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Abstract

Systems biologists increasingly use network representations to investigate biochemical pathways

and their dynamic behaviours. In this critical review, we discuss four commonly used network

representations of chemical and biochemical pathways. We illustrate how some of these

representations reduce network complexity but result in the ambiguous representation of

biochemical pathways. We also examine the current theoretical approaches available to investigate

the dynamic behaviour of chemical and biochemical networks. Finally, we describe how the

critical chemical and biochemical pathways responsible for emergent dynamic behaviour can be

identified using network mining and functional mapping approaches.

Introduction

Determining the minimal chemical interactions underlying dynamic behaviour of

biochemical systems is a major task of modern systems biology.1 Many studies have shown

that the dynamic behaviour of biochemical systems is driven by the underlying network

structure as well as small subnetworks of interacting components, known as network

motifs.2-6 To perform such studies, it is necessary to translate chemical and biochemical

mechanisms into a network representation.

A network representation of chemical reactions is an abstraction. It facilitates analysis of

reaction dynamics, especially in very large networks, and permits doing so without use of

sophisticated computational techniques and resources. There are a number of network

analysis methods7, 8 and motif detection tools9-11 available in the literature to investigate the

dynamic behaviour of biochemical systems. However, determining the true dynamic

behaviour of a biochemical system, and the network motifs controlling these dynamics,

remains a challenge. The results of network analysis methods and motif detection tools are

dependent upon the network representation adopted for the biochemical system under
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investigation. Moreover, mainstream methods for motif identification rely implicitly on

assumptions that may be incorrect for certain biochemical systems.12-14

In this review, we present a detailed discussion of network representations of chemical and

biochemical reactions. We illustrate how the four most common network representations

convey different aspects of reaction mechanisms and illustrate which representations

sacrifice information for practical advantage. We present a critical discussion of network

methods for analysis of the dynamic properties of chemical and biochemical pathways. We

also discuss current approaches available for the identification and selection of network

motifs as well as provide a discussion of their limitations. Finally, we illustrate how the

critical chemical and biochemical pathways responsible for emergent dynamic behaviour are

identified using network mining and functional mapping approaches in the systems biology

literature.

Reaction kinetics describe dynamic behaviour of interacting chemical

species

A complex reaction mechanism can be represented by a set of elementary chemical reactions

which are easily translated into mathematical terms using physicochemical relationships.

The schematic representation of reactions captures the interactions between reacting species

and products. For example, the homo-dimerisation of species to synthesise species is

represented schematically by:

(1)

In this chemical equation, there is a local chemical interaction between two species of A that

produces species B with a reaction rate k[A]2. In this expression k is a rate constant. The rate

of consumption of species A - governed by the law of mass action - is represented in

mathematical terms as an ordinary differential equation (ODE) of the form:

(2)

The negative reaction rate implies that the concentration of A, denoted [A], declines over

time; the reaction rate will increase as [A] increases. Using the law of mass action, the

reaction dynamics depend on the rate constants, reactant concentrations, and molecularity.

In chemistry, elementary steps represent chemical equations that have uni- and/or

bimolecular reactants and products (Fig. 1, first column). A reaction mechanism is

composed of a set of elementary steps, each representing an actual molecular event.

Overall reactions (e.g., 3A → B) summarise reaction mechanisms that describe several

elementary steps (e.g., A + A → 2A + A → B). Network representations and network

analysis tools15 can provide powerful approaches for investigating reaction dynamics

associated with both elementary steps and overall reactions.
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Network representations of biochemical systems

Networks are comprised of nodes connected by edges. In graph theory, networks are often

represented with weighted edges. The systems biology definition of a network is broader

and includes a variety of graphs.16 The nodes in a network generally represent biochemical

components. Some examples include: genes and proteins in a transcription network;

substrates, enzymes, and products in a metabolic network; and amino acids in a network

representation of a folding protein. Interactions between components are represented by

edges connecting the nodes. Examples include: activation of gene expression by a protein;

product formation via a substrate and an enzyme; and electrostatic interactions between

nodes in an amino acid network. Chemical or biochemical networks are static

representations of the dynamic interactions of different species that occur in time and space.

There are four commonly used network representations, which are widely used to

investigate chemical or biochemical reactions: species-reaction with edge colouring,

species-reaction without edge colouring, species-species, and species-interaction networks.

Species-reaction networks

Species-reaction networks are often used to represent overall chemical reactions. They

contain two types of nodes and have either single or multiple edges (see Fig. 1). The edges

can be directed or undirected.3 In these networks, one type of node is used to represent

chemical species while the other type is used to represent interaction between species. Edges

connect species and interaction nodes. Species-reaction networks are bipartite graphs where

two nodes of the same type are never connected directly. Edges connect reacting species

nodes to interaction nodes. Interaction nodes are then connected to newly produced species

nodes. These network representations are advantageous because edge colouring captures

molecularity of the reactants (Fig. 1, second column). In other words, species-reaction

networks provide a one-to-one representation of the reaction when edge colouring is

employed to capture the molecularity of interacting species. For large reaction mechanisms,

this network representation can be difficult to implement and is computationally expensive

to analyse. This issue can be resolved by representing the networks without edge colouring

(Fig 1, third column). The removal of edge colouring can produce ambiguous network

representations. For example, the same species-interaction network without edge colouring

is obtained for elementary steps 3, 4, 5, and 6 (Fig. 1, first and third column). Thus while the

representation gains computational feasibility, information is lost during translation.

Whether the model remains suitable without edge colouring depends on whether the

sacrificed information, in this case molecularity, is relevant to the application at hand.

Species-species networks

Species-species networks are commonly used to represent metabolic and transcription

pathways.6, 17 These networks have one type of node representing chemical species (see Fig.

1, last column). They have directed or undirected edges representing interactions between

species. In metabolic networks, species-species networks are called substrate networks

because they describe enzyme catalysed reactions where only the substrate and product are

shown in the network representation. Species-species networks contain less chemical

information than species-reaction networks. As a consequence, complex biochemical
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pathways are much simpler to write as species-species networks. The simplification again

occurs at the cost of introducing ambiguity into reaction representations. As can be seen in

Fig. 1 (last column), the majority of elementary steps are represented by the same species-

species network. This indistinguishability problem is also observed in the mathematical

representation of chemical and biochemical reactions.18 In the case of species-species

networks, the indistinguishability is the result of losing the node representing the interaction

between chemical species. For example, elementary chemical reactions 7 and 8 (in Fig. 1),

have unique representations using species-reaction networks (with and without edge

colouring) but are represented by the same two-node species-species network.

Species-interaction networks

Finally, species-interaction networks are commonly used to represent protein-protein

interactions (Fig. 2). A species-interaction network is comprised of one type of species node

and multiple types of edges representing different interaction types. Protein-protein

interaction networks have two types of edges, inhibition (Fig. 2, second column, blunt

arrowheads) and activation (Fig. 2, second column, broad arrowheads), which describe the

relationships between the protein nodes. The nonlinear dynamics of biochemical pathways

arises from activation or inhibition feedback cycles in which the output of a pathway is not

proportional to its input.1 Species-interaction networks simplify complex inhibition or

activation mechanisms into edge representations. The graphical representation of edges can

be achieved by adopting different colours for each type of interaction. For example, in Fig.

2, last column, blue edges represent activation and purple edges represent inhibition. Like

species-species networks, the species-interaction networks can also provide ambiguous

representations. Additionally, it is difficult to represent complex mechanisms composed of

numerous elementary steps via this approach. In the case of biochemical pathways, species-

interaction networks can represent upstream or downstream indirect interactions between

two species as direct relationships.

The above network representations do not provide explicit information about reaction rates.

This makes it difficult to analyse the dynamic behaviour of chemical and biochemical

pathways. However, in the next section we describe how existing network analysis methods

can be used to investigate the dynamic behaviour of networks without prior knowledge of

the reaction rates.

Network analysis methods for investigating the dynamic behaviour of

chemical and biochemical systems

Biologists and biochemists have used mathematical modelling to analyse the properties of

chemical and biochemical reaction networks for quite some time. Dynamical systems theory

can be used to investigate behaviour of models by analysing the linear stability of steady

states (or equilibrium points). If it is possible to identify all steady states and determine their

linear stability, then model behaviour around steady state can be characterised.19 In the

mathematical literature, a model with more than two steady states is known as multistable.20

If the stability of steady states cannot be determined, models capable of exhibiting multiple

steady states are known as multistationary dynamical models.21 In general, the nonlinear
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differential equations governing chemical and biochemical systems are difficult – if not

impossible – to solve analytically. Therefore numerical methods are required to investigate

the dynamic behaviour of chemical and biochemical systems.22 Steady states can be

estimated using algebraic topology methods, such as homotopy.23 These methodologies

often require an educated guess for the values of model parameters, as well as access to high

performance computing facilities to carry out an extensive search of the model's parameter

space. In the absence of model parameter values, network analysis methods exist for

investigating the dynamic behaviour of chemical and biochemical systems.

In recent years the focus of dynamical system and network analysis approaches has been to

investigate the design principles of complex networks of genes and proteins.1, 24, 25 Special

attention has been paid to the identification of the two- or three-node subnetwork cycles,

referred as motifs, which appear frequently in mechanisms associated with certain

biochemical functions.1, 26, 27 In these approaches, a motif's functionality can be analysed

using mathematical modelling and dynamical systems theory.26 Since complex networks

contain many species and motifs, a significant portion of systems biology research is aimed

at analysing models using combinations of network feedback cycles. In this section, we

discuss a variety of methods for analysing networks with single or multiple feedbacks that

are capable of exhibiting complex dynamic behaviour, such as oscillations, Turing

instability, or bistability.

There are two primary approaches for studying network dynamics that also identify criteria

for the existence of multiple stable steady states using species-reaction networks with edge

colouring: Stochiometric Network Analysis (SNA)4, 28 and Chemical Reaction Network

Theory (CRNT)2, 29. It should be noted that, in the mathematical literature, edge colours are

replaced by edge weights that correspond to stoichiometric coefficients. This encoding

simply makes computational analysis more tractable.

Stochiometric Network Analysis

SNA identifies a minimal set of reactions capable of exhibiting multiple steady states

(multistability) or oscillations within a large chemical reaction mechanism.28, 30 In this way,

SNA allows for the reduction of a complex network into a smaller (but often still large) set

of interactions underlying system-wide behaviour. In general, applying SNA theory involves

first isolating the core set of network interactions underlying the system-wide steady state

behaviour, and second, assessing the reduced set of interactions for criteria necessary for

multiple steady states. Through application of the SNA methodology, the chemical and

biochemical complexity is reduced without loss of system-wide dynamic behaviour. SNA

theory is most applicable to reactions with mass action kinetics represented by species

interaction networks with colour edges (see Fig. 1, Column 2).

A similar theory to SNA was independently developed by A. Ivanova.31, 32 In this case,

mass-action kinetics reactions are again represented by species-reaction networks with edge

colouring (or equivalently the directed edges are weighted by the stoichiometric

coefficients). A feedback cycle in a network is a subnetwork where each species node is the

beginning and end of a path. The path may not always follow the direction of edges and, in

the case of a species-reaction network, the cyclic path contains an equal number of reaction
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nodes because between any two species nodes lies a reaction node. If two species in a

species-reaction network interact at a reaction node, we refer to it as a consumed species

path (○→●←○); and, if a species is produced in an elementary step by another species, we

refer to this combination of species and edges as a produced species path (○→●→○). A

cycle in a species-reaction network is then constructed by consumed or produced species

paths. Based on the number of consumed species paths, a cycle presents a positive feedback

if it contains an even number of consumed species paths (see Fig. 3, 1a and 1b). A cycle

represents a negative feedback if it contains an odd number of consumed species paths (see

Fig. 3, 2a and 2b). It has been shown that the existence of a positive feedback cycle is a

necessary condition for multistability in different network representations.20, 21 Moreover, in

the SNA theory and the theory of A. Ivanova, this multistability condition is further

generalised to the existence of a subnetwork of species-disjoint cycles and edges (different

cycles and edges contain different species) with an odd number of positive cycles. We will

refer to this type of subnetwork as a critical subnetwork since its existence in a species-

reaction network is necessary for the corresponding dynamic model to display multistability.

One disadvantage of the theory developed by A. Ivanova is that mass conservation of all

species is required in order to apply the technique. Mincheva and Roussel33 removed this

requirement using bifurcation theory arguments. Additionally, they showed that the

existence of a critical subnetwork of species-disjoint cycles that does not contain all species

can indicate that the dynamical model is capable of oscillations.

Many models in cell and developmental biology assume spatially homogenous

concentrations of the biochemical species. However, cells can be viewed as reactors that are

not well stirred since some biochemical species diffuse differently between different cellular

compartments.34 Moreover, spatial diffusion processes are important for the proper

functioning of cell and developmental systems. For example, they are essential for polarity

and pattern formation in morphogenesis. The first mathematical model of pattern formation

was proposed by Alan Turing in 1952. It has been shown that Turing patterns develop when

a stable spatially homogenous steady state, in the absence of diffusion, becomes unstable in

the presence of diffusion.35 This type of phenomena associated with instabilities of a steady

state induced by diffusion is referred to as Turing instability. Remarkably, the existence of

the same type of critical subnetwork – as in the case of oscillations – is necessary for the

dynamic model with diffusion to exhibit Turing patterns.36

Biochemical models with time delays are used for modelling genetic networks containing

subsystems that are too complex to be explicitly included in the model. Transcription and

translation processes are prevalent examples. Additionally, transport, diffusion, and signal

transduction processes can also introduce time delays in biochemical dynamics.37, 38

Moreover, many models of biochemical systems can reproduce experimentally observed

oscillations only if the delays are included in the model. If a steady state of a delay-

differential model is stable when the delays are zero, and there exist positive values of the

delays for which the steady state becomes unstable, then delay-induced oscillations occur.

Usually the reason for delay-induced oscillations is related to the existence of a negative

feedback cycle.39 The necessary condition for mass action kinetics models with time delays

to exhibit delay-induced oscillations is generalised to the existence of a subnetwork of
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species-disjoint cycles and edges containing an odd number of feedback cycles, of which an

odd number are negative.40

Chemical Reaction Network Theory

CRNT also uses a mathematical approach to determine relationships between species-

reaction networks with edge colouring and dynamic behaviour of mass action kinetics

reactions.2, 29 One application of CRNT is to exclude networks that do not have the capacity

for multiple positive steady states. In the context of CRNT, if a species-reaction network

with edge colouring and undirected edges is employed, complex pairs (c-pairs) are defined

as pairs of species “entering” (with respect to the chemical reaction) the same reaction node.

By determining the number of c-pairs in a feedback cycle, we can classify cycles as even

cycles containing an even number of c-pairs and odd cycles containing an odd number of c-

pairs. Even and odd cycles are similar to the positive and negative cycles, respectively, as

defined in SNA theory. CRNT theory allows for the exclusion of multistable networks by

checking for the following network conditions: if all stoichiometric coefficients equal one

and all cycles are odd, or if no two even cycles contain exactly one common edge of a c-pair

(following Craciun et al.3 no two even cycles split a c-pair), then the network is not

multistable for any parameter values of the rate constants. On the other hand, if the latter

condition is violated, i.e., if two even cycles split a c-pair, then the reaction has the capacity

for multistability.3 CRNT is implemented in the software Chemical Reaction Network

Toolbox.7 This toolbox can be used to determine if a chemical reaction with mass action

kinetics has the capacity for multistability. In some cases, the Toolbox will often provide

example parameter values for a multistable network.

An advantage of CRNT is that it can be used to exclude networks that do not have the

capacity for multistability regardless of parameters. This is often useful when analysing

large numbers of networks, e.g. when enumerating possible reaction mechanisms (of some

chosen size) underlying a chemical or biochemical system with observed multistable

dynamics. By employing CRNT to exclude networks without the capacity for multiple

positive steady states, one can significantly reduce the search space of possible multistable

networks.30 SNA and CRNT can identify networks capable of multistability in the absence

of kinetic rate parameters. This useful identification capability has a caveat however. In

most cases, the networks can only be identified as capable of multistability. It is much more

difficult to identify specific steady states. Another disadvantage of CRNT and SNA is the

exclusion of steady states with zero coordinates. In chemical and biochemical systems, it is

quite possible that a component (e.g. a protein) could be completely depleted (e.g. degraded)

from a system resulting in a stable steady state value of zero. Additionally, the mathematical

theory underlying SNA and CRNT is sophisticated and rigorous, making it non-trivial to

implement. Fortunately, software tools implementing these theories are available. Thus these

network analysis approaches are accessible to scientists with expertise elsewhere than the

mathematical theory.7, 8 As mentioned above, CRNT toolbox7 in some cases identifies

kinetic rate parameters necessary to obtain multiple stable steady states. Overall, these tools

provide a powerful way to investigate system-wide behaviour within a species-reaction

network.
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Examples of network feedback cycles critical for the dynamic behaviour of biochemical
and biological systems

The theories discussed above are by no means exhaustive. We now select some examples to

illustrate how positive or negative feedback cycles within complex networks have the

capacity to display complex dynamic behaviours in biological systems. Some biochemical

pathways exhibit a switch-like behaviour characterised by a sudden shift in the

concentration of a species from low concentration to high concentration. One type of

dynamic behaviour that can describe this phenomenon is bistability. In a bistable switch

network, the system will have two stable steady states that are separated by a third unstable

steady state.19 Depending on where the system begins (the initial condition), its solution

may end up in one of the stable steady states. A simple example of a bistable switch is given

by a network containing a positive feedback cycle (see Fig. 3, 1a and 1b) of two mutually

activating or inhibiting interactions. In both cases, the positive feedback cycle can create a

biological switch where the cellular response abruptly starts to decrease after an initial

increase (one-way switch) and possibly increase again (toggle switch).26 Examples of switch

behaviour identified in biological systems include apoptosis (one-way switch)41 and the lac

operon in bacteria (toggle switch).42

Oscillations are another type of ubiquitous dynamic behaviour in biochemical

networks.24, 43 Mathematical models have been used to study oscillations in calcium

signalling,44 glycolysis,45 cAMP,46 and in circadian rhythms.47 Both positive and negative

feedback cycles as well as their combinations can generate oscillations in biochemical

networks. In the simplest case, oscillations can also be generated by self-activation, which is

a positive feedback cycle from a species back to itself, also known as autocatalysis. Self-

activation may be responsible for oscillations in glycolysis.48 Examples of negative

feedback oscillators in biological systems include circadian rhythms,47 MAPK cascade25

and NFΚB.48

The subnetworks discussed so far primarily consist of a single two- or three-species positive

or negative feedback cycles that participate as components of complex networks. However,

in reality more complicated feedback mechanisms are frequently found in biochemical or

biological systems. For example, the Cdk network that regulates the cell cycle can be

decomposed into three simpler modules - the G1/S and G2/M modules, which are switches

that arise from a positive feedback cycle, and the M/G1 module, which is an oscillator that

arises from a three-species negative feedback cycle.49, 50 The oscillatory response curves

created by the three-species negative feedback cycle interact with the bistable motif of the

G2/M module generating a large amplitude periodic curve that is maintained until the cell

size becomes too large. At this stage, the period of the oscillations drops dramatically and

the cell divides into two.26 CDK1 cell cycle oscillations in Xenopus are another example of

a biochemical network with multiple feedback cycles.51 In this system, the oscillatory

network contains both a negative and a positive feedback cycle. The negative feedback cycle

creates the oscillations, while the role of the positive feedback cycle is to adjust the

oscillation frequency without changing the amplitude. Another important advantage of the

two-cycle network of CDK1 cell cycle in Xenopus, in comparison to a single-cycle network

(containing only a negative cycle), is its robustness, i.e., the two-cycle network oscillates
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over a broader range of parameter values than the single-cycle network.51 This result

highlights the importance of investigating bistability, oscillations, and other important

dynamic behaviour as an aggregation of feedback cycles rather than a single feedback cycle.

The biological role of multiple feedback cycles in biochemical networks is still under

investigation. In the example of oscillations in the cell cycle51 discussed above, the negative

cycle is sufficient to create the oscillations while the role of the positive feedback cycle is to

adjust the period. Some studies on circadian rhythms suggest that single-cycle models are

not as robust or sensitive52 as multiple-cycle models.53, 54 Combinations of other

subnetwork such as feedforward cycles associated with the detection and adaptation of

network signals, or combinations between feedforward and feedback cycles, are yet to be

studied.55 The connections or the coupling between the feedback cycles and other

subnetworks are also not thoroughly understood and are a matter of further research. In the

next section, we discuss approaches for identifying network motifs. These motifs are

associated with subnetwork cycles that constitute critical dynamic functions.

Mining for motifs in chemical and biochemical reaction networks

As we previously mentioned, motifs are subnetwork cycles which appear frequently in

mechanisms associated with certain biochemical functions.1, 26, 27 A network motif is

identified as a connected, induced subgraph that appears significantly more frequently than

would be expected in a similar random network (e.g., the same number of nodes and edges).

Since the number of possible subgraphs increases dramatically as the size of the subgraph

increases, most research to date has focused on searching for subgraphs of two to four

nodes.

Two methods are commonly used for identifying subgraphs as network motifs. The first

method identifies motifs as the subgraphs occurring above a certain frequency threshold in

similar networks.56 A problem with this approach is that the higher frequency of a subgraph

does not imply function.57 Moreover, this approach does not provide a statistical

significance level for the identification of a motif.

The second method is the normalised z-score of Milo et al.,57 which identifies subgraphs as

overrepresented or underrepresented motifs if they have z-scores values greater or less than

zero, respectively. Normalised z-score permits a statistical comparison of a particular motif

across different networks. It requires the generation of a set of physically realistic

randomized networks for comparison, which can be difficult.58 The use of normalised z-

score has some drawbacks. The normalised z-score implicitly assumes that motif

frequencies are distributed normally and candidate motifs are independent. Picard et al.13

found that the assumption of normally distributed motif frequencies is not always valid.

Some networks exhibit motifs frequencies with a Poisson distribution.13, 59 The normalised

z-scores are also dependent on network size as motif sizes increase.57 Furthermore,

empirical analysis of metabolic networks shows that motifs are dependent for a given set of

random similar networks due to clusters and hierarchy in the structure of motifs.14

Despite its limitations, the mainstream approach to identifying network motifs is the

normalised z-score method. However, if the assumption of normality is not tested properly
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in the networks under investigation it is unclear if normalised z-score has the capacity to

differentiate effectively between spurious subnetworks and network motifs of true statistical

significance. This is an active area of research in the network science community.

Motifs do not necessarily represent unique chemical reactions

In practical terms, motifs are simple patterns of interactions between small numbers of

species molecules. Therefore the chemical information contained in a motif depends on the

network representation used for its pictorial representation. We can illustrate this point using

a mechanism of gene regulation (see, Fig. 4A) with the capacity of exhibiting switch-like

behaviour.60 We represent the reaction mechanism in two forms: species-species network

(Fig. 4B) and a species-reaction network with edge colouring (Fig. 4C).

The species-reaction network with edge colouring (Fig. 4C) is a one-to-one representation of

the original gene regulation mechanism molecularity containing seven species nodes and ten

reaction nodes. We mined the network for motifs of five nodes. A total of 68

overrepresented motifs were identified (motif mining approach is explained in the legend of

Fig. 4). The highlighted subnetworks in Fig. 4C (green and pink blocks) represent a single

motif with the highest normalised z-score (0.58). This five node motif appears twice in the

network represented in Fig. 4C. It also appears an average of 0.86 times across a set of 1000

random networks with the same number of nodes and edges. Although the five node motif is

the same for both coloured blocks, it represents two different sets of chemical reactions in

each coloured block: reactions 5 and 6 (green block) and reactions 9 and 10 (pink block).

Therefore it is always important to draw a clear distinction between a network motif and the

chemical reactions it can represent.

In the case of the species-species network representation (Fig. 4B) for the mechanism of

gene regulation under consideration (Fig 4A), it is not possible to draw a direct relationship

between motifs and reactions. Nine motifs of size five nodes were identified as

overrepresented in this network. The motif of size five with the highest normalised z-score

(0.38) appears twice in the original network (highlighted in green and pink blocks).

However, the overrepresented motif is not represented by a unique set of the chemical

reactions. The motif in the pink block represents six reactions (1, 2, 5, 6, 7, and 8), while the

motif in the green block represents four reactions (3, 4, 5, and 6). As we discussed before,

the lack of a unique relationship between motif and chemical reactions in species-species

networks is typical of this network representation.

The significantly overrepresented motifs identified in this subsection could have some

functional significance in networks. In Fig. 4C, the overrepresented motifs with the highest

normalised z-scores (green and pink boxes) are remarkably are bistable critical subnetworks.

The motif coloured in green in Fig. 4C contains the critical subnetwork consisting of the

positive feedback cycle (A2B1 → P6 → B1 → P5) and the edge (A2 → P5) as well as the

critical subnetwork consisting of the positive feedback cycle (A2 → P5 → A2B1 → P6) and

the edge (B1 → P5). We are not surprised by this result, because the network is a

representation of a mechanism of gene regulation with the capacity of exhibiting switch-like

behaviour.60 However, in most of the cases, it is not possible to draw a direct relationship

between a significantly overrepresented represented motif and a biochemical function.
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Mapping motifs to function is an active area of research in the chemical and systems biology

community. In the next section we discuss some of the advances made in this area, and

present network enumeration approaches which have been successfully applied to explore

motifs in large network spaces.

An approach to explore the network space to map motifs to function

The fact that motifs are observed significantly more frequently than would be expected in a

similar random network suggests an evolutionary origin. However, the higher frequency of a

motif in a network does not necessarily imply that the motif is associated with a particular

biochemical function.61-65 A network motif could be a vestigial structure of the biochemical

evolution of organisms.66 To determine if a motif is associated to a function in a large space

of chemical and biochemical networks, it is necessary to use both network analysis and

motif mining methods.

In general systems biologists have typically mapped function to motifs on a case-by-case

basis.1, 26 A limitation of this approach is that there could be an unidentified motif which

could be associated to a particular function, but remains to be discovered. Moreover, this

approach is ineffective for exploring a large network space.

With the advent of high-performance scientific computing, it is now possible to search

through a large space of networks. Nowadays scientists are computationally generating a

large space of possible biophysical-chemical realistic pathways,67 and then testing them for

their potential to exhibit particular biochemical functions.56, 60, 68-71 In this approach,

scientists are asking: what are the possible networks that can exhibit a particular behaviour?

Once the networks capable of exhibiting a specific behaviour are enumerated, relationships

between structural network motifs and biochemical function can be systematically mapped

(see, Fig. 5). The mapping is generally carried out by mining motifs in the networks capable

of exhibiting the specific behaviour under investigation. This approach is known as network

enumeration analysis.55

In principle it is theoretically possible to generate a large number of biophysical-chemical

realistic networks and exhaustively explore the parameter space of each network for a

specific biochemical behaviour. However, evaluating each network is too computationally

expensive to be practical. Consequentially, researchers have been adopting approximations

to render motif mapping to biochemical functions in networks computationally feasible. In

general, two compromises are adopted to make the calculations computationally feasible

within reasonable timescales. The first compromise is limiting the size of networks to three

nodes. In three-node networks, the first node corresponds to the signal or input, the second

node is an intermediate, and the third node is the response or output.26, 70 This makes the

network search-space computationally tractable as there are just over 16,038 possible

architectures to explore.55 The second compromise is limiting the exploration of the

parameter space for all networks. In a three-node network, each node has several parameters

which depend on the rate equations used to represent the governing behaviour of the

network. If a node represents a substrate in an enzyme catalysed reaction, the parameters can

be the substrate concentration, maximum velocity, Michaelis-Menten constant, Hill
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coefficient, or the enzyme activation coefficient. The common strategy is analysing each

network by exploring 10,000 combinations of parameters within physiologically realistic

range55 using the Latin hypercube sampling method.72 These two simplifications have been

successfully used to infer motifs observed in real biochemical pathways for switch-like

(bistable) behaviour,56 biochemical oscillations,68 and perfect adaptation70 in biochemical

pathways. Biochemical pathways exhibiting perfect adaption transiently respond to a

stimulus and then reset back to their original steady state. Perfect adaption is observed in

many homeostatic and sensory systems.

Of course, the coarse-graining approximations made during the implementation of network

enumeration analysis have some caveats. Limiting the analysis to three-node networks is a

drop in the bucket given the combinatorial explosion of networks that is imaginable. It

remains to be explored if the analysis of three-node networks can provide a comprehensive

understanding of the networks motifs responsible for creating complex biochemical

functions. On the other hand, the function of biochemical pathways may greatly vary with

the rate equations and its parameters values. Therefore, there is always the risk that the

sparse parameter sampling misses important emergent dynamic behaviour to map motifs to

function. One way to determine if the parameter search has been exhaustively sampled is to

evaluate the robustness of each network. In this context, the robustness of a network is

defined as the fraction of the sampled parameters for which the network can perform the

studied function above a certain threshold.55 The analysis of the network robustness can

provide a probability of finding the studied behaviour within the sampled parameter space.

It is possible to carry out an enumeration analysis to map network motifs to biochemical

function in a free parameter manner. CRNT can be used to map the dynamic behaviour of

mass action kinetics reactions and species-reaction networks with edge colouring. Recently

Siegal-Gaskins et al.60 determined the capacity for bistability of 40,680 simple gene

regulatory networks (GRNs) that can be formed by two transcription factor-coding genes

and their associated proteins. They found that ~90% of their GRN could exhibit bistable

behaviour for a given set of parameters. The majority of the bistable network could only be

identified as bistable through an original subnetwork-based analysis using CRNT.

Interestingly only 11 of the 36,771 bistable networks identified lose bistability by the

removal of any network reaction or node. These minimal networks were composed of three

to eight node motifs which were essential for the bistable behaviour. In each one of the 11

minimal bistable networks, a positive or negative feedback loop played a critical role in

controlling the bistable behaviour.

Remarkably, the mapping of network motifs to biochemical function through the network

enumeration analysis suggests that there is unique and limited number of network motifs

responsible for each type of dynamic behaviour in biochemical pathways.1, 55 These studies

suggest that it may be possible to determine many different ways biochemical reactions can

be configured to produce the emergent functional responses characteristic of cellular and

physiological systems.
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Conclusions and future challenges

During the past 40 years, network theory has been employed to analyse chemical reaction

systems and biochemical pathways. Network representations of molecular interactions

between chemical species facilitate the use of sophisticated analytical and numerical

techniques developed by network theoretical approaches.

A crucial question that arises upon translating chemical and biochemical interactions into a

network representation is whether the representation is accurate and whether any

information is lost. In this critical review, we discussed the four most prevalent network

representations for chemical and biochemical reactions: species-reaction with edge

colouring, species-reaction without edge colouring, species-species, and species-interaction

networks. We also discussed which representations introduce ambiguity during translation

and why these losses of information can be advantageous in some instances. The

representations themselves have distinct properties and different methods of representing the

same information can be advantageous for distinct practical applications. Species-reaction

networks with edge colouring provide the most accurate representation of elementary

reaction steps (see Fig. 1, second column). This network representation is the ideal to

describe and investigate the properties of reactions following mass action kinetics. However,

the most widely used network representation is the species-species network. It is frequently

employed to investigate the large organisational properties of genetic, protein, and metabolic

networks.17, 73-76 The popularity of species-species network representation lies in its

simplicity: chemical species are represented by nodes which are directly or indirectly

connected to other species with edges. The trade-off for this simplicity is ambiguity since

distinct types of molecular interactions (see Fig. 1, fourth column) generate identical

representations.

Given the direct relationship between network representation and mass action kinetics in

species-reaction networks with edge colouring, two methods – Stochiometric Network

Analysis and Chemical Reaction Network Theory – have been widely used to investigate the

dynamic behaviour of chemical and biochemical systems. These two methods allow

identification of clearly distinct critical subnetwork classes capable of exhibiting specific

dynamic behaviour, such as oscillations and bistability. However, the appearance of critical

subnetwork classes in large chemical and biochemical networks is not sufficient to

determine a dynamical function. Network dynamics can exhibit qualitatively different

functions in distinct regions of the parameter space.66 Therefore, one of the challenges in the

identification of critical subnetworks with functional classes is determining the region of the

parameter space that corresponds to distinct function(s). The most common strategy to

determine the regions of the parameter space capable of exhibiting certain dynamical

functions is sampling the network dynamics using large combinations of parameters.

We further discussed network enumeration approaches to map specific dynamical functions

in large network spaces to simpler modules – known as network motifs. The theoretical

analysis of the network space using network enumeration approaches suggest that there are

certain networks motifs enriched in biochemical networks that are necessary for exhibiting

regulatory functions, such as oscillations, or bistable switches. The results of these
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theoretical studies are supported by the experimental observations in biological

pathways,1, 26 and synthetic biology reconstructions.77 These studies suggest that there are

some organisational principles in biochemical networks which could allow us to

systematically organise network motifs in functional modules in the future.55 An interesting

challenge is investigating whether network motifs can be considered as modules that can be

used to build more complex dynamical functions.5 A related fundamental problem is

investigating whether a network motif remains functional when linked to other complex

modules in large biological networks.

In practical terms, the systematic exploration of the network space to map motifs to

biochemical function in biological networks may be of great utility in medicine, the

pharmacology industry, and the nascent field of synthetic biology. A key to controlling

disease is understanding the underlying mechanisms responsible for modulating the

biochemistry of the health state and what mechanisms, such as blocking the expression of

malfunctioning proteins, will yield desired functional changes. The approaches presented in

this critical review also have potential for investigating the underlying network of the

disease state, thereby facilitating treatment strategies to modulate network dynamics and

restore function.
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Fig. 1. The three most common network representations of elementary chemical steps
In the first fourteen, realistic elementary chemical steps between two species are shown. The

elementary steps are represented as species-reaction networks with edge colouring in the

second column. Species-reaction networks with edge colouring provide a one-to-one

relationship between chemical steps and network representations. In the third column,

species-reaction networks without edge colouring reduce the number of network

representations by losing stoichiometric information. The reduction in the number of

networks introduces ambiguity in the network representation. Species-species networks

reduce further the number of network representations by representing multiple chemical

steps with the same network presentations (fourth column). In the species-reaction networks,

orange nodes represent species and green nodes represent pathways. In species-reaction

networks with edge colouring (second column), a red arrow represents a stoichiometry of

one while a grey arrow represents a stoichiometry of two. In the species-reaction network

without edge colouring (third column) and the species-species network (fourth column), the

black arrows present connections regardless of stoichiometry.
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Fig 2. Representation of a mechanism using two species-interaction networks
In the first column, a mechanism is represented through several elementary steps. In the

second column, the species-interaction network representation shows the inhibition and

activation interactions of the mechanism. Note that multiple pieces of information are

missing from the species-interaction network with inhibition edges: the stoichiometry of the

B2 dimerization, the self-loops, and the degradation of B1 and B2. In the third column,

species-interaction network representation using edge colouring of the mechanism is shown.

Both species-interaction network representations are identical. The difference lies in the

edge representation. In the species-interaction network with edge colouring, the purples

edges represent inhibition and blue edges represent activation.
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Fig 3. Representation of positive and negative feedback cycles using species-reaction network
without edge colouring
Positive and negative feedback cycles in species reaction networks are constructed by

consumed species paths (○→●←○) and produced species paths (○→●→○). A positive

feedback cycle has an even number of consumed species paths (1a and 1b) and a negative

feedback cycle has an odd number of consumed species paths (2a and 2b). Note that the

direction of the arrows in the consumed species paths is ignored.
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Fig. 4. Identification of over-represented network motifs in a gene regulation mechanism
Over-represented motifs are identified for two distinct network representations. FANMOD10

was used to mine networks for motifs using a random background of 1000 networks using

local constraints. Nodes and reaction labels are provided but are not considered during motif

mining. The overrepresented motifs are calculated using the normalized z-score.57 (A) A

mechanism of gene regulation with the capacity of exhibiting switch-like (bistable)

behaviour is composed of ten elementary reactions. (B) Species-species network

representation of the mechanism shown in A. Orange nodes represent species, and the black

arrows represent interactions regardless of their stoichiometry. Motifs were mined using

node colouring to generate random network background. The green and pink boxes highlight

the chemical reactions represented by the two occurrences of the motif with the highest

normalized z-score. (C) Species-reaction with edge colouring network representation of

mechanism shown in A. Motifs were mined using edge colouring to generate random

network background. Orange nodes represent species and green nodes represent interactions.

Purple and black arrows represent reaction stoichiometry of 1 and 2, respectively. The green

and pink boxes highlight the sets of reactions represented by the two occurrences of the

motif with the highest normalized z-score.
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Fig 5. Representation of a network enumeration approach to map network motifs to function
In the first step, a large space of biophysical-chemical realistic pathways are generated

computationally, and represented as networks. The goal is to investigate the network motifs

responsible for the function z. The network space is expected to be composed of numerous

network of distinct functions. In the second step, networks are selected by determining those

capable of exhibiting the function z. The section can be made by analysing the network

dynamics using dynamical system theory, or network analysis methods (such as CRNT).

Once the networks capable of exhibiting function z are enumerated, the mapping between

network motifs and the function z is carried out by mining motifs in the enumerated

networks (third step). The motif responsible for the function z in all networks can be

selected from the motifs with the highest normalised z-score across all enumerated

networks.
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