTRFLAG-EGFP-IRES-Puro 

expression vector (K3235) was generated by inserting a DNA segment coding for 

MERGSH10-LVPRGSAS-SUMOstar (synthesized by GeneArt/Life Sciences) in-frame at 

the 5’ end of CFTRFLAG-EGFP. The N-terminal RGSHis10 tag enables affinity purification 

and immunodetection of the recombinant protein. The His-tag is cleavable by the presence 

of a Thrombin protease cleavage site (underlined). Small ubiquitin-like modifier (SUMO, 

Saccharomyces cerevisiae Smt3) and SUMOstar (SUMO*) domains have been shown to 

enhance folding and solubility of fused recombinant proteins (36, 37), including isolated 

CFTR NBDs (38). SUMO* is modified at two interfacial amino acids, R64T and R71E, 

rendering resistance to cleavage by intrinsic eukaryotic proteases (39). The SUMO* 

polypeptide can be removed from its fusion partner with specific proteases (37, 40). The 

integrity of each of the recombinant expression vectors was confirmed by nucleotide 

sequence analysis. The entire ORF sequence of SUMO*-CFTRFLAG-EGFP was deposited in 

GenBank (accession KP202880).

Cell lines and growth conditions

HEK293 (293F; Invitrogen), HEK293.M2 (D017) (41), and cell lines derived from 

HEK293.M2 cells by lentiviral vector transduction were maintained as adherent cultures in 

DMEM/F12 medium supplemented to contain 10% fetal bovine serum (FBS) (HyClone), 

100 U/mL penicillin and 0.1 mg/mL streptomycin (Life Technologies). The HEK293.M2 

cell line (41) constitutively expresses a modified form of the reverse tetracycline 

transactivator (rtTA-M2) for specific and sensitive doxycycline (dox)-inducible gene 

expression under control of the tetracycline response element (42). All HEK293-derived cell 

lines that were adapted to serum-free suspension-culture, were maintained in 

CDM4HEK293 medium (HyClone) supplemented to contain 100 U/mL penicillin, 0.1 

mg/mL streptomycin, 2 mM L-glutamine, 2 mM L-alanyl-L-glutamine dipeptide, 0.25 

μg/mL amphotericin B, and 1:1000 (v:v) anti-clumping agent (Life Technologies). 

Suspension culture-adapted cells were propagated in either 1050 cm2 smooth surface roller 

bottles (Thermo Scientific) or a 14L autoclavable bioreactor supported by a New Brunswick 

BioFlo 310 benchtop fermentor system (Eppendorf) http://newbrunswick.eppendorf.com/en/

products/fermentors/.

Generation of recombinant CFTR cell lines

The 293T/17 cell line (ATCC®) used for packaging of all lentiviral vector stocks was 

maintained in DMEM supplemented to contain 10% FBS, 100 U/mL penicillin and 0.1 

mg/mL streptomycin. Lentiviral vector genomes containing the different CFTR genetic 

recombinants were packaged by cotransfecting 293T/17 cells with pCMVΔR8.2 packaging 

plasmid DNA and vesicular stomatitis virus envelope glycoprotein plasmid DNA (24, 43). 

Culture supernatants were collected after 60 hrs, clarified by low-speed centrifugation (250 

× g, 10 min), filtered through 0.45 μm sterile filters, and concentrated by ultracentrifugation 

at 125,000 × g at 4°C for 2 hrs. For transduction, 105 HEK293.M2 (D017) cells in 200 μl of 

DMEM/F12/1% FBS were incubated with concentrated packaged vector at 37°C for 18 hrs. 

After 2-3 days, 1 μg/ml dox was added to the culture medium, and 24 and 48 hrs later, 
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transgene expression was assessed by fluorescence microscopy. Cultures exhibiting a 

positive response in less than 40% of the cell population were discarded. Those with 

favorable expression were cultured for 7-9 days in the presence of 10 μg/ml puromycin. All 

selected cell cultures were confirmed to be >95% expression-positive for the respective 

transgene by monitoring either EGFP or CFTR as described below. Puromycin-selected cell 

populations were expanded in the absence of dox and puromycin and cryopreserved in liquid 

nitrogen. Subsequent studies of the different CFTR cell lines were performed with 

monolayer cultures, except where suspension-culture-adapted cells have been specified.

Western blot analysis

Western blot analysis of cells expressing recombinant CFTR was performed using methods 

reported earlier (44, 45). Briefly, cells were solubilized in sample buffer (46), sonicated, and 

heated at 37°C for 5 min prior to sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

(SDS-PAGE) in 7% gels. Proteins were transferred to nitrocellulose by electroblotting, and 

detected using either anti-RGSHis4 (Qiagen) or R1104 anti-CFTR mouse monoclonal 

antibody recognizing an epitope comprising amino acids 722-734 in the CFTR regulatory 

(R) region (47). Horseradish peroxidase-conjugated goat anti-mouse IgG (Southern Biotech) 

was used as secondary antibody with Immobilon Western Chemiluminescent substrate 

(Millipore). The chemiluminescent signal was captured and analyzed on an ImageQuant 

LAS 4000 Mini luminescent image analyzer (GE Healthcare Life Sciences).

Flow cytometry

Cellular expression and plasma membrane compartmentalization of CFTR were analyzed 

using flow cytometry to detect EGFP expression and FLAG immunostaining. Live cells 

were equilibrated in room temperature (RT) staining buffer for 15 min, incubated with 5 

μg/ml of SureLight APC anti-FLAG M2 mAb for 30 min at RT, washed three times with 

ice-cold staining buffer, detached by incubation on ice with phosphate-buffered saline 

containing 0.5 mM EDTA, washed once with staining buffer and resuspended in 200 μl 

Cytofix (BD Biosciences). Both EGFP fluorescence and FLAG/CFTR staining were 

measured using a BD FACSCalibur or LSRII flow cytometer (BD Biosciences). Negative/

positive fluorescence boundaries were determined using HEK293.M2 cells. Flow cytometric 

data were analyzed using FlowJo software.

Derivation of clonal cell cultures

All recombinant CFTR cell lines analyzed in this study comprised mass populations of 

transduced cells unless otherwise noted. To generate clonal cell lines, cultures treated for 

18-24 hrs with 1 μg/ml of dox were live-stained using SureLight allophycocyanin (APC)-

conjugated anti-FLAG M2 (PerkinElmer). The most highly fluorescent cells (top 10%) were 

sorted individually into wells of 96-well plates using a FACS Aria (BD Biosciences). Initial 

screening of clonal cell cultures included analyses of cellular morphology, growth kinetics, 

and levels of basal and dox-induced EGFP and/or FLAG/CFTR expression using 

fluorescence microscopy. Clonal cultures exhibiting favorable characteristics were expanded 

for further analyses and cryopreservation of master stocks. Clonal cell lines adapted to 

serum-free suspension-culture were reanalyzed to ensure growth kinetics. Relative CFTR 

expression levels in suspension culture adapted cells were not predictable based on the 
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analysis of the corresponding monolayer cells, and therefore, CFTR expression properties 

were re-determined in each instance. To confirm the integrity of the recombinant CFTR 

sequence in the D165 clonal line, PCR amplicons comprising the SUMO*-CFTRFLAG-

EGFP open reading frame were generated by PCR, sequenced without cloning, and found to 

be identical to the transducing vector (data not shown).

Single-channel recording

Microsomal membrane fractions were prepared from the HEK293-derived cell lines 

overexpressing CFTR recombinant proteins or from BHK cells constitutively expressing 

wtCFTR, as described previously confirm citation (48). Membrane vesicles were 

phosphorylated by incubation with 50 nM PKA catalytic subunit (Promega) and 2 mM 

Na2ATP (Sigma-Aldrich) in 10 mM Hepes, pH 7.2, 0.5 mM EGTA, 2 mM MgCl2, and 250 

mM sucrose at RT for 15 min. Aliquots were stored at −80°C until used. Microsomal 

vesicles were fused to planar lipid bilayers and single-channel currents were recorded at 

30°C in symmetrical buffer (300 mM Tris HCl pH 7.2, 3 mM MgCl2, 1 mM EGTA) at −75 

mV under voltage-clamp conditions as described previously (49). To maintain uniform 

channel orientation and optimal functional state, 2 mM Na2ATP, 50 nM PKA and 10 μl 

membrane vesicles were added to the one side of the bilayer only. Output signal was filtered 

with a cut-off frequency of 50 Hz.

Fluorescence microscopy

Cells in 8-chamber glass slides (Falcon CultureSlide) coated with bovine type I collagen 

(BD Biosciences) were treated with dox for 24 hrs. Live cells were immunostained without 

fixation by incubation on ice with 5 μg/ml anti-FLAG M2 mAb (Sigma-Aldrich) followed 

by cold washing and incubation with Alexa Flur® 594-conjugated goat anti-mouse IgG (H

+L) antibody (Life Technologies) on ice for 30 min. Cells were washed with cold staining 

buffer (BD Biosciences), and then fixed for 15 min with Cytofix (BD Biosciences). Cells 

were washed, cured with ProLong® Gold antifade reagent containing 4’,6’-diamidino-2-

phenylindole (DAPI) (Life Technologies) to stain cell nuclei, and mounted with a coverslip. 

Confocal images were acquired using a Zeiss LSM 710 confocal microscope with a 63x 

PlanApo oil immersion objective at a resolution of 1024x1024 pixels. A Helium Neon 561 

nm excitation laser was used to excite Alexa Flur® 594 and image spectra at 590-700 nm. 

Optical sections in the z-axis (z-stack) were acquired at 0.45 micron intervals. Images of 

DAPI-stained cell nuclei (blue) were acquired using a 405 nm laser. For protein 

colocalization studies, fluorescence was analyzed using a Nikon Eclipse TE2000-S inverted 

microscope equipped with an Xcite 120 Fluorescent Illumination system. Images were 

captured and analyzed using a SPOT RT3 25.4 Color Slider camera (Diagnostics Imaging, 

Inc., SPOT™ Imaging Solutions division) supported with Qcapture Pro software 

(QImaging, Inc.).

Mass spectrometry quantitation of cell-surface CFTR

Heavy isotope-labeled CFTR was prepared from baby hamster kidney (BHK) cells 

expressing wtCFTR as described previously (50) using 99% atom-enriched 1,2-[13C]2-L-

leucine as the isotope-labeled amino acid. A purified CFTR external standard was used to 
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determine concentrations of labeled CFTR present in Triton X-100 cellular extracts prepared 

from the BHK cells (50). To specifically quantify CFTR compartmentalized in the plasma 

membrane, intact cells were surface biotinylated and biotinylated protein was isolated using 

the EZ-Link Sulfo-NHS-SS-Biotin kit (Thermo Scientific). Protein fractions (biotinylated 

protein or Triton X-100 cell extracts) were spiked with the L-leucine isotope-labeled cell 

lysate, and then subjected to SDS-PAGE, in-gel protein digestion and peptide cleanup as 

previously described previously (50). Three human CFTR signature peptides designated 

CFTR01, CFTR02 and CFTR04 of the sequences shown in Table 1 were used to quantify 

the isolated CFTR protein fractions using liquid chromatography multiple reaction 

monitoring-mass spectrometry (50, 51). The instruments used were an Eksigent NanoLC-

ultra 2D Plus liquid chromatograph and 4000 QTrap mass spectrometer (ABSCIEX).

CFTR purification

SUMO*-CFTRFLAG-EGFP was solubilized from microsomal membranes with n-dodecyl-β-

D-maltoside (DDM) and affinity purified using NiNTA resin (Qiagen) according to 

manufacturer-recommended procedures. In-gel fluorescence with external standards was 

used to quantify SUMO*-CFTRFLAG-EGFP in crude and purified fractions (52). Samples 

were resolved on 8% SDS-PAGE gels together with known amounts of SUMO-EGFP 

fusion protein (39 kD, LifeSensors). Fluorescence of EGFP-tagged proteins was imaged 

using a Typhoon scanner (GE Healthcare), and densitometry of fluorescent bands was 

performed in ImageJ (http://imagej.nih.gov/ij/).

Fluorescence size exclusion chromatography (FSEC)

FSEC of purified SUMO*-CFTRFLAG-EGFP was performed on a 3.2 mm × 30 cm Superose 

6 column (GE Healthcare) in 50 mM Tris Cl pH 7.5, 0.15 M NaCl, 10% glycerol, 2.5 mM 

MgCl2, 0.05% DDM, 0.2 mM tris(2-carboxyethyl)phosphine, flowing at 0.04 ml/min. EGFP 

fluorescence was monitored at 488 nm/509 nm using a Jasco FP2020 Plus fluorimetric 

detector, with gain set at 100 and attenuation at 64.

RESULTS

Analysis of recombinant CFTR protein expression

To explore the utility and performance of various in-frame domain fusions of recombinant 

CFTR, the HEK293.M2 cell line (41) was transduced with either the SUMO*-CFTRFLAG-

EGFP, SUMO*-CFTR-EGFP, CFTRFLAG-EGFP, CFTRFLAG, or wtCFTR expression 

vector (Fig. 1). The resulting cultures were induced with dox for 24 hrs and CFTR 

expression was analyzed by Western blot (Fig. 2). Replicate blots were probed with either 

anti-CFTR mAb (R1104) or N-terminal-specific anti-RGSHis4 mAb. SUMO*-CFTRFLAG-

EGFP, CFTRFLAG and CFTR proteins were detected at similar levels, and slightly higher 

than CFTRFLAG-EGFP (lane 4). SUMO*-CFTRFLAG-EGFP (lane 1) resolved into a double 

band, indicating expression of both core-glycosylated (band B) and complex glycosylated 

(band C) CFTR. Greater electrophoretic mobility of CFTRFLAG compared to CFTR was 

evident on SDS-gels (lane 6 vs 5, also lane 1 vs 2), and is likely due to disruption of one of 

the two glycosylation sites caused by insertion of the FLAG epitope (33, 34, 53, 54). The 

CFTRFLAG-EGFP protein exhibited both bands B and C (lane 4), while wtCFTR and 
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CFTRFLAG (lanes 5 and 6, respectively) were expressed at high levels with a predominance 

of band C. Cells expressing the ΔF508 form of SUMO*-CFTRFLAG-EGFP (lane 3) 

exhibited reduced expression of band C, consistent with expectations for this CFTR mutant 

to be retained in the endoplasmic reticulum (ER) in its core-glycosylated form (4, 55). D165 

(lane 7) is a clonal derivative of the SUMO*-CFTRFLAG-EGFP cell population (lane 1), 

which exhibited a similar immunoblot phenotype. These results provided qualitative 

evidence that the cell expression system utilized can produce recombinant CFTR containing 

various tags, including the multiply tagged SUMO*-CFTRFLAG-EGFP recombinant protein.

Cells expressing CFTRFLAG, CFTRFLAG-EGFP, SUMO*-CFTRFLAG-EGFP (D158) and its 

clonal derivative (D165), were analyzed using flow cytometric methods to compare CFTR 

expression levels and surface compartmentalization. Cells transduced with CFTRFLAG 

stained positive for the FLAG epitope, and each of the CFTRFLAG–EGFP-containing cell 

lines was decidedly positive for both EGFP and FLAG staining (Fig. 3A). Importantly, since 

immunostaining was performed on live/intact cells, positive FLAG staining indicated 

compartmentalization of the recombinant CFTR protein in the plasma membrane (and see 

Fig. 5). The overall magnitude of EGFP and FLAG-stain fluorescence was reproducibly 

greater for SUMO*-CFTRFLAG-EGFP (both D158 and D165 cell lines) compared to 

CFTRFLAG-EGFP, possibly due to enhanced stability. Similarly, cell-surface FLAG staining 

of CFTRFLAG appeared to be greater than that of CFTRFLAG-EGFP. The flow cytometric 

distribution of the clonal (D165) SUMO*-CFTRFLAG-EGFP cell population was similar to 

the nonclonal (D158) population, but with a greater proportion of dual-positive cells. To 

quantitatively compare surface expression of the SUMO*-CFTRFLAG-EGFP and 

CFTRFLAG-EGFP recombinant proteins, the respective cell lines were induced with dox for 

24, 48 and 72 hrs, live-stained for FLAG, and analyzed by flow cytometry (Fig. 3B). Mean 

fluorescence intensity (MFI) values for SUMO*-CFTRFLAG-EGFP were greater at each 

time point compared to CFTRFLAG-EGFP, with the greatest difference observed 24 hrs after 

induction. These differences in surface CFTR expression level were consistent with the 

degree of complex glycosylation observed by Western blot analysis (Fig. 2). These results 

suggest that introducing the N-terminally fused SUMO* domain to CFTRFLAGEGFP 

increased its cell-surface expression of the protein.

Channel activity of CFTR in cell membranes

Single channel recording provides a means to validate function of recombinant CFTR 

function (56, 57). Expressed wtCFTR in BHK and HEK cell lines (Fig. 4) exhibited single-

channel conductance (γ) of 12.3 ± 0.1 pS (n=6) and 12.2 ± 0.1 pS (n=7), respectively. Slight 

differences in conductance and gating kinetics were not significant, indicating the channel 

properties of untagged wtCFTR were independent of the cell line in which it was expressed. 

Modification of CFTR with both SUMO* and EGFP tags (Fig. 4) did not affect single 

channel conductance, but approximately doubled the mean closed time (τc) with no 

significant change in the mean open time (τo). As a result, the open probability (Po) 

decreased approximately two-fold, to 0.26. CFTRFLAG exhibited a single-channel 

conductance of 11.5 ± 0.1 pS (n=7), which was a statistically significant reduction compared 

to wt CFTR (P<0.05), and could reflect the influence of additional negative charge (due to 

FLAG sequence, DYKDDDDK) near the outer vestibule. Po and gating kinetics of 
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CFTRFLAG were essentially the same as those of the SUMO*-CFTR-EGFP construct. The 

CFTR construct containing all three tags, SUMO*-CFTRFLAG-EGFP, had the same 

conductance as CFTRFLAG and gating kinetics typical of the individually SUMO*- or 

FLAG-tagged constructs. The influence of the latter two modifications on gating kinetics 

was not additive.

Microscopic visualization of CFTR surface localization

Expression of recombinant SUMO*-CFTRFLAG-EGFP protein was initially analyzed by 

immunofluorescence confocal microscopy. Dox-induced cells, live-stained to specifically 

detect surface FLAG, exhibited a strong fluorescence pattern particularly evident along the 

cell periphery. A z-stack of acquired images illustrates a strong punctate pattern of FLAG 

staining (red) that is broadly distributed across the cells (Fig. 5A). The control non-FLAG-

stained cells exhibited no Alexa Flur® fluorescence (data not shown). In fluorescence 

microscopy colocalization experiments, FLAG immunostaining (red) was detected with 

live-stained cells expressing SUMO*-CFTRFLAG-EGFP (Fig. 5B), but not (FLAG-less) 

SUMO*-CFTR-EGFP cells (Fig. 5C). In each cell type, EGFP was detected throughout the 

cell (green), with the brightest areas of fluorescence appearing along portions of the cell 

periphery and at cell-cell interfaces. Merging the FLAG and EGFP fluorescent images 

demonstrated extensive colocalization of the two domains at the plasma membrane. FLAG 

immunostaining of fixed, permeabilized cells expressing SUMO*-CFTRFLAG-EGFP (Fig. 
5D) demonstrated a subcellular localization pattern similar to that of EGFP, further 

establishing colocalization of EGFP with CFTR protein. These results indicate 

compartmentalization at the plasma membrane of the recombinant SUMO*-CFTRFLAG-

EGFP protein.

Quantitative analysis of CFTR expression by mass spectrometry

Since the rtTA-M2 enables incremental control of transcription, SUMO*-CFTRFLAG-EGFP 

expression was induced by treating cells with different concentrations of dox, ranging from 

0.0007 to 0.5 μg/ml. Cells were collected after 24 hrs and analyzed for surface CFTR. Flow 

cytometric analysis demonstrated a dose-response effect of dox concentration on surface 

FLAG/CFTR expression level (Fig. 6A). Samples from the same cultures were further 

analyzed by surface biotinylation and mass spectrometry to quantify surface CFTR. In this 

experiment, cell-surface CFTR levels plateaued at ~400 μg per 109 cells, or 1.1 × 106 

molecules CFTR per cell (Fig. 6B). In three independent experiments, the average 

maximum induced level of surface CFTR was 363 ± 31 μg per 109 cells. The average level 

of total cellular CFTR was 3581 ± μg per 109 cells (Table 2). Thus, when overexpressed at 

these high levels, ~1/10th of the CFTR synthesized was present on the cell-surface. Over the 

range of dox concentrations analyzed there was a very strong linear correlation (r2 = 0.961) 

between mass spectrometric and flow cytometric measurements of cell-surface SUMO*-

CFTRFLAG-EGFP (Fig. 6C). These results indicated that HEK293.M2 cells biosynthesize 

and traffic appreciable quantities of recombinant CFTR to the plasma membrane, and flow 

cytometry of cells live-stained for the FLAG epitope can be used to assess CFTR surface 

expression.
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Demonstration of CFTR purification using a mild detergent

Inclusion of EGFP in the recombinant SUMO*-CFTRFLAG-EGFP protein makes it possible 

to quantify CFTR even in crude cell lysates using in-gel fluorescence (52). We applied this 

method to quantify SUMO*-CFTR-EGFP in microsomal membranes, and monitor its 

recovery through the trial protein purification shown in Fig. 7. The starting material, a 

microsomal fraction of 0.15x109 cells harvested from a 1 liter serum-free suspension-

culture, contained 235 μg of SUMO*-CFTRFLAG-EGFP (1600 μg per 109 cells). DDM is a 

preferred mild detergent for structural biology, but it has been successfully applied for 

CFTR purification only with low-expressing mammalian cell lines (57, 58). Extraction of 

microsomes with DDM solubilized 221 μg of SUMO*-CFTRFLAG-EGFP (1470 μg per 109 

cells) (Fig. 7A). With this abundant starting material, and taking advantage of the 

engineered His10-tag, NiNTA affinity chromatography was employed to isolate 42 μg 

SUMO*-CFTRCFTR-EGFP (280 μg per 109 cells) with an overall recovery of 18% (Fig. 
7A). Coomassie blue staining of the same gel indicated that ~80% pure CFTR was achieved 

in a single chromatography step (Fig. 7B).

These same procedures were used to quantify SUMO*-CFTRFLAG-EGFP recoveries in 

replicate purification trials. We found a mean value of 1365 μg of SUMO*-CFTRFLAG-

EGFP per 109 cells in microsomal preparations from multiple batches of D165 cultures 

(Table 2). Of this, DDM solubilization and NiNTA affinity chromatography yielded 905 μg 

and 178 μg, respectively, per 109 cells (Table 2), representing average overall CFTR 

recoveries of 66% and 13%, respectively. Purity of ~80% was consistently observed (data 

not shown).

Potential aggregation of the purified SUMO*-CFTRFLAG-EGFP was assessed by FSEC. 

The SUMO*-CFTRFLAG-EGFP protein was eluted as a single, nearly symmetric peak 

without evidence of aggregated protein at the void volume (Fig. 8). The observed position of 

the peak would be consistent with either monomer or dimer. In a recent study, SUMO*-

CFTRFLAG-EGFP purified using similar procedures was active and appeared monomeric by 

cryo-electron microscopy (59). These results indicated that functional SUMO*-CFTRFLAG-

EGFP can be readily isolated from D165 cells in relative abundance using a mild detergent 

and without overt aggregation, suggesting the HEK293 mammalian cell culture system 

described in this study can provide a rich source of quality human CFTR protein for future 

biophysical investigation.

DISCUSSION

The challenge of obtaining human CFTR in sufficient quantities for biophysical studies is 

multifactorial, and persists as a fundamental obstacle to structure-based CF drug discovery. 

Mammalian cell expression systems offer the advantage of a physiologically relevant 

context for CFTR biogenesis so as to preserve native protein folding and post-translational 

modification (29). CFTR expressed constitutively in BHK cells retains chloride channel 

function (57), however, the cells produce only modest amounts of CFTR. In this study, we 

approached surmounting this obstacle by describing a linearly integrated strategy for 

modification of the protein and for evaluating its function and biogenesis in mammalian 
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cells, as well as enabling production and isolation of mature, biologically active human 

CFTR in preparative amounts.

The TRE-SUMO*-CFTRFLAG-EGFP-IRES-Puro expression strategy (Fig. 1A) comprises 

several important features that facilitate consistent production of high-quality recombinant 

human CFTR protein in mammalian cells. Expression of CFTR is tightly regulated using the 

Tet-On system (60). The HEK293.M2 (D017) cells used in this study express an enhanced 

rtTA that is stable in eukaryotic cells, exerts minimal basal expression from the TRE 

promoter, and is capable of inducing high-level transactivation of gene expression upon dox 

binding (61). We have found the inducible expression approach circumvents transcriptional 

silencing of CFTR observed in HEK293 cell cultures when expression was driven 

constitutively by the CMV promoter (unpublished results). With dox-controlled expression, 

CFTR-transduced HEK293 cells grow more rapidly and reach higher densities prior to 

induction compared to constitutively expressing HEK293 cells. The inducible expression 

strategy also facilitates the generation and procurement of characterized master-stock 

recombinant cell lines with stable genetic and biological properties. Thus, the strategy of 

controlled CFTR expression is vital for optimal maintenance and expansion of “quiescent” 

cells, as well as for maximizing CFTR production on a per-cell basis in response to dox. 

Indeed, in the case of SUMO*-CFTRFLAG-EGFP, mass-spectrometric analysis indicated 

CFTR expression levels in the mg per 109 cell range, approximately 1/10th of which was 

cell-surface localized even when overexpressed to these high levels. This expression system 

will, therefore, enable large-scale suspension cell cultures to be grown and induced under 

carefully optimized and standardized conditions to produce sufficient quantities of CFTR for 

biophysical studies.

Recording single-channel activity provides an informative measure of CFTR function, and is 

traditionally used to evaluate function of recombinant CFTR proteins expressed in various 

cell lines (56, 57). In this study, we identified combinations of heterologous tags/domains 

that add utility without seriously altering CFTR gating parameters or single-channel 

conductance (Fig. 4). The C-terminal EGFP and N-terminal SUMO* fusions were both 

functionally silent, while the extracellular loop FLAG insertion caused a slight decrease in 

single channel conductance, whether alone or in the CFTR construct containing all three 

tags, SUMO*-CFTRFLAG-EGFP. Nevertheless, the differences in the gating kinetics and 

single-channel conductance found between the unmodified and tagged CFTR variants were 

not dramatic, suggesting they have the same folded state.

Recombinant SUMO fusion proteins exhibit enhanced expression, decreased susceptibility 

to proteolytic degradation, and improved folding in E. coli and yeast (36, 37). For CFTR 

fusion, we utilized the SUMO* variant containing R64T and R71E mutations to prevent its 

cleavage by eukaryotic proteases (39). Analysis of the N-terminus of the fusion proteins by 

immunoblotting with anti-RGSHis4 mAb suggested that SUMO*-CFTR fusions were intact 

in HEK cells (Fig. 2). The presence of this domain proved advantageous for CFTR 

biogenesis in our system, since the comparative expression analysis indicated a 1.5- to 2-

fold increase in surface levels of SUMO*-CFTRFLAG-EGFP compared to CFTRFLAG-EGFP 

(Fig. 3B). If necessary for downstream applications, the SUMO* tag is removable with the 

highly specific SUMO* protease (36).
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Cell-surface localization of CFTR is important due to multiple quality control checkpoints 

preclude improperly folded CFTR from reaching this compartment (6). However, since 

extracellular loops of CFTR are relatively small and poorly exposed, high-avidity antibody 

probes to extracellular regions of the protein are not available for use in cell-surface 

compartmentalization analyses (33). Positioning a FLAG epitope tag in the fourth 

extracellular loop of CFTR enabled sensitive and specific analysis of CFTR cell-surface 

compartmentalization and augmented the derivation of high-producer cell lines. Insertion of 

FLAG at this site disrupts one of two N-glycosylation sites located in this loop, and band 

patterns in the immunoblot analysis (Fig. 2) were consistent with hemiglycosylation of 

FLAG-tagged CFTR variants. Previous studies indicated that this tag placement did not 

compromise plasma membrane compartmentalization of CFTR or channel function (33, 34). 

We confirmed that FLAG-tagged variants, including those with a SUMO* N-terminal 

fusion, traffic successfully to the cell-surface and channel function was essentially intact 

with only a small decrease in conductance. Cell-surface FLAG/CFTR was quantifiable by 

flow cytometry, and this signal correlated strongly with cell-surface CFTR measurements 

made by mass spectrometric analysis of surface-biotinylated CFTR (Fig. 6C). We also used 

FACS to specifically isolate the highest surface FLAG/CFTR-expressing cells from the 

transduced population. We found this to be a specific and efficient means to derive clonal 

cultures (such as D165) with favorable expression characteristics from among a diverse 

population, and we have recently extended the approach to facilitate studies of cell lines 

expressing CFTR orthologs (unpublished).

The C-terminal fusion of EGFP is especially useful for both real-time monitoring of CFTR 

expression in live cultures and rapid evaluation of subcellular distribution by fluorescence 

microscopy. Flow cytometry of GFP fluorescence may be used for quantitation and 

facilitates cell sorting to isolate highly expressing subpopulations and derivation of clonal 

cell lines. Downstream, EGFP proved invaluable for CFTR quantitation both in crude cell 

lysates and successive protein purification steps. Using quantitative in-gel fluorescence 

methods, our results show that microsomal membranes contained 1.4 mg of SUMO*-

CFTRFLAG-EGFP per 109 D165 suspension cells (Table 2). From this starting material, 

using standard methods of detergent solubilization and affinity purification, we recovered 

180 μg CFTR per 109 cells at ~80% purity. Moreover, FSEC demonstrated that purified 

SUMO*-CFTRFLAG-EGFP was monodisperse (Fig. 8). These and recently published results 

(59) indicate that SUMO*-CFTRFLAG-EGFP can be readily isolated and purified in relative 

abundance, suggesting the mammalian cell culture system described here can provide a rich 

source of quality CFTR for biophysical investigations.

Our findings describe the development and validation of a robust mammalian cell 

expression system that facilitates reproducible and standardized large scale production of 

exogenous, biologically active cell-surface human CFTR protein. Importantly, the molecular 

expression strategy we used is vertically integrated to enhance efficiency and augment 

identification and derivation of stable high-producer cells, improve reproducibility and 

standardization of lot production, and facilitate analytical assessment at multiple steps from 

surface expression and cell isolation to monitoring of SUMO*-CFTRFLAG-EGFP 

solubilization and purification. With this expression platform in place, we anticipate that 
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future studies with stabilizing mutations and CFTR orthologs will inform research efforts to 

stabilize the CFTR protein, as a prerequisite for the solution of its structure.
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Figure 1. Vectors used to generate stably transduced HEK293 cell lines expressing recombinant 
CFTR
Illustration of expression cassettes comprising wild-type CFTR (CFTR), CFTR containing 

the FLAG epitope tag in the fourth extracellular loop (CFTRFLAG), CFTRFLAG fused in-

frame with EGFP (CFTRFLAG-EGFP), RGSHis10-SUMO*-tagged CFTRFLAG-EGFP 

(SUMO*-CFTRFLAG-EGFP), and RGSHis10-SUMO*-tagged CFTR-EGFP (SUMO*-

CFTR-EGFP). EGFP encodes the A206K mutation to minimize self-dimerization (25). Each 

of the illustrated expression cassettes represents a genetic sequence inserted into a lentiviral 

vector for delivery and stable integration into HEK293.M2 cells. These vectors contain a 

TRE promoter followed by CFTR sequence, IRES, and either the puromycin resistance gene 

or a puromycin-T2A-EGFP open reading frame. T2A, a member of the 2A peptide family, 

comprises a 19 amino acid sequence that causes a co-translational separation in the synthesis 

of the puromycin and EGFP polypeptides (30-32).
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Figure 2. Western blot analysis of recombinant CFTR expression
Puromycin resistant and dox-induced monolayer cultures of transduced HEK293.M2 cells 

were lysed in Laemmli sample buffer, adjusted to 5 × 104 cell equivalents per 10 μl, and 

analyzed by immunoblotting with either anti-CFTR mAb R1104 or anti-RGSHis4 mAb. 

Arrowheads mark complex-glycosylated (band C ▶) and core-glycosylated (band B ) forms 

of CFTR. In FLAG-tagged proteins, one of the two sites for N-glycosylation was disrupted. 

By densitometry, about 68% and 33 ± 10% (n=10) of the SUMO*-CFTRFLAG-EGFP 

protein was found in bands C and B, respectively. Molecular-weight markers are shown on 

the left in kDa. Calculated masses of the SUMO*-CFTRFLAG-EGFP, CFTRFLAG-EGFP and 

CFTR polypeptides are 212, 197, and 168 kDa, respectively. The 65 kDa band recognized 

by CFTR-specific antibody R1104 was not observed with RGS-His antibody or by in-gel 

EGFP fluorescence, and could represent a CFTR fragment or nonspecific cross-reactive 

protein. The results shown are representative of two independent analyses.
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Figure 3. Analysis of recombinant CFTR expression by flow cytometry
(A) Cells were treated with 1 μg/ml of dox for 24 hrs and then live-stained for surface 

FLAG/CFTR expression using SureLight anti-FLAG mAb. The distribution of fluorescence 
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intensity of EGFP and FLAG staining is shown for each of the cell populations analyzed: 

HEK293.M2 (control), SUMO*-CFTRFLAG-EGFP, CFTRFLAG-EGFP, CFTRFLAG and 

D165. D165 is a clonal derivative of the D158 cell line expressing SUMO*-CFTRFLAG-

EGFP. HEK293.M2 cells that do not express CFTR were included as a negative control. (B) 

The indicated cultures were immunostained for cell-surface FLAG epitope 24, 48 or 72 hrs 

after dox induction and analyzed by flow cytometry as in (A). LinearFlow® Fluorescently 

labeled polystyrene beads (Molecular Probes) were analyzed in parallel to control for 

possible inter-assay variation of the flow cytometer. MFI values for each cell population 

were calculated from two independent experiments.
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Figure 4. CFTR channel analysis
Single-channel currents detected in microsomal membranes isolated from BHK cells 

constitutively expressing wild-type CFTR (top panel) and HEK293.M2 cells expressing 

either wild-type (second panel), or recombinant forms of CFTR (lower three panels), are 

shown in the middle section of each panel. All-points histograms used to define single-

channel current as the distance between peaks on the graph and calculate single-channel 

conductance (γ) are shown on the left of each panel. Values for probability of the open state 

(Po) were calculated as the ratio of the area under the peak for the open state to the total area 

under both peaks on the all-points histogram. Dwell-time histograms for the mean open (τo) 

and closed (τc) times are shown on the right of each panel. The validity of the reduced two 
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states kinetic model C ⇌ O is evident from the single exponential fit shown in each dwell 

time histogram.
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Figure 5. Immunofluorescence microscopy analysis of SUMO*-CFTRFLAG-EGFP cell-surface 
expression
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(A) SUMO*-CFTRFLAG-EGFP cells were treated with dox (1 μg/ml) for 24 hrs, and then 

live-stained for extracellular FLAG. FLAG immunostaining was analyzed by confocal laser-

scanning microscopy. A z-stack of 0.45 micron optical sections was captured, and the 

composite image is illustrated in red with DAPI-stained cell (blue) nuclei. (B-D) For 

analysis of protein colocalization, expression of SUMO*-CFTRFLAG-EGFP (B, D) and 

SUMO*-CFTR-EGFP (C) was dox-induced (1 μg/ml) for 24 hrs and examined by wide-

field fluorescence microscopy using a Nikon Eclipse TE2000-s inverted microscope. Either 

live/intact (B and C) or fixed and permeabilized (D) cells were immunostained to detect the 

FLAG epitope. Images of EGFP (green) and FLAG-stain fluorescence (red) are depicted. A 

composite of the two fluorescent images (merged) is shown in column 3. DAPI-stained cell 

nuclei are shown in blue.
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Figure 6. Quantitative mass spectrometry analysis of cell-surface SUMO*-CFTRFLAG-EGFP
Replicate SUMO*-CFTRFLAG-EGFP cultures (D165 cells) comprising approximately 107 

cells were treated for 24 hrs with dox concentrations ranging from 0.0007 to 0.5 μg/ml. (A) 

Relative surface expression levels of SUMO*-CFTRFLAG-EGFP were determined using 

flow cytometry to analyze fluorescence from intact/live cells immunostained with SureLight 

anti-FLAG M2 mAb. The mean fluorescence intensities (MFI) of stained cell populations 

were plotted for each dox-treatment concentration. (B) In parallel replicate cultures, mass 

measurements of surface biotinylated (SB) SUMO*-CFTRFLAG-EGFP were determined by 

quantitative mass spectrometry. The background value, determined by analyzing HEK293 

cells, is demarked on the plot by the horizontal dotted line. Results are expressed as μg of 

SB CFTR per 109 cells. (C) Correlation between mass spectrometry (SB CFTR, μg/109 

cells) and flow cytometry (MFI) measurements of surface CFTR. The linear regression 

coefficient, r2, = 0.961.
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Figure 7. Facile detergent solubilization and affinity purification of SUMO*-CFTRFLAG-EGFP
Microsomes isolated from D165 suspension-culture cells were solubilized with DDM and 

the extract was bound to NiNTA. After washing, SUMO*-CFTRFLAG-EGFP was eluted 

with imidazole. (A) Samples of microsomes (8 μg), DDM extract (8 μg), and NiNTA 

purified (~80%) CFTR (32 μl, 4 μl) were resolved on an 8% SDS-PAGE gel; a fluorescent 

image of the gel is shown. Known amounts of SUMO-EGFP fusion protein were loaded on 

the gel to generate a standard curve (inset), allowing quantitation of fluorescent CFTR 

bands. (B) A section of the same gel shown in (A) stained with Coomassie blue. Masses of 

molecular weight markers, in kDa, are shown on the right.

Hildebrandt et al. Page 26

Mol Biotechnol. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. Monodispersity of affinity-purified SUMO*-CFTRFLAG-EGFP
Protein eluted from NiNTA (25 μl containing 1.7 μg CFTR) was analyzed by FSEC on a 2.4 

ml column. The peak of SUMO*-CFTRFLAG-EGFP (212 kDa) was eluted at 1.62 ml, near 

that of the monomeric P-glycoprotein-EGFP fusion protein (172 kDa), at 1.73 ml that is 

routinely used as a standard with FSEC assays. The arrow indicates the column void volume 

at 1.05 ml.
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Table 1

Mass spectrometry transitions

Peptide Sequence Type of transition Transition

Native CFTR01 NSILTETLHR [M+2H]2+→y7 592.3→869.5

SILAC CFTR01 NSI-[1,2-13C-L]-TET-[1,2-13C-L]-HR [M+2H]2+→y7 594.8→873.5

Native CFTR02 LSLVDSEQGEAILPR [M+2H]2+→y12 862.5→1311.7

SILAC CFTR02 [1,2-13C-L]S[1,2-13C-L]VDSEQGEAI[1,2-13C-L]PR [M+2H]2+→y12 865.5→1313.7

Native CFTR04 NSILNPINSIR [M+2H]2+→y8 620.8→926.5

SILAC CFTR04 NSI[1,2-13C-L]NPINSIR [M+2H]2+→y8 621.9→928.5

SILAC: stable isotope labeling in cell culture
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Table 2

Quantitative analyses of SUMO*-CFTRFLAG-EGFP expression

μg CFTR per 109 cells Quantitation method

Total cellular CFTR 3581 ± 674 (n=3) mass spectrometry

CFTR at the cell-surface 363 ± 31 (n=3) mass spectrometry

Microsomes 1365 ± 485 (n=9) EGFP fluorescence

DDM extract
1 905 ± 220 (n=8) EGFP fluorescence

Affinity purified CFTR
1 178 ± 56 (n=10) EGFP fluorescence

1
CFTR was extracted and purified from microsomal fractions as in Figure 7. Values are means standard deviation for n replicate experiments.
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