
Role of Salivary and Candidal Proteins in Denture Stomatitis; an
exploratory proteomic analysis

Warren C. Byrd1, Sarah Schwartz-Baxter2, Jim Carlson2, Silvana Barros3, Steven
Offenbacher3, and Sompop Bencharit1,*

1Department of Prosthodontics, School of Dentistry, Department of Pharmacology, School of
Medicine, University of North Carolina, Chapel Hill, NC 27599, USA

2David H. Murdock Research Institute, North Carolina Research Campus, Kannapolis, NC 28081,
USA

3Department of Periodontology, School of Dentistry, University of North Carolina, Chapel Hill, NC
27599, USA

Abstract

Denture stomatitis, inflammation and redness beneath a denture, affects nearly half of all denture

wearers. Candida organism, the presence of a denture, saliva, and host immunity are the key

etiological factors for the condition. The role of salivary proteins in denture stomatitis is not clear.

In this study 30 edentulous subjects wearing a maxillary complete denture were recruited.

Unstimulated whole saliva from each subject was collected and pooled into two groups (n=15

each); healthy and stomatitis (Newton classification II and III). Label-free multidimensional liquid

chromatography/tandem mass spectrometry (2D-LC-MS/MS) proteomics on two mass

spectrometry platforms were used to determine peptide mass differences between control and

stomatitis groups. Cluster analysis and principal component analysis were used to determine

differential expression among the groups. The two proteomic platforms identified 97 and 176

proteins (ANOVA; p<0.01) differentially expressed among the healthy, type 2 and 3 stomatitis

groups. Three proteins including carbonic anhydrase 6, cystatin C, and cystatin SN were found to

be the same as previous study. Salivary proteomic profiles of patients with denture stomatitis were

found to be uniquely different from controls. Analysis of protein components suggests that certain

salivary proteins may predispose some patients to denture stomatitis while others are believed to

be involved in the reaction to fungal infection. Analysis of candidal proteins suggest that multiple

species of candidal organisms play a role in denture stomatitis.
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Introduction

Denture stomatitis (DS) refers to an inflammatory condition of the mucosal tissue

underneath the denture. This condition occurs in about 1/2 to 1/3 of patients wearing a

maxillary denture 1. DS is classified clinically into three types, type 1 (DS I), type 2 (DS II)

and type 3 (DS III), referring to clinical localized mild, localized moderate, and generalized

tissue inflammation 2. The main etiological factors are dentures, candidal organisms, and

host responses 3, 4. In healthy, non-immunocompromised, non-xerostomic, edentulous

denture wearing population, we have previously shown that the severity and presence of DS

is related to the quantity of Candida albicans present in dentures as well as the quantity of

the organism in saliva. We also found that there is no correlation between the presence of

the organism in the biopsy tissue and the presence or severity of DS 5. This suggests that the

denture acts as a “hiding place” for the organism, while saliva acts as a media to transfer the

organism in contact with the mucosal tissue. Surprisingly, the DS tissue most often has no

sign of C. albicans. While the immune system may have eliminated the organism in the

tissue, it creates perhaps an inflammatory reaction toward the organism leaking out from the

denture and into the saliva. It has been a common belief that C. albicans is the main player

in DS development. We, and others, found that there are non-albicans organisms present in

DS 6–8. However, it is not entirely clear if these non-albicans candidal species play any role

in the saliva of DS patients 8.

This has lead to our idea that 1) host factors may play a role in the development of DS both

in the tissue level and in the saliva level, and 2) there may be some interaction among

different candidal species and the host. Proteins found in saliva have been shown to play a

role as biomarkers and antifungal proteins in the presence of oral candidiasis 5, 9–11. In our

previous studies, we focused on examining host proteins and compared the proteomic

profiling of edentulous patients with and without DS using surface enhanced laser

desorption/ionization time-of-flight mass spectrometry (SELDI-TOF/MS) and further

identified DS-associated salivary proteins using Matrix-assisted laser desorption/ionization

mass spectrometry (MALDI-TOF/MS) and Liquid Chromatography - Mass Spectrometry/

Liquid Chromatography - Tandem Mass Spectrometry (LC-MS/MS) based on SELDI-

TOF/MS profiling 6. SELDI-TOF/MS identified 61 peptide masses differentially expressed

between non-DS, DS II and DS III. Only 13 peptide masses are downregulated in DS

compared to non-DS controls 6. In this study, we used label-free quantitative mass

spectrometry-based proteomic analyses to further examine the salivary proteomic profiles of

DSII and III to controls. Two independent proteomic platforms, Thermo LTQ Orbitrap and

Waters Synapt mass spectrometry systems, were used to determine peptide mass differences

between the controls and stomatitis samples. The objective of this study is to further

examine human salivary proteins that may have been missed from the previous study as well

as to characterize proteins associated with DS from candidal organisms.

Materials and Methods

Study population and sample collections

The study protocol was approved by the Office of Human Research Ethics, the University of

North Carolina Institutional Review Board (IRB), No. 07-2014. Thirty edentulous patients
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wearing a maxillary denture were recruited, 15 healthy controls, and 15 denture stomatitis

(DS); 8 DS II and 7 DS III. A written informed consent for saliva sample collection, storage,

and analysis was obtained from all participants. The clinical diagnosis of DS was

complemented by histological assessments (biopsy and swabs of the lesion), and by culture

(tissue, denture, and saliva). Subjects with chronic disease with oral manifestations other

than denture/mucosal stomatitis or that have overt denture abrasion associated with

symptoms, were excluded. The subject demographics are shown in Supplementary Table 3.

Approximately 4 ml of unstimulated whole saliva sample was collected in a 15 ml Falcon

tube. The tube was then centrifuged to remove food and tissue debris. The supernatant was

placed into aliquots of 250 ml and immediately frozen in liquid nitrogen to avoid enzymatic

and bacterial degradation of the protein content.

Sample Preparation

Pooled aliquots for the control, DS II and DS III materials were analyzed using a Bradford

assay to determine the concentration of protein present using a Thermo Scientific Micro

BCA Protein Assay kit. The samples were diluted to fall within the linear working range of

the kit (5–200μg/mL) and the concentrations calculated based on absorbance values

compared to a BSA standard curve. A volume of each sample corresponding to 35μg of

protein (based on the protein quantitation results) was used. The sample volumes were

normalized by adding 50mM ammonium bicarbonate (AmBic) to a volume of 29.8μL. A 1%

solution of Rapigest (Waters Corporation, Milford, MA) was added to each sample to

denature the proteins. The solution was placed in a shaking heated mixer at 40°C for 10

minutes. A total of 200mM dithiothreitol (DTT) was added to each sample and the tubes

were heated to 80°C for 15 minutes to reduce the disulfide bonds. The free sulfur atoms

were then alkylated by adding 400 mM Iodoacetamide (IA) and placing the tubes in the dark

for 30 minutes at room temperature. A tryptic digest was performed by adding 0.7μg of

Trypsin Gold-Mass Spectrometry grade (Promega, Madison, WI) and incubating the

samples at 37°C overnight. Alcohol dehydrogenase (ADH, Waters) digest from yeast was

added to a final concentration of 50fmol/μg protein. The trypsin reaction was stopped and

Rapigest degraded with the addition of 10% TFA/20% acetonitrile/70% water followed by

heating the sample at 60°C for 2 hours. The samples were centrifuged and the supernatant

pipetted into autosampler vials.

Differential Protein Expression LC/MS/MS Analysis

The samples were pooled and analyzed using a simultaneous label-free differential protein

expression approach, and analyzed on two independent instruments, a Thermo LTQ Orbitrap

and Waters Synapt mass spectrometry systems. The Waters Synapt mass spectrometry

system was coupled to a Waters nanoACQUITY UPLC system. The saliva samples were

analyzed in triplicate, except for the DS II samples analyzed on the Waters Synapt which

were analyzed in duplicate (a single replicate run failed). MS data was processed using

Rosetta Elucidator (Rosetta Biosoftware). Protein database searching and identification was

completed using Mascot, SwissProt human and Candida databases.
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Data Analysis and Differential Protein Determination

Collected proteomics data was evaluated using ANOVA (a cutoff value, p≤0.01) to

determine differentially expressed protein biomarkers among three sample groups; healthy

(control), DS II and DS III. Principal component analysis (PCA) and cluster analysis were

performed only for those differentially expressed biomarkers.

Results

A label-free differential expression LC/MS/MS method was used to quantitatively compare

the protein expression between a processed, pooled aliquot for each of the control, DS II and

DS III. We chose to do a pooled sample analysis because of the following two reasons

similar to what was proposed by Heffernan et al12. First, the pooled sample analysis

provides us an average global view and the major trend of the differences between control

and DS subjects. Second, with our limited budget, pooled sample analysis is the most cost-

effective way to measure the effects of denture stomatitis on salivary proteomes. The

samples were analyzed on two different LC/MS systems. We chose to present our proteomic

data based on two separate LC/MS systems because of the following three reasons. First, we

recognize that different MS proteomic systems can give out different biomarkers. We

therefore used two different systems to see if the results can be confirmed. While expression

of strong biomakers will have the same trend in both systems, low abundant proteins may be

seen in one system better than another. Second, we want to demonstrate the results as

LC/MS system specific so that other investigators in the future can replicate our methods

and perhaps validate our results. Third, since there are clear differences especially in the

PCA results, we believe that we would gain little information from combined analysis.

Analytical results from both systems were separately processed using the Rosetta Elucidator

software, and, when applicable, mass signals were annotated with the corresponding peptide

and protein information based on the database search results using a 1% false discovery rate

cutoff. Data processing of the Thermo Orbi data resulted in identification of 51, 474 features

(mass signals). Of these, 3,174 were annotated with peptide information that corresponded

to the identification of 814 peptides corresponding to 371 proteins. Of the detected isotope

groups (identified and unidentified peptides), 42% had a coefficient of variance < 25. Data

processing of the Waters Synapt data resulted in identification of 102,196 features (mass

signals). Of these, 6,252 were annotated with peptide information that corresponded to the

identification of 1435 peptides corresponding to 202 proteins. Of the detected isotope groups

(identified and unidentified peptides), 25% had a coefficient of variance < 25%. ANOVA

was used to determine mass patterns that correlated with the control, DS II and DS III

samples. Signals with a p value < 0.01 were selected as tentative markers and summarized

by protein. Principle component analysis (PCA) plots demonstrating replicate

reproducibility and sample differences based on detected differentially expressed protein for

the two MS systems are presented in Figures 1. Cluster heat maps based on these protein

expression patterns. While we used ANOVA to define differentially express proteins, cluster

analysis allows us to address the degree of differentiation in each protein and the PCA

demonstrates the overall differentiation of each group in relation to other groups when

combined all differentially expressed proteins together. A summary table of the

corresponding tentative differentially expressed signals are presented in Figure 1, and
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Supplementary Tables 4 and 5 (176 proteins for the Thermo Orbi data and 97 proteins for

the Waters Synapt data). Data assessment determined mass signals with differential

expression between the healthy and DS samples using ANOVA (p<0.01). Roughly 6% of

the detected mass signals in these differential expression studies were identified in a

database search. These biomarkers include proteins from salivary glands, serum, and

mucosal tissues. Cluster analysis and PCA demonstrate that each mass spectrometry system

combination of salivary protein biomarkers can be used to distinguish control, DS II and DS

III individuals. Proteins were detected as differentially expressed between the two LC/MS

systems. Human salivary proteins and candidal proteins found in each system were

described (Supplementary Tables 1 & 2). Note that of previously identified SELDI

biomarkers, three of these (CAH6, CYTC and CYTN) were also found in the expression

analysis as differentially expressed candidate biomarkers. In addition, several

immunoglobulin (IG) regions were also detected, supporting the assessment that some of the

SELDI biomarkers may be IG variable regions.

Discussion

In our previous study using SELDI-TOF analysis to investigate proteomic profiles of

denture stomatitis, we identified several proteins that were upregulated in DS patients 6. The

proteins observed in the study were different than those that had previously been identified

in other studies associated with other forms of oral candidasis 13–15. Using the Thermo LTQ

Orbitrap and Waters Synapt analyses, we have identified three of the same proteins that

exhibited upregulation in the previous SELDI-TOF study--CAH6, CYTC, and CYTN.

Several Ig fragments similar to previous study are also found in this study. Note that the

different results, from the two MS platforms, are not unexpected as the compared systems

use different methods for molecule ionization and detection, a situation that has been well

documented in many comparative proteomic studies 16, 17. The redundant proteins have

higher expression among DS II and III. However, CAH6 shows higher expression in the

healthy group in both Waters and Thermo systems, although Thermo LTQ analysis shows

elevated expression in DS III as well. Note that lower expression of CAH6 (Carbonic

anhydrase 6) has been associated with higher risks of caries and periodontitis--outcomes that

favor bacterial growth. CAH6 is also one of the more common markers found in saliva--

therefore, it may be nonspecific to DS 18. The gene ontology of cystatin C (CYTC) is

extensive and its involvement in disease has been well documented 19–23. The role of CYTC

in defense response has been inferred from direct assay. Inflammation and the presence of

candida that are associated with DS are possible etiological factors of defense response.

Among the Immunoglobulin regions detected, there was more agreement between the two

LC/MS systems with DS III. Previously, we found that Ig regions were more elevated in DS

II 6. It is probable that the large presence of Ig’s among DS subjects, reflects a B-cell

mediated immune response to inflammation in the palatal mucosa. This suggests that anti-

inflammatory medications should play a role in the overall treatment of DS if traditional

treatment methods such as candida elimination and correcting denture fit prove

unresponsive. Other differentially expressed proteins that we found as upregulated among

DS groups expectedly show some interaction relating to inflammation and immune response

(Supplementary Table 1). For instance, complement C3 was identified as unregulated in
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both DS II and DS III sample groups. It interacts with Integrin alpha-M/beta 2, which is

implicated in adhesion of macrophages, monocytes, and is a receptor for fibrinogen, the

precursor for blot clot formation 24. One of the recognition systems of candida-host cell

recognition has been described as involving the CR2/CR3 complement receptor of C.

albicans 25–27. The mechanism for opsonization of C. albicans involves the covalent

binding of complement C3. Through the alternative pathway, C5 activates a phagocytic and

pro-inflammatory cytokine response to the yeast species 28. However, C. albicans may also

exhibit receptor mimicry whereby the yeast non-covalently binds to the complement C3,

which inhibits the ability of C3 to opsonize the candida 29. Non-specific glucose binding to

lysine residues (glycation) at the active site of complement C3 would inhibit its function as

an opsonizing agent and reduce immune response to yeast species 30, 31. Therefore, groups

exhibiting uncontrolled diabetes with higher levels of glycosylated protein, may be at greater

risk for candidal infection and denture stomatitis.

Several salivary proteins (Supplementary Table 1) identified also suggest that the

dysregulation of iron or iron metabolism, e.g. lactotransferrin, serotransferrin, hemopexin,

and Neutrophil gelatinase-associated lipocalin, plays a role in DS. Lactotransferrin, a

mucosal iron-binding protein, was found to be elevated in both stomatitis groups across the

two analysis systems. Lactotransferrin for example is known to have some antifungal

activity against C. albicans 32. It also exhibits bactericidal properties and can inhibit

microbial growth 33. The up-regulation of lactotransferrin among DS II and DS III groups

supports the bacterial and fungal component of denture stomatitis etiology. Inhibition of

bacterial growth is achieved though sequester of free iron, however it also may directly bind

to the cell surface of bacteria—which results in cell breakdown 34. The mechanism for its

anti fungal activity against C. albicans and other species is less clear. Iron is thought to play

a role in cell-mediated immunity 35. In the case of transferrin, iron-saturated transferrin

enhances DNA replication in PHA-stimulated lymphocytes 36, 37. Transferrin, in the absence

of iron, however, does not enhance replication. It is possible, that iron deficiency, therefore,

may predispose patients to DS, through reduced cell mediated immune response, lowered

cytotoxicity of anti fungal and antibacterial proteins such as lactotransferrin, and greater host

susceptibility to infection.

While the proteomic profiles of DS II and DS III are similar in terms of human proteins, it

appears the DS III group has a higher frequency and level of serum-originating proteins, e.g.

ceruloplasmin, hemoglobins, serotransferrin, and albumin (Table 1 and Supplementary

Table 1). This suggests higher vascular leakage and more extensive inflammation in DS III

compared to DS II and control. This finding is similar to our previous study 6. While both

DS II and DS III have high levels of immunoglobulin fragments, our results again confirmed

our previous finding that DS II seems to have higher immunoglobulin fragments. It is

interesting to note that the control group appears to have more expression of proteins

involved in innate immunity. Here we found higher level of lysozyme C and short palate,

lung and nasal epithelium carcinoma-associated protein 2 (SPLUNC2). We report a similar

trend of innate salivary proteins, e.g. short palate, lung and nasal epithelium carcinoma-

associated protein 1 (SPLUNC1), in control edentulous subjects compared to edentulous

subjects with diabetes 38. Our findings here perhaps suggest that innate immunity proteins
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may protect patients from DS. Immunogloblins presents a more acute response in DS II,

while serum proteins present a more chronic response in DS III. These proteins may in the

future be examined for potential biomarkers or diagnostic tool development. Monitoring

these proteins may also help in prevention and treatment of DS.

The LC/MS systems identified several non-human originating proteins that exhibited higher

expression levels. All of the proteins identified originated from candida organisms

(Supplementary Table 2). The most common candida source proteins found came from

Candida glabrata (8 of 20). Candida albicans was also identified. Candida albicans has

been associated with DS and has been detected at elevated expression in affected saliva 5. In

the study published in 2008 by Coco et al, the investigators sought to determine the

connection between the diversity and quantity of yeast species related to oral pathology

specifically, of denture stomatitis 8. From their denture sonicate, swab, and oral rinse

samples, 75% of the oral yeasts isolated were identified as C. albicans and 30% were C.

glabrata. The C. albicans increased in proportion as the Newton classification level

(inflammation prevalence) increased. Also, C. glabrata, while never isolated by itself, was

found with C. albicans over 80% of the time 8. The prevalence of C. glabrata associated

with C. albicans and a corresponding increase in inflammation level suggests that the yeast

species C. glabrata has some pathogenic relationship with C. albicans related to biofilm

formation and inflammation. Our study supports this hypothesis as 40% of the candidal

proteins that were identified (and found among the Stomatitis II and III groups) originated

from C. glabrata. Most of the proteins found from C. glabrata are involved in

transcriptional regulation. It has been suggested that C. glabrata and C. albicans have a

“synergistic” relationship in the pathogenesis of oral infection 39. It may be possible that

proteins from C. glabrata have some mechanism of control over expression of inflammatory

factors originating from C. albicans species. It is unclear, however, if the proteins identified

here are directly related to host inflammatory response.

C. glabrata has shown a greater tendency to adhere to denture surfaces compared to C.

albicans40. Luo and Samaranayake found that C. glabrata exhibited a four-fold greater cell

surface hydrophobicity (CSH) and two fold greater adherence to denture acrylic surfaces

when compared to C. albicans40. C. glabrata on its own may generate a lower cytokine

response in oral epithelial cells than C. albicans41 however, its lower susceptibility to anti

fungal drugs and host immune response potentiates C. glabrata as an initial colonizer of

denture surfaces. Its presence on the denture may make it easier for C. albicans, which is

more susceptible to lactotransferrin and anti-fungal drugs, to colonize. Our findings that

proteins from C. glabrata were the most prevalent of candidal proteins, support this idea of

C. glabrata’s importance in denture adhesion and colonization. DS condition is known to be

resistant to treatment and often reoccurs. Targeting both C. albicans and C. glabrata may

reduce the refractory nature of DS. Further investigation is needed into the cooperative

relationship between the two fungal species in the pathogenicity of DS.

Conclusions

While this exploratory study requires further validation with a larger population, it is a

proof-of-principle that salivary proteomics analysis can be used to examine the role of
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proteins in saliva in DS development. The results suggest the presence of salivary

biomarkers specific for candidiasis in denture wearers who are in good general health. This

may provide insight into the role of dentures and salivary proteins in DS development in

particular innate immunity and specific immunity proteins as well as proteins involved in

iron metabolism. Understanding the complex role of salivary proteins may lead to novel

diagnostic and therapeutic tools not only for DS patients, but also for other patients prone to

oral candidiasis. Our results further suggest that while C. albicans is the main species in DS,

there are other candidal species that may play a symbiotic role in initial colonization, biofilm

formation and DS development with C. albicans.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Proteomic analysis for Denture Stomatitis
(A) PCA analysis using WaterSynapt System; (B) Cluster analysis using WaterSynapt

System; (C) PCA analysis using ThermOrbitrap System; and (D) Cluster Analysis

usingThermOrbitrap System.
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Figure 2.
Proposed model of DS development demonstrating the interaction between host and candida

organisms through proteins found in saliva.
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Table 1
Selected differentially expressed proteins

List of selected host proteins that were differentially expressed that may be related to denture stomatitis.

Selected upregulated proteins differentially expressed among groups

Healthy Carbonic anhydrase 6*

Beta-2-microglobulin
Homeobox protein DBX2
Lysozyme C
Short palate, lung and nasal epithelium carcinoma-associated protein 2

Stomatitis II Kallikrein-1
Neutrophil gelatinase-associated lipocalin
Submaxillary gland androgen-regulated protein 3B
Thioredoxin

Stomatitis III Ceruloplasmin
Cystatin-B
Hemoglobin subunit delta
Keratin, type II cuticular Hb3
Serotransferrin
Serum albumin
Uteroglobin (found in Healthy and Stomatitis III)

Stomatitis II and III Alpha-2-macroglobulin
Complement C3
Cystatin-SN*

Haptoglobin
Hemopexin
Lactotransferrin
Prolactin-inducible protein
Cystatin-D
Hemoglobin subunit beta
Hemoglobin subunit alpha
Cystatin-C*

*
Selected protein identified in previous work
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