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Abstract

Effective monitoring of glucose levels is necessary for patients to achieve greater control over

their diabetes. However, only about a quarter of subjects with diabetes who requires close serum
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glucose monitoring, regularly check their serum glucose daily. One of the potential barriers to

patient compliance is the blood sampling requirement. Saliva and its protein contents can be

altered in subjects with diabetes, possibly due to changes in glycemic control. We propose here

that salivary proteomes of subjects with diabetes may be different based on their glycemic control

as reflected in A1C levels. A total of 153 subjects with type 1 or 2 diabetes were recruited.

Subjects in each type of diabetes were divided into 5 groups based on their A1C levels; <7, 7–8,

8–9, 9–10, >10. To examine the global proteomic changes associated with A1C, the proteomic

profiling of pooled saliva samples from each group was created using label-free quantitative

proteomics. Similar proteomic analysis for individual subjects (N=4, for each group) were then

applied to examine proteins that may be less abundant in pooled samples. Principle component

analysis (PCA) and cluster analysis (p<0.01 and p<0.001) were used to define the proteomic

differences. We, therefore, defined the salivary proteomic changes associated with A1C changes.

This study demonstrates that differences exist between salivary proteomic profiles in subjects with

diabetes based on the A1C levels.
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Introduction

Diabetes affects approximately 346 million people worldwide and over 25.8 million people

in the US [http://www.cdc.gov/diabetes/pubs/estimates11.htm] [http://www.who.int/

mediacentre/factsheets/fs312/en/]. Type 2 diabetes (T2DM) is a major public health problem

that accounts for nearly 90% of all those diagnosed with diabetes and is often associated

with obesity and insulin resistance condition. Type 1 diabetes (T1DM) affects a relatively

smaller number of patients and is often associated with autoimmune destruction of insulin

producing beta cells in the pancreas. The potential cures for T1DM, including beta-cell

transplantation/replacement therapy, are still in the experimental stages. Sustainable and

reliable methods of monitoring glycemic conditions are necessary in managing both T2DM

and T1DM1–7. Clinically, Fasting Plasma Glucose (FPG), Oral Glucose Tolerance Test

(OGTT), and hemoglobin A1C (A1C) are used to determine the patient’s overall glycemic

control. FPG and OGTT reflect the glycemic control at a single point in time. FPG usage is

constrained by difficulties arising from the need for fasting. OGTT requires a large

consumption of glucose. While FPG is still used widely, the American Diabetes Association

recommended against using the OGTT, because of its cumbersome technique and low

reproducibility8. A1C is a non-enzymatically glycosylated or glycated form of hemoglobin

through Amadori reaction of a lysine residue and a glucose molecule. The A1C value

corresponds to an average value of plasma glucose over a 120-day time period of circulation

survival time of erythrocytes9–14. A1C is, therefore, clinically, a more reliable method in

giving an overall long-term picture of glycemic control than FPG and OGTT—which only

allow one point measurement of plasma glucose14. In addition to clinical measurement of

plasma glucose, patients with diabetes, especially T1DM, require daily monitoring of

plasma glucose using either Home Self-Monitoring of Blood Glucose (SMBG) or

Continuous Monitoring of Blood Glucose (CMBG)15. Patients with T1DM monitor their
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own plasma glucose using SMBG on a regular basis 3–5 times a day16. SMBG if properly

used can be effective in the management of T1DM-related hyperglycemia; however, SMBG

can be expensive without health insurance and is often not used due to poor patient

adherence. It was estimated that only about a quarter of patients that need to monitor their

plasma glucose, in particular young children and teenagers with T1DM, monitor their serum

glucose every day17–19. Similar problems in monitoring serum glucose are also found in

elderly patients with T2DM19. CMBG is a subcutaneous sensor constantly measuring

plasma glucose. Cost, inconvenience, and surgical requirement are among the main

drawbacks of CMBG9–14. Blood sampling is perhaps one of the major factors hindering the

use of SMBG and CMBG. There is a need to find more simple and non-invasive methods to

supplement the current methods and, therefore, enhance patient compliance.

Several groups, including ours, have shown that there are changes in salivary proteomes as a

result of type 1 or 2 diabetes (T1DM or T2DM). Rao et al, 2009 showed that there are

changes in salivary proteomes between controls and subjects with pre-diabetes and T2DM20.

The results from our group suggested that the differences in salivary proteomes can be found

in subjects without teeth (edentulous)21. Similar to T2DM proteomics, Cabras et al, 2010

and Hirtz et al, 2006 demonstrated that there are differences in salivary proteomes of

subjects with T1DM and controls22, 23.

It is clear that diabetic conditions, both T1DM and T2DM, affect the salivary proteome and

perhaps different degrees of the condition may also alter the salivary proteome. However,

none of these previous studies looked at the relationship between salivary proteomes and

known clinical measures, in particular A1C. In this study, we attempted to define the

salivary proteomic changes in subjects with T1DM and T2DM based on their glycemic

control reflected in the A1C value. Our goals were to determine if there are salivary

proteomic changes based on A1C and if there are similarities or differences between the

changes in A1C associated salivary proteomes between each type of diabetes.

Results

Fifty-six subjects with T1DM and ninety-seven subjects with T2DM (total of 153 subjects)

were recruited. Based on the A1C level, we divided subjects into five groups based on A1C

levels, <7, 7–8, 8–9, 9–10, and >10; these groups were referred to as A1, B1, C1, D1, E1 for

T1DM and A2, B2, C2, D2, E2 for T2DM. First, to explore the global proteomic changes

associated with A1C, pooled saliva from each group were analyzed using a label-free

quantitative proteomic approach. A label-free differential expression LC/MS/MS method

similar to our previous study was used to qualitatively compare protein expression levels

between the five sample groups from each type of diabetes analyzed in triplicate (3 pooled

samples per each group and 15 pooled samples per type of diabetes). Mass signals were

aligned and the results were processed using the Rosetta Elucidator software package,

ANOVA (p<0.05). Mass signals were annotated with the corresponding peptide and protein

information based on the database search results using a 1% false discovery rate cut off.

Data processing of the Thermo Orbitrap data resulted in detection of 148 proteins. Principle

component analysis (PCA) was performed on the collected data set to evaluate the data for

outliers and sample trends (Figure 1a). An outlier in one of the triplicates in the B1 group
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was observed and removed from further statistical analysis. An error-weighted ANOVA and

a standard ANOVA were used to determine mass patterns that correlated to the A1C levels;

low (A), medium (C) and high (E). The B and D groups were left out from the analysis to

simplify the analysis in the biomarker exploration and to enhance the possible differences in

biomarker expression. Signals with a p<0.05 for the error-weighted ANOVA were selected

as tentative biomarkers and summarized by protein. After selection of the biomarkers, we

utilized cluster analysis for all five groups to compare the pattern of expression for each

biomarker (Figure 1b–d). The corresponding tentative differentially expressed proteins for

each type of diabetes are summarized in Table 1 and 2. For T1DM, based on the error-

weighted ANOVA, thirteen peptides were found differentially expressed including four

serum albumin peptides, seven immunoglobulin fragments, one cystatin-SA peptide and one

salivary acidic phosphoprotein peptide. For T2DM, based on the error-weighted ANOVA,

sixteen peptides were found differentially expressed, including three peptides of serum

albumin, eight immunoglobulin fragments, one cystatin-SA, one cystatin-SN, one protein

AHNK2, and one Mediator of RNA polymerase II transcription subunit 3. The fold

expression trends of some biomarkers compared with the lowest A1C group (A1 or A2)

were shown in Figure 2a and 2b. The expression pattern of certain proteins including serum

albumin (ALB), alpha-amylase 1 (AMY1), cystatin-SA (CYTT), and cystatin-SN (CYTN)

were shown using western blot analysis (Figure 2c).

The label-free quantitative analysis of the pooled samples allows a global view of the

prominent proteins associated with changes in A1C in each type of diabetes. However, it is

possible that the results might be different in an individual level. Without an analysis of

individual subjects, we might have missed some biomarkers with a lower level of

expression. More importantly, the results may be influenced by particular samples that may

have higher overall protein content or higher level of expression for certain proteins. We

therefore selected four samples from each group using all of the subjects in the smallest

group (E1) and four each from other groups using demographically matched subjects for

each type of diabetes. Then we utilized a label-free quantitative LC/MS/MS method and

statistical analysis similar to the one used with the pooled samples. Similarly, the data were

processed using the Rosetta Elucidator software package, error-weight ANOVA (p<0.05).

Mass signals were screened using a 1% false discovery rate cut off. In the similar fashion as

the pool sample analysis, principle component analysis (PCA) and cluster analysis were then

performed on three groups with low (A), medium (C), and high (E) A1C levels (Figure 3a–

d), and then all five groups (Figure 4a–d). Out of total 93 proteins from both types, 24 and

37 proteins are unique to T1DM and T2DM, respectively. 32 proteins are common in both

types. Out of these 32 common proteins, eight are found in the pooled sample analysis

(Table 3). In addition to the error-weight ANOVA, we also used standard ANOVA to

examine the signals at p<0.01 and p<0.001 (Table 4). Using western analysis (Figure 2c),

we also demonstrate the expression of hemopexin (HEMO) and transferrin (TRFE) in

pooled saliva samples.

Discussion

This study is perhaps the first study to look at the salivary proteomic changes of both T1DM

and T2DM based on the individual A1C level. We attempt to address the issue of patient’s
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compliance in monitoring their serum glucose. We see that saliva, with its low-level of

invasiveness and easy accessibility, can be an attractive fluid to use in monitoring glycemic

control. This may, therefore, complement current blood glucose monitoring methods and

improve patient compliance. Our proteomic analyses showed that the biomarkers can

originate from serum, the host immune system, salivary glands, and oral mucosal tissues

(Table 3). It is important to note here that several proteins have at least one biological

pathway related to diabetes. Measuring the changes of these biomarkers may allow insight

into clinical situations of individual patients and may, in the future, provide greater

personalized health care for patients. In this study, we separated the subjects into T1DM and

T2DM groups and divided them based on HbA1C levels. Note that while the NGSP

(National Glycohemoglobin Standardization Program) guidelines recommend HbA1C (and

serum glucose) as followed; 6.2–6.8 (110–130) for well controlled group, 6.9–7.3 (130–160)

for sufficiently controlled group, 7.4–8.3 for insufficiently controlled, and >8.3 (>160) for

poorly controlled group; we chose to analyze the samples here based on the availability of

the samples to explore the trend of HbA1C and salivary proteins. Our pooled and individual

saliva sample proteomic analyses provide a proof-of-principle that there is a global

proteomic change in saliva based on different A1C levels. The salivary proteomes appear to

be distinct when compared with low, medium and high A1C levels. Proteomic changes

based on A1C, as seen in PCA and cluster analysis, are stronger in T1DM than T2DM. This

is not surprising since most patients with T2DM are older and often have several other

health conditions, e.g. obesity, high blood pressure, cardiovascular disease, etc. We,

therefore, will focus our discussion on T1DM A1C associated protein biomarkers and later

give comments on the T2DM. We performed label-free quantitative proteomics of pooled

and individual samples to examine the higher abundant proteins as well as the lower

abundant proteins. The pooled sample analysis allows a global examination and naturally

averages all the confounding effects in each group. However, pooled sample analyses can

lead to missing important biomarkers with a relatively low level of expression. While there

is little trend in the expression of salivary peptides to A1C level in the analysis of pooled

samples (Figure 2a–b), it is clear that some peptides such as AHNK2 are highly expressed in

group E (compared to other groups). Note that while the proteomic analysis suggested

changes in HEMO, TRFE, CYTT or CYTN, only changes in ALB and AMY1 expression

can be definitively confirmed by Western analysis of the pooled samples (Figure 1C). The

inconsistency of proteomic analysis and antibody-based assays is common in this type of

study.

Individual sample analysis reveals several protein biomarkers, including serum albumin

(ALB), cystatin-SA (CYTT), cystatin-SN (CYTN), and alpha-amylase 1 (AMY1), similar to

the pooled sample analysis. We also saw other important biomarkers from other studies,

including hemoglobin (Hb), serotransferrin (TRFE), alpha-2-macroglobulin (A2MG),

hemopexin (HEMO), PLUNC protein, carbonic anhydrase 6 (CAH6), uteroglobulin, PIP,

cystatin-S (CYTS), and GAPDH (Table 3). Our analysis demonstrate changes in the salivary

proteomic level of important serum originating proteins including hemoglobin (Hb),

albumin (ALB), hemopexin (HEMO), haptoglobin (HPT), serotransferrin (TRFE), alpha-2-

macroglobulin (A2MG), complement C3 (CO3) and serum amyloid proteins (SAA),

associated with increased A1C in subjects with diabetes, especially T1DM (Table 3).
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Prolonged elevation of serum glucose can lead to glycation of serum proteins. The glycation

modification increases protein’s local hydrophilicity and, therefore, destabilizes the protein

by making the globular protein unfold and, therefore, prone to enzymatic degradation25, 26.

These serum proteins play a critical role in oxidative pathway and iron/heme metabolism

(see details in Table 3). Interestingly, there are also alterations in the expression of several

immunoglobulin fragments (Figure 2a–b).

Besides the serum originating proteins and immunoglobulin fragments, our proteomic

results are similar to our previous finding in edentulous T2DM21 that hyperglycemia

resulting from diabetes can alter the expression of salivary proteins including salivary

amylases (AMY-1), BPI or PLUNC family proteins, CAH6, cystatins, PIP, UTER, and

GAPDH. We previously proposed that prolonged hyperglycemia could inhibit protein

production of salivary glands through oxidative stress or disruption of enzymes/proteins

essential to salivary protein production due to glycation21. Main candidates from salivary

gland originating proteins associated with A1C changes include AMY-1, PLUNC protein,

and Cystatin-S family proteins. This suggests that salivary gland originating proteins related

to digestion, innate immunity, and protease inhibition show signs of lower expression in

relation to higher A1C level. We believe that individual subjects may have different

baselines for each salivary protein and therefore intra-subject evaluation in a longitudinal

manner is needed for future verification of identified potential HbA1C-related salivary

proteins.

Conclusion

Diabetes requires long-term or lifelong serum glucose monitoring. Use of blood samples

hinders the monitoring of glycemic control. Saliva proteins may be used to supplement

current methods to improve patient compliance. There is a potential for developing an

antibody-based tool to monitor changes in certain salivary proteins. A prospective

longitudinal study with a larger population comparing the salivary protein biomarkers with

known serum markers will be needed.

Materials & Methods

Subject recruitment and sample collection

The subject recruitment process and study protocol was approved by the Office of Human

Research Ethics, the University of North Carolina (UNC) Institutional Review Board (IRB),

No. 10-0492. All subjects were recruited from the UNC Diabetes Care Center and were

given a written informed consent for saliva sample collection, storage, and analysis for this

study. Subjects were screened to minimize oral and systemic confounding factors

(Supplementary Table 1). There were 56 T1DM and 97 T2DM. Patient population includes

77 males and 76 females, ages ranging from 19 to 79 (Supplementary Table 2 and 3). The

sample collection protocol was similar to our previous study21. Briefly, subjects were asked

to refrain from drinking, eating, and practicing any oral hygiene habits 2 hours before

sample collection. They were also asked to complete the sample collection within 30 min

between 9 am to 12 pm (before lunch time). The subject was asked to spit into 15 ml falcon

tube within 30–60 minutes to provide about 4 ml of saliva samples. The falcon tube was
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then placed in a centrifuge at 4,000 rpm at 4C for 15 minutes to remove food debris. About

750 ul of the supernatant was then aliquoted into a 1.5 ml cryotube. The tube was then fast

frozen in liquid nitrogen and placed in −80C for storage prior to analysis. The subjects were

grouped based on their levels of A1C; <7 (A), 7–8 (B), 8–9 (C), 9–10 (D) and >10 (E); and

their type of diabetes (1 or 2). For example Group A1 refers to type 1 diabetes with A1C<7.

This grouping was done arbitrarily to achieve even distribution of subjects. Samples were

analyzed two times as pooled samples and as individual samples. Pooled samples were

aliquoted from all of the samples in each group. The E1 group was the smallest group of 4

subjects. For the individual analysis, we, therefore, selected four subjects from each group.

Demographic data were used to match subjects within the same type of diabetes.

Sample preparation and Mass Spectrometry Analysis

Similar protocol described by Border et al, 201221 and Al-Tarawneh et, 201124, was used

for both pooled and individual sample analyses. The total concentration of protein in each

sample was determined using the Thermo Scientific Micro BCA Protein Assay kit. The

concentration of the sample was adjusted to the working range of 5–200 mg/ml based on

absorbance values compared to a BSA standard curve. A volume of each sample

corresponding to 35μg of protein (based on the protein quantitation results) was used. The

sample volumes were made equal by adding 50mM ammonium bicarbonate to a volume of

29.8 μL. A 1% solution of Rapigest was added to each sample to denature the proteins, and

the mixture was placed in a shaking heated mixer at 40°C for 10 minutes. Disulfide bonds

were reduced by adding 200mM dithiothreitol (DTT) to each sample and heating the tubes

to 80°C for 15 minutes. Free sulfur atoms were alkylated with 400mM iodoacetamide (IA)

by placing the tubes in the dark for 30 minutes at room temperature. A tryptic digest was

performed by adding 0.7μg Gold-Mass Spectrometry grade Trypsin to each tube and

incubating at 37°C overnight. Alcohol dehydrogenase (ADH) digest from yeast was added

to a final concentration of 50 fmol/μg protein. The trypsin reaction was stopped and the

Rapigest was degraded with the addition of 10% TFA/20% acetonitrile/70% water that was

then heated to 60°C for 2 hours. The samples were centrifuged and the supernatant pipetted

into autosampler vials. The processed samples were analyzed on a Thermo Scientific LTQ

Orbitrap XL mass spectrometry system coupled to a Waters nanoACQUITY UPLC system.

Peptides were separated on a Waters nanoACQUITY UPLC Column (1.7 μm BEH 130 C18,

75 μm × 250 mm) using a linear gradient from 5 to 60% B over 60 min and then from 60 to

95% B over 5 min where A is 99.9/0.1 water/formic acid and B is 99.9/0.1 acetonitrile/

formic acid. Mass spectra were acquired using Data Dependent scans (Nth order double

play) on the LTQ Orbitrap XL system over 90 min.

The study sequence consisted of the study sample injections bracketed by a pair of QC

injections. Data from all study samples were acquired using Data Dependent™ scans (Nth

order double play) on the LTQ Orbitrap XL. Database searches were performed in

Elucidator (Rosetta Biosoftware) using MASCOT (Matrix Sciences, London, UK).

Analytical results were also viewed in Scaffold (Proteome Software, Portland, OR). QC and

study samples were evaluated to confirm data quality. Liquid chromatography total ion

current (TIC) outputs were assessed for signal quality and changes in signal intensity.

Results were also monitored for signal trends, such as a consistent increase or decrease in
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TIC maximum values, and MASCOT search results were used to monitor the quality of the

mass spectrometry (MS) data.

Raw MS data files for the study samples, collected on the Thermo Orbitrap XL system, were

processed in Elucidator. MS data was grouped in Elucidator based on sample group (Type

and A1C level) and aligned. Sample groups are used to assist in data alignment, feature

identification, and can be utilized for QC assessment and group comparisons. Thermo

Orbitrap data files were searched using the Mascot search engine against the SwissProt

human/candida database (appended with yeast ADH, March 23, 2012 for pooled samples

and August 3, 2012 for individual samples). The aligned mass features were annotated with

these database search results using the results from the system Peptide Tellers and a

predicted error rate of 1%. MS data were summarized to the feature level, normalized, and

an error-weighted ANOVA test was performed to compare the expression results between

sample groups. Candidate differentially expressed markers were determined based on a

p<0.05. Features were summarized by peptide based on the results of the database search.

Principle component analyses and cluster analyses were performed, first for the low (A),

medium (C), and high (E) A1C groups in each type of diabetes, then for all groups with each

type of diabetes.

Western blot analysis

Pooled saliva samples from each group were used. These individual samples for western

analysis are not included in the proteomic study. Each sample was centrifuged for 15 min at

13,000 rpm at 4°C to remove debris and precipitated proteins. The total protein content in

the clear supernatant was measured using a Bradford assay with bovine serum albumin as a

standard. Supernatants in total of ~2–4 mg of protein per gel lane were subjected to SDS-

PAGE on a 4–15% gradient gel. We chose to use the same amount of volume in each lane

(rather than the same amount of total protein) to evaluate the absolute expression difference.

We used the same volume instead of the same amount of protein because of varying

availability of each protein in saliva sample. Normally, our sample has about 1–5 mg/ml of

proteins. 2 mg concentration worked well with majority of high abundant proteins, e.g.

AMY, ALB, etc. For most serum proteins except for ALB, we have to increase the total load

of proteins to 4 mg to see any bands in western analysis. The separated proteins were

transferred to nitrocellulose membrane, and the membranes were probed with serum

albumin, Cystatin SA, SN, anti-human PLUNC monoclonal mouse IgG2B antibody (R&D

Systems), anti-human salivary amylase sheep polyclonal antibody (Abcam), respectively.

Horseradish peroxidase-conjugated goat polyclonal secondary antibody to mouse IgG

(Abcam) and horseradish peroxidase-conjugated rabbit polyclonal secondary antibody to

sheep IgG (Abcam) were, respectively, used at a 1:5000 dilution to detect PLUNC and

AMY-1. Enhanced chemiluminescence (Amersham Biosciences, Inc.) was used to visualize

detected bands.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Pooled sample proteomic analysis
A. Principle component analysis (PCA) of the proteomes from pooled saliva samples

demonstrates differentially expressed peptides for each type of diabetes in each A1C group

(A–E refer to levels of A1C <7, 7–8, 8–9, 9–10 and 1 for type 1 and 2 for type 2 diabetes).
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B. Cluster analysis of type 1 diabetes demostrates differential expression of proteins based

on ANOVA (p<0.05).

C. Cluster analysis of type 2 diabetes demostrates differential expression of proteins based

on ANOVA (p<0.05).

D. Cluster analysis of both type 1 and 2 diabetes demostrates differential expression of

proteins based on ANOVA (p<0.05).
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Figure 2.
The relative levels of expression of certain proteins in pooled saliva samples showing a

comparison of the relative levels of expression of serum albumin precursor, cystatin-SA,

immunoglobulin fragments, and protein AHNK2 with the increased A1C levels (A–E). The

levels of expression were calibrated using the level of expression of the group with lowest

A1C (A1 or A2). The graphs were plotted using the log expression level of each group

divided by A1 for type 1 diabetes and A2 for type 2 diabetes.

A. Relative expression levels of selected peptide masses in type 1 diabetes

B. Relative expression levels of selected peptide masses in type 2 diabetes

C. Western blot analyses
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Figure 3. Individual sample proteomic analysis of the low (A), medium (C) and high (E) A1C
groups in each type of diabetes
A. PCA of the proteomes from individual samples with type 1 diabetes

B. Cluster anlysis of type 1 diabetes

C. PCA of the proteomes from individual samples with type 2 diabetes

D. Cluster anlysis of type 2 diabetes
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Figure 4. Individual sample proteomic analysis of five groups in each type of diabetes
A. PCA of the proteomes from individual samples with type 1 diabetes

B. Cluster anlysis of type 1 diabetes

C. PCA of the proteomes from individual samples with type 2 diabetes

D. Cluster anlysis of type 2 diabetes
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Table 3

Selected Salivary Proteins Associated with A1C Changes in Individual Sample Analysis

Serum originating proteins Functions Relation to diabetes

Serum albumin (ALB) Regulation of the colloidal osmotic
pressure of blood.60

Antioxidant agent.61

Increased glycation resulting from prolonged
hyperglycemia of serum albumin destabilizes albumin
structure27 Increased glycosylation of serum albumin
in Diabetes Mellitus.62

Structural changes of albumin may reduce antioxidant
properties and contribute to vascular and metabolic
morbidities.61

Hemoglobin (Hb) Role of oxygen transport from the lungs
to the rest of the body.

Glycated hemoglobin, or hemoglobin A1c, is used to
identify average plasma glucose levels over time. In
diabetes, higher HbA1c levels indicate poor control of
glucose levels.63 Increased hemoglobin degradation
can directly alter iron metabolism. However, iron can
increase through several pathways related to insulin,
oxidative stress, and inflammatory responses.28

Alpha-2-macroglobulin (A2MG) Proteinase inhibitor. Is able to “trap”
enzymes, with the trapped enzyme
remaining active against low M.W.
substrates, and a greatly reduced activity
against larger substrates.21

May be found in higher levels in poorly controlled
diabetes.20, 21 Higher level of A2MG is higher in
T2DM49 and was thought that it reflects a degradation
of basement membrane of blood vessels indicating the
diabetes-associated vascular complications50.

Serum amyloid A (SAA) A major acute phase reactant.36 A
polipoprotein of the HDL complex.21

While SAA is known to be a predictor for coronary
artery disease and cardiovascular complications
resulting from diabetes, the predictive value of SAA
was controversial in diabetes.37, 38 Elevated blood
concentration in T2DM. Has been implicated in the
development of T2DM and atherosclerosis.64

Serotransferrin (TRFE) Serotransferrin is responsible for the
transport of iron from sites of absorption
and heme degradation to those of storage
and utilization. Serum transferrin may
also have a further role in stimulating
cell proliferation.65

Due to increased glycation of hemoglobin and
increased iron metabolism in poorly controlled
diabetes, transferrin—acting in transportation of iron
and heme degradation—can be found in higher levels
in saliva and urine.21, 23, 31, 66 Serotransferrin, along
with haptoglobin and hemopexin have shown to be
increased in the livers of obese mice.32

Excretion of Serotransferrin has been cited as an
indicator of diabetic nephropathy.20,29

Hemopexin (HEMO) Heme recycle and degradation.67 Increased iron metabolites result in increased proteins
related to iron metabolism, in particular serotranferrin
and hemopexin.30 Hemopexin’s involvement in heme
degradation means that it will be expressed in higher
levels with uncontrolled diabetes.31 Chen et al
proposed that the increased hemopexin is a part of the
glucose-induced oxidative stress.33–35 They, therefore,
suggest that increased hemopexin in the serum may
indicate the progression of T1DM that may predict
future complications— most importantly retinopathy.

Haptoglobin (HPT) Haptoglobin functions in hepatic
recycling by combining with free plasma
hemoglobin, which prevents kidney
damage.

Haptoglobin 2-2 genotype was linked to obesity,
hypertension, and T2DM in some populations39 and
was determined to be an important risk factor for
T2DM related cardiovascular complications.40–44

Serum haptoglobin in both T1DM and T2DM
increases with other serum acute phase proteins.45–48
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Serum originating proteins Functions Relation to diabetes

Complement C3 (CPAMD1) Following proteolytic degradation of
Complement C3, C3a is a mediator of
local inflammatory process. C3b can
bind to cell surface carbohydrates or
immune aggregates.

C3 is linked to T2DM development and seems to
correlate with the serum glucose and insulin level.56

Engström et al, 2005 suggested that the increased level
of complement C3 is an important risk factor for
T2DM. Complement C3 deficient mice seem to be
immune to induce T1DM.57 Hertle et al, 2012 pointed
out that increased serum complement C3 is a sign of
diabetes-associated cardiovascular complications.58

Gao et al 2008 found that complement C3 is increased
in patients with diabetic retinopathy.59

Salivary gland originating proteins Functions Relation to diabetes

Alpha amylase 1 (AMY1) and Amylase
2B (AMY2B)

Binds 1 Calcium ion per subunit.21 Plays
a role in the initial digestion of starch.68

Found to be downregulated in patients with
diabetes.21, 23 But alpha amylase was found to be
upregulated in type II diabetics.69 Alpha Amylase 2B
was found upregulated in diabetics.20

Proteins PLUNC, LPLUNC2 May be involved in the airway
inflammatory response to irritants.70

Lower levels of concentration detected in saliva of
diabetic patients.21 However, in Rao et al, PLUNC
was shown to be upregulated in diabetic patients.20

Carbonic Anhydrase 6 (CAH6) Reversible hydration of carbon dioxide.
Undetermined role in saliva.21

Lower level of expression in saliva of diabetic patients
in Border et al.21 Higher level of expression in saliva
of diabetic patients in Rao et al.20

Cystatin S (CYTS) Expressed in saliva, tears, urine, and
seminal fluid. Cystatin S has been shown
to be an inhibitor of several cysteine
proteinases.71

Found to be upregulated in diabetic subjects.21

Cystatin SN (CYTN) Expressed in saliva, tears, urine, and
seminal fluid. Like Cystatin S, Cystatin
SN acts as an inhibitor of several
cysteine proteinases, but it has been
shown to be a better inhibitor of papain
and dipeptidyl peptidase I than Cystatin
S.72

Found to be downregulated in diabetic subjects.21, 23

Prolactin inducible protein (PIP) Prolactin-inducible protein functions in
the regulation of water transport in the
apocrine glands.73 PIP has the ability to
bind potentially with CD4-T cell
receptor, IgG, actin, ZAG, fibronectin
and enamel pellicle. 74

PIP’s binding ability suggests a range of
immunological functions.74

Uteroglobulin (UTER) Secreted from the Clara cells of the
pulmonary airways. Binds
phosphatidylcholine,
phosphatidylinositol, polychlorinated
biphenyls (PCB) and weakly
progesterone, potent inhibitor of
phospholipase A2.75

Found to be downregulated in Diabetic subjects in
Border et al.21

Tissue/mucosal originating proteins Functions Relation to Diabetes

GAPDH Participates in nuclear events including
transcription, RNA transport, DNA
replication and apoptosis. Nuclear
functions are probably due to the
nitrosylase activity that mediates
cysteine S-nitrosylation of nuclear target
proteins such as SIRT1, HDAC2 and
PRKDC. Glyceraldehyde-3-phosphate
dehydrogenase is a key enzyme in
glycolysis that catalyzes the first step of
the pathway by converting D-
glyceraldehyde 3-phosphate (G3P) into
3-phospho-D-glyceroyl phosphate.76, 77

Upregulated in diabetic subjects.21, 78

Immunoglobulins Function Relation to Diabetes

Mol Biosyst. Author manuscript; available in PMC 2014 November 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Bencharit et al. Page 28

Serum originating proteins Functions Relation to diabetes

IgG Most prevalent antibody isotype found in
the body. IgG is important in fighting
infections.79

Glycosylation of IgG has been shown to affect
immune function in Type II diabetes.51 Glycations of
immunoglobulins especially serum IgG have been
shown to effect the antibody activities in T2DM.51

These glycated IgGs can induce cell
neuoronalapoptosis in vitro.52 Glycation of IgG,
similar to hemoglobin and albumin, may have caused
an increase in the salivary IgG level in poorly
controlled diabetes21, 53–55
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Table 4

Differential expressed proteins analyzed using individual saliva samples

Protein ID Protein function T1 or T2 ## peptides w/p-
value <0.001<0.001

# peptides w/p-value <0.01

HBB Hemoglobin subunit beta OS=Homo sapiens T1 12 16

HBA Hemoblobin subunit alpha OS=Homo sapiens T1 5 7

HBD Hemoglobin subunit delta OS=Homo sapiens T1 1 1

ALBU Serum albumin OS=Homo sapiens T1 5 41

CO3 Complement C3 OS=Homo sapiens T1 5 16

A1AG2 Alpha-1-acid glycoprotein 2 OS=Homo sapiens T1 1 1

CF058 Uncharacterized protein C6orf58 OS=Homo sapiens T1 1 1

FETUA Alpha-2-HS-glycoprotein OS=Homo sapiens T1 2

A2MG Alpha-2-macroglobulin OS=Homo sapiens T1 4

AMY1 Alpha-amylase 1 OS=Homo sapiens T1 1

ANXA1 Annexin A1 OS=Homo sapiens T1 1

CAH6 Carbonic Anyhydras 6 OS=Homo sapiens T1 1

COF1 Cofilin-1 OS=Homo sapiens T1 1

CFAB Complement factor B OS=Homo sapiens T1 1

FIBG Firbinogen gamma chain OS=Homo sapiens T1 1

HSPB1 Heat shock protein beta-1 OS=Homo sapiens T1 3

HEMO Hemopexin OS=Homo sapiens T1 4

IGHG1 Ig gamma-1 chain C region OS=Homo sapiens T1 3

IGHG2 Ig gamma-2 chain C region OS=Homo sapiens T1 3

IGHG4 Ig gamma-4 chain C region OS=Homo sapiens T1 2

PLAK Junction plakoglobin OS=Homo sapiens T1 1

K22O Keratin, type II cytoskeletal 2 oral OS=Homo sapiens T1 1

K2C78 Keratin, type II cystoskeletal 78 OS=Homo sapiens T1 1

PERL Lactoperoxidase OS=Homo sapiens T1 1

MMP9 Matrix meallopreoteinase-9 OS=Homo sapiens T1 2

PRTN3 Myeloblastin OS=Homo sapiens T1 1

PLSL Plastin-2 OS=Homo sapiens T1 1

GP115 Probable G-protein couples receptor 115 OS=Homo sapiens T1 1

KPYM Pyruvate kinase isozymes M1/M2 OS=Homo sapiens T1 1

TRFE Serotransferrin OS=Homo sapiens T1 3

SPRL1 SPARC-like protein 1 OS=Homo sapiens T1 2

TBA4A Tubulin alpha-4A chain OS=Homo sapiens T1 2

IGHG4 Ig gamma-4 chain C region OS=Homo sapiens T2 2 4

IGHG2 Ig gamma-2 chain C region OS=Homo sapiens T2 2

HPT Haptoglobin OS=Homo sapiens T2 1

TRFE Serotransferrin OS=Homo sapiens T2 1
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