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Adrenomedullin (AM) is a multifunctional peptide vasodilator that is essential for life. To date, numerous
in vitro studies have suggested that AM can mediate its biological effects through at least three different
receptors. To determine the in vivo importance of the most likely candidate receptor, calcitonin receptor-like
receptor, a gene-targeted knockout model of the gene was generated. Mice heterozygous for the targeted Calcrl
allele appear normal, survive to adulthood, and reproduce. However, heterozygote matings fail to produce
viable Calcrl™'~ pups, demonstrating that Calcrl is essential for survival. Timed matings confirmed that
Calcrl™'~ embryos die between embryonic day 13.5 (E13.5) and E14.5 of gestation. The Calcrl™'~ embryos
exhibit extreme hydrops fetalis and cardiovascular defects, including thin vascular smooth muscle walls and
small, disorganized hearts remarkably similar to the previously characterized AM~'~ phenotype. In vivo assays
of cellular proliferation and apoptosis in the hearts and vasculature of Calcrl™'~ and AM™'~ embryos support
the concept that AM signaling is a crucial mediator of cardiovascular development. The Calcrl gene targeted
mice provide the first in vivo genetic evidence that CLR functions as an AM receptor during embryonic

development.

Adrenomedullin (AM) is a potent peptide vasodilator that
has been implicated in a wide variety of normal physiological
processes including embryonic development (5), natriuresis
(36), regulation of salt and water appetite (41, 48), cellular
proliferation (7, 17, 49, 54), angiogenesis (11, 26), and antimi-
crobial defense (3). During many cardiovascular stresses such
as pregnancy, septic shock, hypertension, and renal failure,
plasma levels of AM are dramatically elevated and thought to
provide a protective homeostatic response, diminishing ad-
verse tissue remodeling and fibrosis associated with cardiovas-
cular stress (16, 35, 42-44).

Our previous studies using a genetically engineered AM
knockout mouse model have demonstrated an essential role
for the AM gene in the development of cardiovascular tissues
(5). Mice lacking the AM gene suffer from extreme hydrops
fetalis and die at midgestation. The most obvious phenotype of
AM ™'~ embryos is severe interstitial fluid accumulation and
generalized edema. Closer evaluation of the AM~/~ embryos
also revealed developmental cardiovascular defects that in-
clude thin vascular smooth muscle walls and smaller hearts
with thin compact zones and disorganized trabeculae (5). How-
ever, the cellular mechanisms underlying these embryonic car-
diovascular defects remain unclear.

Since the identification of the AM peptide over 10 years ago
(27), three putative receptors have been identified and sug-
gested to mediate the biological effects of AM based on their
ability to bind the peptide and elicit a cyclic AMP (cAMP)
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response to AM treatment in vitro. L1, originally cloned as an
orphan receptor (10, 15), binds to AM with a K, of 8.2 X 10~°
M and can mediate a cAMP response to AM when expressed
in COS-7 cells (21). It is coexpressed with the AM peptide in
most tissues (21) but is found in rat neonatal cardiac myocytes
at significantly lower levels than the two other putative AM
receptors (4). A second receptor, RDC-1, was originally iden-
tified as a receptor for the AM-related peptide, calcitonin
gene-related peptide (CGRP), but also binds to AM with a K,
of 1.9 X 1077 M and mediates a dose-dependent cAMP re-
sponse to AM when expressed in COS-7 cells (22). A third
receptor, commonly referred to as the calcitonin receptor-like
receptor (designated CRLR) and now usually referred to as
the calcitonin-like receptor (CLR), was cloned independently
by several groups (1, 14) but subsequently failed to produce
consistent expression, binding, and functional results with
CGRP or AM (1,9, 12, 14, 45). Several recent studies have also
failed to support the role of either L1 or RDC-1 as AM re-
ceptors (19, 25, 32, 39).

Most recently, the identification of a novel class of G-pro-
tein-coupled receptor (GPCR) activity-modifying proteins (re-
ceptor activity-modifying proteins are designated RAMPs) and
their association with CLR has helped to elucidate the most
likely mechanism through which the AM peptide transduces its
signal. Briefly, McLatchie et al. demonstrated that association
with RAMP1 made CLR bind preferentially to CGRP, while
association of CLR with RAMP2 or RAMP3 made it bind to
AM (39). This novel role of the RAMPs in GPCR cell signal-
ing implies that the spatial and temporal expression of RAMPs
dictates the presence and function of CLR as an AM receptor
or a CGRP receptor and helps clarify some of the past confu-
sion regarding AM signaling. However, no in vivo genetic stud-
ies to substantiate the identity of CLR as a functional AM recep-
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tor have been performed, despite great interest in the role of the
peptide during embryonic development and the possibility that
modulating AM function might prove valuable for the treatment
of cardiovascular disease.

In this paper, we used gene targeting in embryonic stem cells
to generate and characterize mice that are deficient for the
gene which encodes CLR. We find that although Calerl™/~
mice have no overt phenotypic defects, the Calcrl gene is es-
sential for survival, since no Calcrl™'~ pups have ever been
born from heterozygote matings. Significantly, the embryonic
lethal phenotype of Calcrl ™/~ mice is remarkably similar to the
phenotype we previously observed for AM ™'~ mice, including
hydrops fetalis and developmental abnormalities in cardiovas-
cular tissues (5). More detailed characterization of the growth
properties of Calerl™'~ and AM '~ vasculature and hearts has
further confirmed an essential role for this signaling pathway in
the growth and proliferation of the embryonic cardiovascular
system.

MATERIALS AND METHODS

Construction of the Calcrl targeting vector. To generate a Calcrl knockout
targeting vector, a 129S6/SvEv genomic library was screened for phage clones
containing the 5’ portion of the Calcrl gene. A genomic clone consisting of
approximately 11.5 kb and containing exons 3 through 9 of the Calcrl gene was
used to isolate and clone a 5’ short arm and 3’ long arm of homology into a gene
targeting vector (OSdupdel), which contains multiple cloning sites flanking a
phosphoglycerate kinase-neomycin cassette and also includes a herpes simplex
virus-thymidine kinase cassette. The 5.0-kb long arm of homology, which in-
cludes exons 7, 8, and 9, was isolated and subcloned with HindIII and Xhol
restriction sites endogenous to the gene locus. The 1.3-kb short arm of homology
containing exon 4 was generated by PCR using the genomic phage clone as a
template and oligonucleotide sequences that correspond to genomic sequences
5'-GGAAATTAGATTTTCAAGGGGTG-3' and 5'-GGCCTTTAAACTGTG
AGCAAAG-3'. The short arm was inserted into the targeting vector by blunt
ligation, and the final targeting vector was linearized with NotI (Fig. 1a).

Generation of Calcrl*'~ ES cells and Calerl™'~ mice. Standard gene targeting
methods were utilized to generate embryonic stem (ES) cells and mice lacking
CLR (30). Briefly, 129S6/SVEv-TC-1 embryonic stem cells were electroporated
with the linearized targeting vector shown in Fig. 1a. After the application of
positive (G418) and negative (ganciclovir) selection, a positive ES cell clone was
identified by PCR from >800 selected clones. For PCR-based screening of
targeted ES cells, we used three primers depicted in Fig. 1a: primer 1, 5'-GTG
ATTTGAGTCTGGAGA-3'; primer 3, 5'-GAAATGTGCTGTATGTTCAAG-3';
and primer 4, 5'-TGGCGGACCGCTATCAGGAC-3'. Male chimeric mice that
transmitted the targeted allele were bred to 129S6/SvEv females to establish an
isogenic colony. To isolate Calcrl™/~ embryos, heterozygote Calcrl™'~ breedings
were established, and the day of the vaginal plug was considered embryonic day
0.5 (E0.5). For routine PCR-based genotyping of mice, we used a three-primer
strategy in which primer 2 (5'-GCTATGCTTTGTTTTCTGACA-3’) and primer
3 amplified the wild-type (WT) allele, while primer 2 and primer 4 amplified the
targeted allele.

Generation of AM~/~ mice. The generation, genotyping, and characteriza-
tion of mice with a targeted deletion of the AM gene have been previously
described (5).

Gene expression analysis. Calcrl gene expression was analyzed by real-time
quantitative reverse transcription-PCR with the Mx3000P Real-Time PCR ma-
chine from Stratagene. Primers for Calcrl amplification were 5'-CAAGATCAT
GACGGCTCAATA-3" and 5'-CGTCATTCCAGCATAGCCAT-3'. The probe
sequence for Calcrl detection was 5'-FAM-CATGCAGGACCCCATTCAACA
AGCAT-TAMRA-3', where FAM is 6-carboxyfluorescein and TAMRA is 6-car-
boxy-tetramethylrhodamine. B-Actin served as an internal control for all reac-
tions. The primers used for B-actin amplification were 5'-CTGCCTGACGGCC
AAGTC-3' and 5'-CAAGAAGGAAGGCTGGAAAAGA-3'. The probe sequence
for B-actin detection was 5'-tetrachloro-6-carboxyfluorescein-CACTATTGGCAAC
GAGCGGTTCCG-TAMRA-3'. RNA was isolated from E13.5 embryos with
TRIzol reagent (GIBCO/BRL), DNase treated, and purified with an RNeasy Mini
Kit (QIAGEN). A total of 200 ng of total RNA was used in each reaction mixture.
The AAC; method (33) was used to determine the relative levels of Calcrl expression

MoL. CELL. BIOL.

a
STOP
WwT _ -
allele e
1 kb
Targeting tk s
vector :IW\
H p! p2__H l X  stop
Targeted . > . .
bt —Uﬁ_ﬂf—ﬂ—%’—u{l—u—b‘-ﬁﬂ—
probe
b o d
> = £ 100
=
2
9.0 kb ‘E’ 75
=)
7.4 kb § 50
g
bl
w25
=
]
ey 8

730 bp T o
530 bp

FIG. 1. Generation of Calcrl™'~ animals by homologous recombi-
nation. (a) Strategy to disrupt the Calcrl gene. (Top) Endogenous
wild-type allele. (Middle) Targeting vector. (Bottom) Targeted allele
following homologous recombination. Primer locations for PCR (p1,
p2, p3, and p4) are shown by arrows. The location of the probe used for
the Southern-based detection strategy is indicated by a labeled line
(probe). The targeting vector plasmid sequence is indicated by a thin
wavy line. Restriction sites: H, HindIIl; X, Xhol. The initiator methi-
onine and terminator codons are indicated as Met and STOP. (b)
Detection of targeted ES cells by Southern blot analysis. Digestion of
genomic DNA with HindIII results in a 9.0-kb fragment for the WT
allele and a 7.4-kb fragment for the targeted allele when probed with
the fragment depicted in panel a. (c) Primers depicted in panel a were
used to amplify genomic DNA from embryos. (d) Measurement of
Calcrl expression from total RNA extracts by real-time quantitative
reverse transcription-PCR. The relative quantity of Caclrl RNA in
Calerl™'~ and Calcrl™'~ embryos is represented as a percentage of total
Calcrl RNA in WT embryos. Error bars represent standard errors of
the mean.

and shown as a percentage of the wild type. All assays were repeated three times,
each with duplicates.

Histology. For histological analyses, embryos were dissected from the uterus at
the desired stage of gestation, fixed in 4% paraformaldehyde, dehydrated, and
embedded in paraffin wax. Sections (5 wm thick) were mounted on slides for
subsequent hematoxylin and eosin (H&E), anti-a-smooth muscle actin (anti-a-
SMA), bromodeoxyuridine (BrdU), or terminal deoxynucleotidyltransferase-me-
diated dUTP-digoxigenin nick end labeling (TUNEL) staining.

Anti-PECAM staining. Tissues were fixed in 4% paraformaldehyde in phos-
phate-buffered saline (PBS) overnight. Tissues were then cryoprotected with
30% sucrose in PBS overnight, embedded in OCT (Tissue-Tek) and cryosec-
tioned at 10 wm. Sections were rehydrated in PBS, quenched in 50 mM NH,Cl
in PBS, permeabilized with 0.2% Triton X-100-PBS, and blocked in 3% bovine
serum albumin-1% fetal bovine serum in PBS. Sections were incubated with
anti-platelet endothelial cell adhesion molecule 1 (anti-PECAM-1; catalogue no.
550274; BD Pharmingen) overnight at 4°C. After being washed with Tris-buff-
ered saline-Tween (TBST) and PBS, sections were incubated with a Cy3-labeled
donkey anti-rat secondary antibody (code no. 712-165-150, Jackson Immuno-
Research) for 2 h at room temperature. Sections were then washed with TBST
and PBS and mounted for imaging. Images were acquired on a Nikon E800
microscope with a Hammamatsu ORCA-ER charge-coupled device camera with
Metamorph software (Molecular Devices Corp.) and processed with Photoshop.

Anti-a-SMA staining. Paraffin sections were deparaffinized, rehydrated, and
subsequently placed in 0.3% H,O, in methanol for 15 min to block endogenous
peroxidase activity. Sections were then rinsed in distilled H,O and permeabilized
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in 3% bovine serum albumin with 0.2% Triton X-100 in PBS. After being washed
in PBS, specimens were incubated with a-smooth muscle actin (a-SMA) (cata-
logue no. A2547; Sigma) antibody for 1 h at room temperature. Sections were
then washed with TBST and PBS and incubated with an horseradish peroxidase-
labeled goat anti-mouse secondary antibody (catalogue no. 12-349; Upstate) for
90 min at room temperature. After being washed with TBST and PBS, the
peroxidase reaction was visualized with diaminobenzidine-hydrogen peroxide
(product no. 34065; Pierce), counterstained with 1% methyl green, and mounted
for imaging. Images were acquired on a Nikon FXA microscope and processed
with Photoshop.

Cell proliferation assay. To label proliferating cells, pregnant mice received a
single intraperitoneal injection of BrdU (B9285; Sigma), using 100 mg of BrdU
per kg of body weight. One hour after injection, pregnant females were eutha-
nized by cervical dislocation, and embryos were prepared for histology as de-
scribed above. BrdU was detected with the BrdU Staining kit from Zymed
(catalogue no. 93-3943). Images were collected using a Leica MZ 16 FA dis-
secting microscope, and the number of BrdU-positive cells was quantified as the
number of BrdU-positive cells per area with Image J software.

TUNEL cell death assay. Apoptotic cells were identified in 5-um paraffin-
embedded sections with the ApopTag Fluorescein In Situ apoptosis detection kit
(Chemicon) according to the manufacturer’s protocol. Images were acquired on
a Nikon E800 microscope with a Hammamatsu ORCA-ER charge-coupled de-
vice camera with Metamorph software (Molecular Devices Corp.) and processed
with Photoshop.

Statistics. Statistical analyses were performed with a Student ¢ test with un-
equal variance.

Experimental animals. All experiments were approved by the Institutional An-
imal Care and Use Committee of The University of North Carolina at Chapel Hill.

RESULTS

Generation of mice lacking the Calcrl gene. Mice in which
exons 5 and 6 of the Calcrl gene were deleted by homologous
recombination were generated using the targeting strategy
shown in Fig. la. The disrupted allele, which lacks the Calcrl
translation start site, was detected by Southern blot analysis
using a genomic probe fragment located outside the areas of
homology (Fig. 1b) and by PCR (Fig. 1c). To confirm that the
gene targeting effectively disrupted transcription of the Calcrl
gene, quantitative reverse transcription-PCR for Calcrl RNA
was performed on total RNA isolated from whole embryos. As
expected, Calcrl™’~ embryos expressed approximately half of
wild-type Calcrl RNA levels (38.2%; P < 0.0001 versus the wild
type) while Calcri™'~ embryos had no detectable levels of
Calcrl RNA, thus confirming complete loss of Calcrl expression
in knockout embryos (Fig. 1d).

Calcrl™'~ mice die at midgestation with extreme hydrops
fetalis. Mice heterozygous for the targeted Calcrl allele ap-
peared normal at birth, survived to adulthood, and repro-
duced. However, the breeding of Calcrl™'~ mice failed to pro-
duce any viable Calcrl™'~ offspring, demonstrating that the
Calcrl gene is essential for survival. Timed matings between
Calcrl*’~ mice revealed that, although the homozygous null
Calcrl™'~ embryos were indistinguishable from their wild-type
littermates at E11.5 (data not shown), by E12.5 the Calerl ™/~
embryos were readily distinguishable from their Calcri™" and
Calcrl™~ littermates by the presence of generalized, intersti-
tial edema (Fig. 2a). The edema formation rapidly progressed,
so that by day E13.5 all Calcrl ™/~ embryos suffered from ex-
treme hydrops fetalis (Fig. 2b) with an associated in utero
mortality rate of approximately 50%. By E14.5, all Calcrl ™/~
embryos examined were dead. We note that our previous stud-
ies with AM '~ mice (5) revealed a similar type of generalized
edema; however, the onset of the edema occurred 24 h later in
gestation at E13.5.
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FIG. 2. Calcrl™'~ embryos have massive generalized edema. (a) Gen-
eralized edema is observed throughout the entire body in Calcrl™'~ em-
bryos at E12.5. (b) By E13.5, the generalized edema in Calcrl ™/~ embryos
has progressed to severe hydrops fetalis. (c and d) H&E stain of trans-
verse sections through E13.5 WT (c) and Calcri ™/~ (d) embryos. The
thoracic cavity and interstitial tissues are filled with fluid and distended (d,
arrows). Magnification, X1.

Histological examination of Calcrl '~ embryos at E13.5 re-
vealed distended skin, due to fluid accumulation in the inter-
stitial space and a distended fluid-filled thoracic cavity (Fig. 2d;
Fig. 3e and f). We did not observe any significant hemorrhage
in the hydropic Calcrl~'~ embryos, suggesting that the blood
vascular system remained structurally intact.

Calcrl~'~ embryos have thin vascular smooth muscle walls.
Numerous reports generated from in vitro experiments have
shown that AM has either a negative or positive effect on
vascular smooth muscle cell proliferation (17, 20, 49, 55).
Therefore, we used our in vivo genetic model to determine the
role of AM signaling in the vascular smooth muscle cell layer
of the developing aorta.

Histological comparison of the descending aorta revealed
significantly fewer vascular smooth muscle cells in Calerl ™/~
knockout embryos than in their wild-type littermates at gesta-
tional days E12.5 and E13.5 (Fig. 3b, ¢, e, and f). This differ-
ence in vascular muscle wall thickness between Calcrl ™'~ and
wild-type littermates was not apparent 1 day earlier in gesta-
tion at E11.5 (Fig. 3a and d).

The percentage of BrdU-positive cells in the vascular
smooth muscle cell layer of the descending aorta of E12.5
embryos was quantified to determine the effects of CLR dele-
tion on cellular proliferation (Fig. 3g). We found a significant
reduction in the percentage of BrdU-positive cells in the vessel
walls of Calcrl ™/~ embryos compared to wild-type littermates
(17.67% = 1.17% for Calcrl™'~ versus 27.64% = 2.01% for the
wild type; P = 0.005).

To establish that the reduction in vascular smooth muscle
wall thickness in Calcrl ™'~ embryos was not affected by abnor-
mal smooth muscle cell differentiation or defects in endothelial
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FIG. 3. Calcrl™'~ embryos have thin arterial walls due to reduction in vascular smooth muscle cell proliferation. (a to f)Transverse sections
through the descending aorta of wild-type and Calcrl /~ embryos at E11.5, 12.5, and 13.5 were stained with H&E. The thickness of the vessel walls
at E11.5 is similar in wild-type and Calcri~'~ sections. However, by E12.5 and E13.5, the vascular walls are thinner in Calerl ™/~ mice (approximately
three cells thick) compared to wild-type controls (approximately six cells thick). Asterisks indicate the accumulation of interstitial edema in
Calerl™'~ embryos. The percentage of proliferating, BrdU-positive cells in the aortic walls of Calerl/~ mice is significantly less than in those of
wild-type controls (g). (h and j) Vascular smooth muscle cells in wild-type and Calcrl '~ aortas stain positive for a-SMA. (i and k) Anti-PECAM
staining shows that wild-type and Calcrl ™'~ aortas have normal endothelial patterning. Magnification, X 10. Scale bar, 50 wm.

patterning, we performed immunohistochemistry using anti-
bodies against a smooth muscle marker, a-SMA, and an en-
dothelial marker, PECAM. As shown in Fig. 3 h and j, the
aortic vascular smooth muscle cells of Calcrl™’~ mice, like
those of their wild-type counterparts, are positive for a-SMA,
demonstrating normal vascular smooth muscle cell differenti-
ation. Anti-PECAM staining also revealed a complete and
well-formed endothelial lining in the aorta, demonstrating that
endothelial tube formation and the final patterning of the
endothelial lining of the large vessels is unaffected in the major
arteries of Calcrl™~ mice compared to wild-type embryos (Fig.
3i and k).

Calcrl™'~ embryos have small and disorganized hearts.
Transverse sections through the embryonic hearts at E11.5
revealed no obvious differences between Calcrl ™/~ and wild-
type mice (Fig. 4a and d). However, by E12.5 (Fig. 4b and e)
the Calcrl '~ embryos had significantly smaller hearts than
their wild-type littermates. By E13.5 (Fig. 4c and f) the overall
heart size of the Calcrl ™/~ embryonic heart was approximately
two-thirds the size of the wild-type littermate heart. The atria,
mitral and tricuspid valves, endocardial cushion, and ventric-
ular septum appeared normal at all gestational ages (Fig. 4).

Higher magnification of the left ventricle showed that at E12.5
and E13.5 the compact zone of Calcrl™'~ hearts appeared thin
and discontinuous (Fig. 5f to h) compared to wild-type controls
(Fig. 5b to d). The myocardium also had a generally disorga-
nized structure, and the chamber appeared crowded (Fig. 5g
and h). Immunohistochemical staining to characterize the pres-
ence and location of cardiomyocytes (a-actinin), endocardial cells
(PECAM), and proliferating myofibroblasts (a-smooth muscle
actin) revealed no obvious abnormalities in Calcr/ ™/~ hearts,
compared to wild-type control hearts (data not shown).
Decreased cellular proliferation in Calcrl™'~ and AM ™/~
hearts. Based on our observation of smaller heart size and the
fact that both AM and CGRP peptides had previously been
shown to mediate cell growth, proliferation, and survival in a
variety of different tissues (2, 17, 37, 57), we evaluated the extent
of cell proliferation and apoptosis in developing Calcrl™'~ and
AM ™'~ hearts at various gestational stages. Using the incorpo-
ration of BrdU as a measure of cell proliferation, we found no
significant difference in the amount of proliferation in the
ventricles of E11.5 Calcrl™'~ embryos compared to that in
wild-type littermates (101 = 3.25 for Calcrl ™'~ versus 101.6 +
4.14 for wild-type; P = 0.927) (Fig. 6a). In contrast, by E12.5
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FIG. 4. Calerl™~ embryos have developmental heart defects. Transverse sections through the hearts of wild-type and Calcrl™'~ embryos at
E11.5, 12.5, and 13.5 were stained with H&E. (a and d) At E11.5, the overall heart size is similar in both wild-type and Calcrl~/~ embryos. (b and
€) At E12.5, the overall heart size in the Calcrl~/~ embryo is smaller than that of its wild-type littermate. (c and f) At E13.5, the overall heart size
in the Calcrl™/~ embryo is approximately two-thirds the size of that of its wild-type littermate. ¢, endocardial cushion; s, septum; t, tricuspid valve;
m, mitral valve; rv, right ventricle; lv, left ventricle. Magnification, X4. Scale bar, 200 pm.

we found a significant reduction in the total number of BrdU-
positive cells in the ventricles of Calcrl '~ embryos compared
to wild-type littermates (80.45 * 6.21 for Calcrl ™/~ versus
111.66 = 4.29 for the wild type; P = 0.005) (Fig. 6a). Similarly,
E13.5AM '~ embryos showed a significant reduction in BrdU-
positive cells in the ventricles compared to wild-type littermate
controls (58.12 = 2.51 for AM '~ and 82.52 = 8.87 for the wild
type; P < 0.05) (Fig. 6b).

Increased apoptosis in Calcrl™’~ and AM™~'~ hearts. Stain-
ing for apoptotic cells by TUNEL also revealed remarkable

Calcrl”-

E12.5

differences between the development of Calcrl ™'~ and AM ™'~
hearts compared to those of wild-type littermates. At E11.5, we
found no obvious differences in the overall number of apop-
totic cells which are normally present in the developing endo-
cardial cushion, ventricular septum, and ventricular apex of the
heart (data not shown). Comparison of TUNEL staining in
other organs of Calcrl™'~ and wild-type littermates at E13.5
also revealed no significant difference in the number of apop-
totic cells in the lung, dorsal root ganglia, or the central canal
of the spinal cord and only a slight increase in the liver (data

E135 ~ E13.5

FIG. 5. Calerl™~ embryos show thin and disorganized compact zones of the heart. Transverse sections through the hearts of wild-type and
Calcrl™'~ embryos at E11.5, 12.5, and 13.5 were stained with H&E. The compact zone in wild-type and Calcrl ™'~ embryos at E11.5 (a and €) and
E12.5 (b and f) is similar in thickness and cellular organization. At E13.5 (c and g), the compact zone is thinner in the Calcrl™’~ embryo. Higher
magnification (d and h) reveals a discontinuous and convoluted organization of the compact zone in the Calcrl '~ section. ch, chamber; cz, compact
zone. Magnification, X10 (a to ¢ and e to g); X20 (d and h). Scale bar, 100 pm (a to ¢ and e to g); 50 wm (d and h).



2516 DACKOR ET AL.

Q

EBWT
(I Calcrl

—h
(= T - T, |
o O ©

Avg. BrdU Positive
Cells /0.1 mm?
w
[=]

mBWT
DAM-

—
w O O N
o O o o

Cells /0.1 mm2

Avg. BrdU Positive &

E13.5

FIG. 6. Calcrl™'~ and AM ™/~ embryos have defects in cardiac cell
proliferation. The proliferation index of cardiac cells was determined
as the number of BrdU-positive cells per total area in transverse heart
sections. (a) No significant difference was found between wild-type and
Calcrl™'~ embryos at E11.5. However, at E12.5 the proliferation index
was significantly lower in Calcrl~~ embryos than in wild-type controls.
(b) The proliferation index of AM '~ embryos at E13.5 is significantly
lower than that of wild-type littermates.

not shown). However, by E13.5 we found a marked increase
(approximately six times more than the wild type) in the num-
ber of TUNEL-positive cells throughout the heart, particularly
in the ventricular apex, endocardial cushion, and septum of
Calcrl™'~ and AM '~ embryos compared to control littermates

(Fig. 7).

DISCUSSION

We used gene targeting in embryonic stem cells to generate
and characterize mice that are deficient for the gene that
encodes one of the three putative AM receptors, CLR. Our
most significant finding is that the Calcrl gene is essential for
survival, since Calcrl™/~ mice die in utero at midgestation.
Significantly, the embryonic lethal phenotype of the Calcrl™'~
mice is almost indistinguishable from the phenotype we previ-
ously characterized for mice carrying a targeted deletion of the
AM peptide (5). These shared phenotypes include severe gen-
eralized edema, developmental abnormalities in cardiovascu-
lar tissues that consist of reduced vascular smooth muscle cell
development in the large arteries, and a small overall heart size
with a thin and discontinuous compact zone. Although bio-
chemical studies have identified at least three putative recep-
tors for AM peptide signaling, the remarkable similarity be-
tween the phenotypes observed for these two knockout models
provides compelling genetic and in vivo evidence that CLR is
the primary receptor through which AM peptide acts during
embryonic development. However, our results do not exclude
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FIG. 7. Calerl™’~ and AM~/~ embryos at E13.5 have increased
levels of cardiac apoptosis. Typical pictures of TUNEL-stained trans-
verse sections. (a) The number of TUNEL-positive cells is greater in
Calerl™'~ (b) and AM ™'~ (d) hearts than in hearts of wild-type litter-
mates (a and c).

the possibility that L1 or RDC1 or both also contribute to the
function of AM at the same stage of life.

Another recent description of a gene-targeted mouse model
by Czyzyk et al. also provides additional compelling support for
our conclusion that disruption of AM signaling during embry-
onic development results in the consistent phenotype we de-
scribe. In their study, the authors show that deletion of the
gene that encodes peptidylglycine a-amidating monooxygen-
ase, an enzyme that serves as the sole source of peptide ami-
dation in the mouse, results in embryonic lethality, edema, and
cardiovascular defects that phenocopy the AM and Calcrl
knockout models. Since amidation of AM peptide is required
for its biological activity, the authors conclude that lack of
amidation results in loss of AM function, presumably by re-
ducing its ability to bind to its receptor(s), with a resulting
phenotype that is strikingly similar to that seen with AM knock-
out embryos. Because several mouse models for deletion of
genes that encode other amidated peptides exist in which sim-
ilar phenotypes are not observed, it is likely that inactivation of
AM signaling in peptidylglycine a-amidating monooxygenase
mutants is the primary cause of the phenotype observed (8).
Taken together, the description of a similar phenotype for
three separate knockout mouse models demonstrates that ab-
normal cardiovascular development and generalized edema
can be expected when AM signaling is disrupted during em-
bryonic development.

The only significant difference we found between the CLR
knockout and AM peptide knockout models is the timing of
phenotypic onset: the edema and cardiovascular defects ap-
peared 24 h earlier in the Calcrl™/~ knockout embryos (E12.5)
than in the AM '~ knockout embryos (E13.5) (5). Given the
recent finding that RAMPs determine the ligand binding af-
finity for CLR to either the CGRP peptide or the AM peptide,
the most likely explanation for the difference in time of phe-



VoL. 26, 2006

notypic onset is that Calcrl™’~ mice have lost the ability to
transduce signal for both AM and CGRP peptides by virtue of
losing a shared GPCR. The AM knockout mice may survive a
while longer because they still have CGRP peptide signaling,
which is probably absent in the more severely affected Calerl ™'~
mice. However, it is clear that CGRP signaling is not essential for
survival, since CGRP peptide knockout mice develop normally
and survive to adulthood with only modest defects in blood pres-
sure regulation and sympathetic nervous activity (13, 34, 47, 58).
In addition, our experiments do not rule out the possibility that
CLR, perhaps in association with different RAMPs, may bind and
mediate the function of other unidentified peptide ligands. Thus,
the precise reason for the difference in gestational phenotypic
onset between the Calcrl '~ and AM ™/~ mice remains an ongo-
ing area of investigation.

The cause of edema in the Calerl ™/~ and AM '~ mice also
requires further investigation. Embryonic lethality due to car-
diovascular defects in genetically engineered murine models is
sometimes associated with embryonic edema (6, 31, 38, 46, 50).
However, the edema is usually mild, localized to the subcuta-
neous region, and accompanied by hemorrhage and/or a
blood-filled liver. In contrast, two recent reports demonstrate
that generalized, interstitial edema similar to that seen with the
Calerl™'~ and AM '~ knockouts is caused by abnormalities in
or failure of lymphatic vessel development (23, 56). Given the
role of AM as an angiogenic factor, it is possible that a lack of
AM signaling by genetic deletion of either the AM peptide or
the CLR results in lymphatic defects that cause severe and
generalized hydrops fetalis. Current data are not yet sufficient
to conclude the cause of edema in our mice.

It is well appreciated that AM peptide can differentially
affect the growth properties of various cell types (2, 17, 37, 57).
For example, while AM can inhibit apoptosis of cardiomyo-
cytes (24, 51), it can also promote endothelial and vascular
smooth muscle cell proliferation (17, 40). The effects of en-
hanced or reduced AM signaling on cells of the cardiovascular
system are of particular interest, since AM peptide levels dra-
matically increase in patients suffering from many cardiovas-
cular conditions, including congestive heart failure (18), hyper-
tension (29), myocardial infarction (28), and cardiac hypertrophy
(52), and may provide protection against the development of
adverse tissue remodeling and fibrosis associated with cardiovas-
cular stress (43, 44, 53). Our data provide the first in vivo, genetic
evidence that the AM and CLR genes allow transduction of es-
sential signals during development that positively mediate the
growth and proliferation of vascular smooth muscle cells and
cardiac cells while concurrently negatively influencing cardiac cell
apoptosis.

In conclusion, our studies using a genetically engineered
knockout model for the Calcrl gene demonstrate an essential
role for the CLR GPCR during embryonic cardiovascular de-
velopment. The remarkable similarity between the Calerl™'~
and AM '~ embryonic phenotypes leads us to conclude that
CLR is the predominant receptor mediating AM signaling
during development.
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