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Structurally Informative Tandem Mass
Spectrometry of Highly Sulfated Natural and
Chemoenzymatically Synthesized Heparin and
Heparan Sulfate Glycosaminoglycans™*s

Muchena J. Kailemiat, Lingyun Li§, Yongmei Xu€], Jian Liuq], Robert J. Linhardt§,

and |. Jonathan Amsteri||

The highly sulfated glycosaminoglycan oligosaccharides
derived from heparin and heparan sulfate have been a
highly intractable class of molecules to analyze by tandem
mass spectrometry. Under the many methods of ion ac-
tivation, this class of molecules generally exhibits SO,
loss as the most significant fragmentation pathway, inter-
fering with the assignment of the location of sulfo groups
in glycosaminoglycan chains. We report here a method
that stabilizes sulfo groups and facilitates the complete
structural analysis of densely sulfated (two or more sulfo
groups per disaccharide repeat unit) heparin and heparan
sulfate oligomers. This is achieved by complete removal
of all ionizable protons, either by charging during electro-
spray ionization or by Na*/H* exchange. The addition of
millimolar levels of NaOH to the sample solution facilitates
the production of precursor ions that meet this criterion.
This approach is found to work for a variety of heparin
sulfate oligosaccharides derived from natural sources or
produced by chemoenzymatic synthesis, with up to 12 sac-
charide subunits and up to 11 sulfo groups. Molecular &
Cellular Proteomics 12: 10.1074/mcp.M112.026880, 979-
990, 2013.

Heparin (Hp)' and heparan sulfate (HS) are linear, polydis-
perse, and highly sulfated glycosaminoglycans (GAGs), with a
repeating disaccharide building block composed of a 1-4-
linked glucosamine and a uronic acid residue (1). The saccha-
ride residues may have a variety of modifications, and these
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are usually heterogeneous due to the nontemplate nature of
their biosynthesis (2). Glucosamine residues may be substi-
tuted with N-sulfo or N-acetyl and 3- and/or 6-O-sulfo groups.
Uronic acid residues can be either glucuronic or iduronic acid
and substituted with 2-O-sulfo groups (3, 4). These structural
features are thought to control Hp and HS biological activity,
e.g. their interactions with proteins, and so the structural
characterization of GAGs is an important target for chemical
analysis (1, 5, 6). A particularly well known example of a
GAG-protein interaction is the role of Hp as an antithrombin IlI
activator. A pentasaccharide unit with a very specific pattern
of modification interacts with antithrombin Il causing it to
undergo a conformational change that increases the antico-
agulation activity of antithrombin Ill by more than 3 orders of
magnitude (7, 8). Contamination of pharmaceutical Hp was a
major issue recently, i.e. associated with over 70 fatalities
worldwide (9-12). This problem highlights the need for rapid,
robust, and sensitive analytical methods for the analysis of
heparin and for identifying contaminants of similar composi-
tion (11). Although nuclear magnetic resonance spectroscopy
is often the method of choice for determining the structure of
GAGs, such as Hp and HS, it requires substantial sample
preparation to obtain pure samples, relatively large amounts
of sample, and time-consuming interpretation.

Mass spectrometry (MS) and tandem mass spectrometry
(MS/MS) offer high sensitivity and specificity and are often
used for the analysis of complex mixtures. For these reasons,
MS and MS/MS have been explored by a number of research-
ers as tools for the structural analysis of GAGs (13-31). Re-
cently, the sequence of intact full-length chondroitin sulfate
GAG chains from bikunin was elucidated (32). However, these
were sparsely sulfated compared with typical HS/Hp GAGs,
averaging less than 0.5 sulfate modifications per disaccharide
repeat unit. Hp in particular is highly sulfated, making it ex-
tremely difficult to deduce composition and other structural
details from intact samples. Controlled enzymatic digestion
(heparin lyases I, 1I, and Ill) (33) and chemical methods (using
nitrous acid) (34) can depolymerize Hp and HS to oligosac-
charides of sizes that can be analyzed using the current
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instrumentation. The resulting products occur as a mixture of
different sizes, compositions, isomers, and epimers, making
their characterization extremely challenging.

Use of MS to analyze highly sulfated HS oligosaccharides,
with two or more sulfo groups per disaccharide repeating unit,
is difficult due to the loss of labile SO with mild ion activation
(27). Negative mode electrospray ionization (ESI) is commonly
used to analyze GAGs due to its ability to preserve the sulfo
groups during the ionization process and its propensity to
form multiply charged anions from these acidic molecules
(35). Information about the composition and the length of the
molecule can be achieved by the first step MS but cannot
provide structural details on the monosaccharide residue con-
nectivity and locations of various GAG modifications, i.e. sulfo
groups, acetyl groups, and uronic acid C5 epimers. MS/MS is
required to obtain these structural details. Fragmentation of
glycosidic bonds produce ion products that determine the
composition of individual residues, although cross-ring cleav-
ages are useful for assigning the sites of modification within a
monosaccharide residue.

For Hp and HS oligosaccharides, previous studies have
shown that threshold ion activation methods such as low
energy collision-induced dissociation (CID) or infrared mul-
tiphoton dissociation produce a relatively low number of
structurally useful fragments, due to the preference for loss of
SO, rather than glycosidic bond fragmentation or cross-ring
cleavage (13, 25, 36). Nevertheless, CID has been used to
differentiate 6-O-sulfo and 3-O-sulfo groups in Hp disaccha-
ride units, due to differences in their multidimensional tandem
mass spectrometry (MS") fragments (37). Metal cationization
has also been used for the MS/MS analysis of carbohydrates
(838-42), and it has been found that increasing the charge
state and metal-hydrogen exchange in these biomolecules
increases the density of fragments and reduces SO, loss (17,
25, 43, 44). Hp and HS GAGs have been characterized by
their MS" with CID activation, for both multiply charged ions
cationized by Ca®* (and Na™ to a lesser extent), ranging from
a trisaccharide with four sulfo groups to a pentasaccharide
with eight sulfo groups. Although this work resulted in more
glycosidic and cross-ring cleavages, there were still too few
fragment ions to provide detailed structural information about
the sites of sulfo group modifications (25). However, this work
established that the presence of metal cations in these mol-
ecules increased the stability of the sulfo groups, leading to
more useful fragment ions (45). In recent years, electron-
based methods, especially electron detachment dissociation,
have proved to be very useful in both locating the sulfo groups
and determining the uronic acid C-5 stereochemistry of un-
dersulfated HS-derived tetrasaccharides, but the efficiency of
electron detachment dissociation decreases as the number of
sulfo groups per disaccharide unit increases (13-16, 18, 20,
22).

Sodium metal cation/proton exchange has been investi-
gated for electron detachment dissociation and infrared mul-

tiphoton dissociation of sparsely sulfated dermatan sulfate
oligosaccharides (one sulfo group per disaccharide) (17). This
work shows that increasing sodium cationization so that all
sulfo groups in the molecule are deprotonated greatly reduces
the number of peaks due to SO, loss, but this approach also
resulted in a reduction of the number of both glycosidic and
cross-ring cleavages (17). This study demonstrates a new
method to stabilize sulfo groups during MS/MS of Hp and HS
oligosaccharides, while producing much more extensive and
structurally informative fragmentation. This is achieved by the
exhaustive deprotonation of all ionizable sites in Hp and HS
oligomers, using sodium hydroxide to cationize or deproto-
nate every acidic group in the precursor ion. This approach
has recently been shown in our laboratory to be effective for the
highly sulfated heparin-like pentasaccharide drug, Arixtra® (46).
Here, we show that this approach is generally applicable to Hp
and HS oligosaccharides from pentasulfated tetrasaccharides
up to undecasulfated octasaccharide Hp, derived from natural
sources, as well as chemoenzymatically synthesized HS oli-
gomers up to 12 residues in length.

EXPERIMENTAL PROCEDURES

GAG oligomers were produced from naturally occurring sources
and by chemoenzymatic synthesis. Those produced by enzymatic
digestion of naturally occurring GAGs range from a pentasulfated
tetrasaccharide to an undecasulfated octasaccharide. The chemoen-
zymatically synthesized oligosaccharides range from a decasaccha-
ride with eight sulfo groups to a dodecasaccharide with 10 sulfo
groups and under-sulfated HS ranging from degree of polymerization
(dp) 10 to dp12.

Natural Hp Oligosaccharide Preparation—The heparin sodium salt
used was obtained from porcine intestinal mucosa (Celsius Labora-
tories, Cincinnati, OH). Heparin (6 g) was digested with 10 units of
recombinant heparinase 1 (EC 4.2.2.7) in a 250-ml volume at 30°C
until 30% completion when boiling water was used to quench the
reaction. Vacuum rotary evaporation was used to concentrate the
reaction mixture before filtering with a 0.22-um Millipore membrane.
Before loading the filtrate into the P-10 (Bio-Rad) column, the column
was equilibrated and eluted with 0.2 m NaCl solution. Uniform size
oligosaccharide fractions were pooled together and then desalted
using a P-2 column. These uniformly sized oligosaccharides were
lyophilized and then purified on a semi-preparative strong anion ex-
change (SAX)-HPLC (Waters Spherisorb S5). Fractionation of various
uniformly sized oligosaccharide mixtures was carried out using a
gradient of water and 2 m NaCl, and chromatographic profiles at 232
nm were used to combine fractions from repeated separations. Pri-
mary structure and the level of purity were performed using PAGE
analysis (47).

Chemoenzymatically Synthesized HS Preparation— A detailed pro-
cedure on the preparation of HS oligosaccharides used in this study
can be found in Ref. 48. Briefly, N-sulfonation or 6-O-sulfonation was
performed by incubating 6 g of de-N-trifluoro-acetylated or de-6-
O-sulfo N-trifluoro-acetylated oligosaccharide substrates with the ap-
propriate enzymes and 3’-phosphoadenosine 5’-phosphosulfate,
overnight at 37°C in a mixture of 80 um 3’-phosphoadenosine 5'-
phosphosulfate, 50 mm MES, pH 7.0, 1% Triton X-100, and 4 pg of
N-sulfotransferase or 6-O-sulfotransferase-1 and 6-O-sulfotrans-
ferase-3 in a total volume of 300 wl. Purification was carried out using
a DEAE column and dialyzed using 2500 molecular weight cutoff
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(MWCO) 3500 membrane and dried before further purification by a
DEAE-NPR HPLC column (0.46 X 7.5 cm; TosoHaas) (48).

Mass Spectrometry Analysis—A 9.4 Bruker Apex Ultra Qh-FTICR
instrument (Billerica, MA) was used in these experiments. Negative
mode ESI was used to ionize the samples using a metal capillary
(G2427A, Agilent Technologies, Santa Clara, CA). The samples were
introduced at a concentration 0.05-0.1 mg/ml in 50:50 methanol/
H,O. The degree of sodiation was controlled by the addition of 1-2
mm NaOH (Sigma-Aldrich) to the electrospray solution depending on
the level of sulfation of the analyte. All samples were infused at the
rate of 120 pl/h. The precursor ions were mass isolated in the external
quadruple with a 3-Da isolation window, and CID was performed in
the collision cell external to the high magnetic field region while
ensuring the precursor ion intensity remained above the product ion
intensity to minimize the production of internal fragments. The effect
of adding NaOH in the solution was studied by first introducing the
sample in H,O0/MeOH only and then with NaOH to a hexasaccharide
containing eight sulfo groups. The MS of the hexasaccharide sample
with and without NaOH is shown in the supplemental Fig. S1. Molec-
ular ions of charge state envelope for 3—, 4—, 5—, and —6 were
observed. Within the charge state envelope, there are numerous
peaks resulting from metal/hydrogen exchange. These include the
ones with Na* and K*/H™" individually and the ones with a combina-
tion of Na* and K" in a single peak. This phenomenon is clearly seen
when we zoom in one charge state envelope as shown in supple-
mental Fig. S1. The zoom in of the 5  charge state shows the
distribution of metal cation/hydrogen exchange peaks. One striking
observation from these data is the disappearance of K™ and Na*/K*
peaks after the addition of 1 mm NaOH solution. The peak intensities
of the remaining Na* peaks increase 2-fold, enabling the isolation of
the precursor in the quadruple mass filter without interfering peaks
around that would otherwise be co-isolated with the precursor.

One megapoint of data was acquired for each mass spectrum,
padded with one zero-fill, and apodized using a sine bell window. A
5-ppm mass accuracy was achieved through an external calibration,
and internal calibration using accurately assigned glycosidic bond
cleavage products yields a mass accuracy of <1 ppm. Accurate mass
measurement values were used to assign product ions, whose m/z
values were calculated using GlycoWorkbench version 2.1 (49). The
product ions are reported using the annotation described previously
(18), derived from the Domon and Costello nomenclature (50).

RESULTS AND DISCUSSION

Negative-mode ESI is a useful method for analyzing highly
sulfated GAGs because the labile sulfo groups are retained
and also because multiply charged anions are produced (5).
Sulfo and carboxyl groups comprise the acidic groups in
GAGs, which serve as charge-bearing residues in the ionized
sample. Alkali ion/proton heterogeneity can be a significant
issue for highly sulfated GAGs, because a substantial reduc-
tion in ion intensity results when the signal is divided into
several different mass channels. Adding formic acid to the
sample solution reduces both Na™ and K™ heterogeneity in
less sulfated GAGs, but it is less efficient for longer and more
highly sulfated Hp and HS oligosaccharides. Although formic
acid reduces the intensity of the Na™ and K* peaks, they are
still present, leading to difficulties during the ion isolation step
of a tandem mass spectrometry experiment; there can be
many co-isolated peaks that complicate the resulting MS/MS
spectrum. As shown in the supplemental material, addition of
1 mm NaOH removes all the adduct peaks that contain K™,

retaining only Na™ adducts. This increased the signal intensity
of the remaining Na™ containing peaks and allowed clean
selection of the precursor ions by the mass selective quadru-
ple. The structures of all the GAG molecules used in this work
can be found in supplemental Fig. S2. Also found in the
supplemental material are their mass spectra showing the
molecular ions obtained and an inset of an expansion of
regions around the precursor ions used in the MS/MS
analysis.

A pentasulfated tetrasaccharide (AUA2S-GIcNS6S-GIcA-
GIcNSB6S) (T1) was examined using the procedures described
above. The mass spectrum of this compound produced 2—,
3—, and 4— charge state molecular ions as shown in the
supplemental material. One of the molecular ion [M — 7H +
4Na]®~ that was selected for CID analysis has all the acidic
groups ionized, including five sulfo and two carboxyl groups.
A simple spectrum was obtained in which the fragment ions
permit the identification and location of all the sulfo groups
(Fig. 1). All the observed fragment ions are either singly or
doubly charged. The three most intense peaks in the spec-
trum are cross-ring fragments [°?A, + 4Na]®*~, and a frag-
ment from the same fragment with water loss, and [**A, +
4Na]~. The fragmentation pathway for these °?A, and #“A,
fragments at the reducing end is highly favored, and they are
observed as the most intense fragments in all the highly
sulfated compounds with two sulfo groups in the reducing
end residues and from a precursor with all the acidic groups
de-protonated. Abundant °-2A , fragmentation on the reducing
end has been observed for CID of heparin disaccharides by
others and the mechanism for its occurrence postulated by a
reducing end retro-aldol rearrangement pathway (30, 51, 52).
0-2p  formed at the reducing end can undergo further frag-
mentation forming *A,, product ion (53), and this may explain
the appearance of intense >*A,, fragments within the reducing
end of the aldehyde-terminated molecules studied here. CID
fragmentation of the same fully deprotonated precursor ion
[M — 7H + 4Na]®* from an isomeric tetrasaccharide (T3)
(discussed below) without sulfation at the 6-O-position on the
reducing end preceded by 2-O-sulfated IdoA produced much
less intense [>*A, + 4Na]®>", an indication that the presence
of 6-O-sulfation at the reducing end amino sugar promotes
the occurrence of this fragment. Additionally, the CID spectra
for the T3 [M — 7H + 4Na]®~ precursor had a markedly higher
percentage of SO, loss (2% of the fragment ion intensity)
compared with a much lower degree of SO loss for the T1
(<1%) as indicated in Table I. Other observable MS/MS spec-
tral differences between these precursor ions for the two
isomers can be obtained in the supplemental material. The
location of the two sulfo groups in the reducing end residue
T1 are identified by the 2*X, peak or by the mass difference
between the 2“A, and C, fragments. The location of the two
sulfo groups in the central glucosamine residue derive from
the mass difference between >*A, and B,, whereas the site of
sulfo group substitution in the nonreducing end residue is
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Fic. 1. CID spectra of pentasulfated heparin tetramer, precursor [M — 7H + 4Na]®~. The fragment ions observed are shown in the
annotated structure (inset). The precursor used has all the sulfates and carboxyl groups ionized through charge or Na*/H" exchange.

TABLE |
Shown are the compounds and the precursor ions used in this work
The product ion yield is given by (the sum of all assigned product ions divided by the sum of all the ions in the spectrum including the
precursor)-100. The percent of SO; loss experienced during the CID of the given precursor is calculated by summing up all the intensities of
the fragments resulting from SO, loss and dividing this value with the sum of the intensities of all assigned fragment ions excluding the
precursor and then multiplying the result by 100. Number of free protons in this work is calculated using this formula ((number of SO; +
carboxyl groups in the compound) — (precursor charge + number of Na* in it)).

Compound, no. of sulfates, and % product ion % of SO, loss No. of free . .
s ) 4 Sulfate/disaccharide
precursor with its m/z yield product ions protons

dp4 (T1) 5S, [M — 7H + 4Na]®*~ m/z 386.29 54 <1 0 2.5
dp4 (T3) 58, [M — 7H + 4Na]®*~ m/z 386.29 42 2 0 2.5
dp4 (T1) 58, [M — 6H + 2Na]*~ m/z 278.48 41 10 1 2.5
dp4 (T3) 58, [M — 6H + 2Nal]*™ m/z 278.48 30 21 1 2.5
dp4 (T2) 6S, [M — 7H + 3Na]*~ m/z 303.96 43 12 1 3

dp6 8S, [M — 11H + 7Na]*~ m/z 450.20 55 1 0 2.7
dp8 11S, [M — 14H + 7Na]’~ m/z 339.25 56 23 1 2.8
dp10 8S, [M — 13H + 7Nal®™ m/z 412.66 44 11 0 1.6
dp7 7S, [M — 10H + 5Nal®~ m/z 376.39 50 15 0 2

dp12 10S, [M — 16H + 9Na]"~ m/z 430.85 41 14 0 1.7
dp12 5S, [M — 11H + 4Na]’~ m/z 358.03 62 7 0 0.8
dp11 58, [M — 9H + 3Nal®~ m/z 384.87 62 7 1 0.9
dp10 4S, [M — 9H + 3Nal®™ m/z 344.70 63 6 0 0.8

ascertained through the mass difference of ©2X, and Y, frag-  ion whose intensity was considerably larger than the product
ments. The product yield from this precursor was 54%, and ions (commonly observed in most of the mass spectra re-
most of the remaining ion abundance was from the precursor ported in this work even though product ion yields are 30—
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60%, as product ions are divided between my fragment chan-
nels). There were only three peaks exhibiting SO, loss (from
C,, Cg, and %A, fragments) accounting for less than 1% of
the product ions confirming that the Na* ions stabilize the
sulfo groups during ion activation leading to backbone frag-
mentations. CID of a precursor ion from the same compound,
but with one ionizable proton present, [M — 6H + 2Na]*~, also
produced fragments that enabled the location of all sulfo
groups in the molecule but with markedly increased SO, loss.

This approach was tested with two additional tetrasaccha-
rides AUA2S-GIcNS6S-IdoA2S-GIcNS (T3) and AUA2S-
GIcNS6S-1doA2S-GIcNS6S  (T2), with five and six sulfo
groups, respectively. CID for singly protonated molecular ions
for T2 [M — 7H + 3Na]*~ and T3 [M — 6H + 2Na]*~ produced
fragments that were able to locate all sites of sulfo group
substitution. The structures for T2 and T3 with annotations
denoting the sites of observed fragmentation as well as their
MS/MS spectra and tables with the m/z values and assign-
ment of the fragments can be found in the supplemental
material. A lower charge state molecular ion [M — 7H +
4Na]®~ for T3 produced a product yield of 42% with only a
total of 21 fragment ions in the spectrum with 2% of all the
products resulting from SO loss. CID of T2 molecular ion
[M — 8H + 5Na]®*~ produced only 12 fragments (six cross-ring
and six glycosidic) with no loss of SO, fragments observed.
Another observation is that the presence of an acidic proton in
the selected precursor within these tetrasaccharide units
leads to much higher SO, loss, as seen from Table I. T1
precursor [M — 7H + 4Na]®~ with no free proton show less
than 1% SO; loss, whereas a different precursor [M — 6H +
2Na]*~ of the same compound but with a free acidic group
produced 10% SO; loss (the same is observed for T3).

An interesting observation from these data was the corre-
lation of particular fragment ions with uronic acid stereochem-
istry. 24A,, appears with significant abundance in the glucu-
ronic acid residue and is absent or present at very low
abundance in 2-O-sulfated iduronic acid residues. As will be
seen in the data below, 2“A, cleavages are absent in 2-O-
sulfated iduronic acid residues for all the compounds that we
have analyzed, except in these tetrasaccharides, where they
may occur with low abundance. These suggest that these
ions may be used to assign the stereochemistry of the uronic
acid residues in Hp and HS oligosaccharides. Because the
analyzed compounds do not contain desulfated uronic acid
residues, further investigations are required to ascertain
whether the observed fragmentation pattern is due to the
presence of the sulfate group in the iduronic acid, and this is
currently being done by exploring heparin and heparan sulfate
analytes containing desulfated uronic acid residues. Ongoing
work using this approach on epimeric chondroitin and der-
matan sulfate dp4-10 oligosaccharides containing GIcA and
IdoA, which are not sulfated, indicate that the A, fragment
often appears exclusively in GIcA and is absent in IdoA resi-

dues indicating that it may be useful in assigning the uronic
acid stereochemistry in those kinds of GAGs.?

The octasulfated hexasaccharide (AUA2S-GICNS6S-IdoA2S-
GIcNS6S-GIcA-GIcNS6S) was examined by this method, and
its CID spectrum is shown in Fig. 2. The mass spectrum
obtained from this compound contained charge states 3—,
4—,5—,and 6— as can be seen in the supplemental material.
Like the tetrasaccharides, the precursor ion selected for anal-
ysis, [M — 11H + 7Na]*~, had all 11 acidic groups deproto-
nated. The fragment ions [>*As; + 7Nal®~, [>?As + 7Na]®*~,
and its water loss are found to produce the three most intense
peaks in this spectra, similar to the tetrasaccharide in Fig. 1.
Despite the density of the sulfates per disaccharide (2.7), total
ion current of SO, loss fragments resulting from the CID of
this fully deprotonated precursor was 1% of the total ion
abundance, excluding the precursor intensity (Table I). As it
can be seen from Fig. 3, there are more X, Y, and Z fragments
on the nonreducing side of the molecule and more A, B, and
C fragments on the reducing end side, whereas the middle
residues of the molecule exhibit only a few fragments. How-
ever, the abundant glycosidic and cross-ring fragment ions
obtained unambiguously locate all the sulfo groups in the
compound except for the one in the iduronic acid (third resi-
due from the nonreducing end). This modification could be
located using a different precursor [M — 11H + 6Na]®>~ (data
not shown).

The undecasulfated octasaccharide (AUA2S-GICNS6S-
IdoA2S-GIcNS6S-IdoA2S-GIcNS6S-GIcA-GICNS6S) was suc-
cessfully characterized by this method (Fig. 3). There are 11
sulfo and four carboxyl groups in this octasaccharide, corre-
sponding to 15 ionizable protons. The [M — 14H + 7Na]” ™ ion
with a single protonated acidic group was analyzed by MS/
MS. Multiple molecular ions for charge states 4—, 5—, 6—,
and 7— were observed in the mass spectrum of this com-
pound. Use of 2 mm NaOH for this long and densely sulfated
oligomer led to the reduction of less sulfated molecular ions
leaving only highly sodiated ones. The mass spectrum and the
expanded regions of the precursor ion used for CID analysis
can be obtained from the supplemental material. An interest-
ing observation made during the application of this approach
for highly sulfated compounds is that it gets harder to get fully
deprotonated molecular ions at higher charge states. For this
dp8, there was no fully deprotonated molecular ion [M — 15H +
8Na]”~ observed in the MS spectrum, but other fully deproto-
nated precursor ions appeared in all other charge states with
increasing intensity as the charge state decreased. This obser-
vation was also partly true for the dp4 and dp6 compounds
analyzed as can be seen in the supplemental material.

The three most intense fragments observed in the tetra-
saccharide and hexasaccharide samples above were absent
or of low intensity. The reducing end °2Ag fragment was

2 M. J. Kailemia, A. B. Patel, D. T. Johnson, L. Li, R. J. Linhardt, I. J.
Amster, manuscript in preparation.
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Fic. 2. CID spectrum of the precursor [M — 11H + Na]*~ for the hexamer with eight sulfate and three carboxylate groups. All the acidic
groups in this precursor are ionized, and the annotated structure is shown in the inset. Abundant glycosidic and cross-ring cleavages enable

the location of the sulfate modifications in the structure.

observed but in low intensity, and there was no #*Ag product
ion observed, which is an indication that the presence of a
free acidic proton within the ion has a profound effect on the
fragments observed at the reducing end residue especially
the 2“A,, fragments. Increased loss of SO, was observed
accounting for 23% of the total ion abundance (Table I). We
believe that the mobile acidic proton as well as the density of
the sulfates (2.8 sulfates per disaccharide) within this dp8
oligomer has a substantive contribution to the observed in-
crease in SO loss. Despite this increase in SO; loss, the
product yield was high (56%), and there were sufficient gly-
cosidic and cross-ring fragments to locate all the sulfo groups
except the one on the reducing end residue, which was es-
tablished after fragmenting the fully deprotonated precursor
[M — 15H + 9Na]®~, and one in the iduronic acid residue (4th
from the nonreducing end). As observed in those other hep-
arin oligosaccharides analyzed above, the charge-reduced
precursor [M — 13H + 7Na]®~ was present in high abundance
in the CID spectra of the analyzed precursor.

Part of the challenge in structural elucidation of highly sul-
fated GAGs using mass spectrometry is the lack of structur-

ally defined oligosaccharides. A complementary method to
chemical synthesis that generates well defined HS structures
is the use of regioselective HS biosynthetic enzymes to syn-
thesize structurally defined sulfated oligosaccharides. Tan-
dem mass spectrometry of these compounds can help to
build a library of well defined fragments from specified struc-
tures that can be useful in identifying unknowns. This work
shows the analysis of this type of oligosaccharide using CID,
and the results establish the capability of this approach to
locate the sites of sulfo group substitution in most
oligosaccharides.

Fig. 4 shows the chemoenzymatically synthesized heptasa-
ccharide, GIcNAc6S-GIcA-GIcNS3S6S-1doA2S-GIcNS6S-
GIcA-AnMan, with seven sulfo groups and three carboxyl
groups. This molecule is similar in structure to the drug,
Arixtra®, which was examined recently using this approach
(46). The differences in structure from the chemoenzymati-
cally produced compound are that the first two residues from
the reducing end are replaced by a methyl group in Arixtra®,
and the nonreducing end residue contains an N-sulfo group in
Arixtra®, but an N-acetyl group in the chemoenzymatically

984

Molecular & Cellular Proteomics 12.4



MS/MS of

Chemoenzymatically Synthesized Hp and HS GAGs

Intens.
10 [M-13H+7Na]*
[M-14H+7Na]™ [B,+7Nal5-
3
[C4*+7Na-SO,J+/[Z,+7Na]*
[Ys+6NaJs-
2
[Ce+TNal" (g \7Najt
0.2
[M-14H+7Na-SO,J" Az+2Na
[Y +5Naj>
[0'2A6+7N a-SO3]3‘ [2_4A6+7Na_803]2_
C,+3Na/[C,+6NaJ>
2-
L [Bg+7Na-2S0,*
[Y,+3Na]* |
| | | | I | t
| | | | |
0 [P N wsll] m‘\J.J,L-V-'O-AIJ\LM\I‘;;J-L.-l»' " J:J..‘-‘»/\JJ‘-\‘&... ‘«.\A,.‘»‘\-‘.‘.x- ,l."\‘l.., e .\.\;\l.,u‘-‘«ﬂ.,\ DS T WSRPTTGON J VIS5 HUSIUROREIES PIULUIIRPITI [Ty
300 400 500 600 700 miz

Nqu);,H'
s504%
4" 456

Fic. 3. CID spectrum for an octamer with 11 sulfates. The precursor [M — 14H + Na]’~ used had only one acidic group uncharged.
Because of the density of ions formed, only the most intense fragments are annotated. Full assignment of all the fragments is placed in the
supplemental material. The annotated structure showing the fragments obtained is located below the spectrum.

prepared compound. The spectrum obtained from a fully de-
protonated molecular ion [M — 10H + 5Na]®~ produced
abundant glycosidic and cross-ring fragments that are able to
locate all the sulfo groups in the molecule, including the
trisulfated saccharide residue (third from the nonreducing
end). Because there are only three possible sulfo group loca-
tions in this residue, the mass difference from glycosidic bond
fragments Y5 andY, provides sufficient information to locate
them. 15% of the product ion intensity was due to SO, loss.
This is understandable considering the density of the SO, per
disaccharide which is two and the presence of a trisulfated
amino sugar within the chain (Table I).

The presence of 3-O-sulfation in the trisulfated residue
seems to affect its fragmentation patterns. Unlike most of the
other amino sugar residues, %?A and 2“A fragments are ab-
sent in the trisulfated sugar residue in the obtained CID spec-
tra of this heptasaccharide, and similar behavior was apparent
during the analysis of Arixtra®, which also contains a trisul-
fated amino residue. Researchers have postulated earlier that
a C,, glycosidic fragment can undergo further fragmentation to

form %2A ion, which can in turn lead to the formation of 2*A
ion within 1-4-linked glycans (52, 53). The fragmentation
mechanism for the formation of the %A ion requires the
3-O-hydrogen in the sugar ring (30), and because the 3-O-
hydrogen is substituted with SO; group within the trisulfated
residue, this fragmentation pathway may be less favored. As
noted earlier, 2“A,, fragments are common in glucuronic acid
residues and extremely rare in 2-O-sulfated iduronic acid
monosaccharides. There are two glucuronic acid residues
and one 2-O-sulfated iduronic acid residue present in this
oligosaccharide. The 2“A,, fragments are only present in the
two glucuronic acid residues and none on the 2-O-sulfated
iduronic acid residue.

The tandem mass spectrum of a chemoenzymatically pro-
duced decasaccharide with eight sulfo groups (GIcA-
(GIcNS6S-GlcA),-AnMan) is shown in Fig. 5. Molecular ions
having charge state 57, 6, and 7~ were obtained in the mass
spectrum for this compound, and the molecular ion [M — 13H +
7Nal®~ was used for CID analysis (supplemental material). All
the sulfo groups in the decasaccharide can be unambiguously
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Fic. 4. CID spectrum of heparin heptasaccharide precursor [M — 10H + 5Na]®>~ with all the acidic groups deprotonated. Abundant
glycosidic and cross-ring cleavages provide sufficient information to determine the location of all the sites of sulfation. Inset is the annotated

structure showing the obtained fragments.

located except the one on the 2nd residue from the nonre-
ducing end. Because of the large number of fragments ob-
tained, only the most intense ones are annotated in the figure,
but the entire annotations for this analyte can be found in the
supplemental material. There are very few C and Z ions in the
spectrum as compared with the B and Y ions. This is some-
what different for the highly sulfated oligosaccharides ob-
tained from natural sources as discussed above. The most
intense fragment ions from fully deprotonated molecular ions
for the naturally occurring compounds analyzed here are the
927 and 2“A ions at the reducing end residue, and the same
type of ions appears to dominate this spectrum and the one
for dp7 (discussed above), but this time they appear in the
disulfated amino sugar, the third residue from the reducing
end of these molecules. One characteristic for these intense
daughter ions for all the samples tested using this method is
that they appear when a fully deprotonated precursor is frag-
mented, and these daughter ions themselves contain fully
deprotonated acidic groups. The result obtained for the do-
decasaccharide with 10 sulfo groups (GIcA-(GIcNS6S-GIcA)s-
AnMan), whose MS/MS spectrum and annotated peak list are
found in the supplemental material, is similar to that of dp10

discussed above. Most of the sulfo groups were located after
fragmenting the full deprotonated precursor, [M — 16H +
9Na]’~. The fragmentation due to the SO, loss for the
dp10-8S and dp12-10S accounted for 11 and 14% of the
total ion abundance, respectively, as shown in Table I, con-
sistent with the number of sulfate groups in the analyzed
chain.

Fig. 6 shows a CID spectrum acquired from a fully depro-
tonated precursor ion, [M — 11H + 4Na]”~, of dodecasac-
charide (GlcA-(GIcNS-GIcA)s-AnMan) with five sulfo groups.
In the MS spectra charge states 4—, 5—, 6—, and 7— were
observed (supplemental material). Although only the most
abundant fragment ions are annotated in Fig. 6, most of the
low intensity fragments could be assigned, as can be seen in
the inset, representing an expansion of the region m/z 460-
500. All other annotations from this compound are listed in the
supplemental material. It is noteworthy that the product yield
was high (62%), and the most intense fragments were either
glycosidic or cross-ring fragments and not fragment ions
resulting from SO, loss, which accounted for only 7% of the
total product ion intensity. All the sulfo groups were located
unambiguously.
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Fic. 5. Shown are [M — 13H + 7Na]®~ CID spectrum and the annotated structure for highly sulfated HS decasaccharide. Only the most
intense fragments are annotated, but all the ion assignments can be found in the supplemental material. Below the spectrum is the annotated

structure showing the fragments obtained.

The annotated structures for a decasaccharide (GIcA-
(GIcNS-GIcA),-AnMan) and an undecasaccharide ((GIcNS-
GlcA)s-AnMan) with four and five sulfo groups, respectively,
are shown in Fig. 7. A fully deprotonated precursor was used
to obtain the data that assigned the sulfo group positions for
dp10. Because of a low density of fragments obtained from
the fully deprotonated precursor for dp11 (data not shown), a
precursor with one protonated acidic group was used. A large
number of both glycosidic and cross-ring fragments enabled
the assignment of the location of all the sulfo groups for the
decasaccharide structure except the sulfo group in the sec-
ond residue from the nonreducing end, which can be easily
identified after fragmenting a singly protonated acidic group
precursor for the same charge state. The sites of sulfo group
substitution in the dp11 were all located except the one at the
nonreducing end. Just like the more highly sulfated chemoen-
zymatically synthesized GAGs studied above, there were very
few C and Z ions observed in these spectra. As expected, the
less sulfated chemoenzymatically GAGs (0.8-0.9 sulfates/
disaccharide) had very low levels of SO, loss (6-7%), and the
level is half of that observed for the same length but higher

sulfated counterparts (1.6-1.7 SOj/disaccharide). The pres-
ence of a free acidic proton in dp11 with five sulfates did not
seem to affect this level as much as observed in the highly
sulfated naturally produced GAGs (Table I). Additionally, the
product yield for the less sulfated chemoenzymatically pro-
duced compounds (62-63%) was higher than the highly sul-
fated counterparts (41-50%) partly due to the relatively higher
number of fragments that could not be assigned.

There were no cross-ring fragments obtained within the
reducing end (AnMan) and the nonreducing end, as observed
for all the chemoenzymatically produced oligosaccharides.
This could be due to the type of residues in both the reducing
end and the nonreducing end of these molecules. Unlike the
chemoenzymatically produced GAGs used in this work, the
naturally occurring heparin oligosaccharides analyzed contain
A*~®-unsaturated uronic acid at the nonreducing end, which
promotes the formation of °2X through the well established
retro-Diels Alder rearrangement of the nonreducing end (30).
The 22X within the nonreducing end residue is observed in all
the naturally occurring heparin oligosaccharides analyzed
(Figs. 1-4) and not in any of the chemoenzymatic ones (Figs.
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Fic. 6. CID spectrum of chemoenzymatically produced dodecasaccharide precursor [M — 11H + 4Na]”~ with the inset showing a
small zoomed in region of the spectrum with the annotations. Only the intense peaks are annotated, but all fragment assignments for this
analyte can be found in the supplemental material.

CH,OH

CH,OH

CH,OH

2

Dp11- 550, [M-9H+3Na]®é

Fic. 7. Annotated structures for dp10 and dp11 with four and five sulfates, respectively, showing the fragments obtained from the
tandem mass spectrometry experiments. The spectra for these compounds can be found in the supplemental material.
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5-7). The disappearance of reducing end fragments observed
in the naturally occurring heparins (Figs. 1-4) within all the
chemoenzymatically produced GAGs (Figs. 5-7) tested by
using this approach may be due to the lack of terminal alde-
hyde, which could promote the formation of the °-?A fragment
through the retro-aldo rearrangement of the reducing end as
noted above.

CONCLUSIONS

Although mass spectral analysis is widely used in pro-
teomics, the mass spectrometric analysis of sulfated oligo-
saccharides has proven much more challenging, slowing
the development of glycomics. This work demonstrates that
under proper spray conditions, and with selection of the
proper precursor, MS/MS using CID will yield a complete
set of cross-ring and glycosidic fragment ions, which en-
ables the characterization of highly sulfated Hp and HS
oligosaccharides. The method is equally efficient for under-
sulfated and highly sulfated oligosaccharides as well as
short and long Hp and HS chains. Useful structural infor-
mation is produced when all the acidic groups are either
deprotonated or undergo Na*/H™ exchange. Previous
MS/MS studies on Hp and HS suggested that the charge
state should be equal to or slightly more than the number of
sulfo groups (21). This normally works well for shorter or
more sparsely sulfated GAGs (zero to two sulfo groups per
disaccharide subunit) but fails for highly sulfated GAGs (two
to three sulfo groups per disaccharide subunit). Although
other work had suggested use of ammonium acetate to
improve upon Na™ cationization, we find a substantial ad-
vantage from the addition of 1-2 mm NaOH to the spray
solution, specifically the elimination of other interfering
metal adducts, improving isolation and producing cleaner
and easier to assign fragmentation spectra.

There is a difference between these results and those
obtained previously with Ca®* cationization, for which there
were fewer useful fragments obtained for metal-adducted
highly sulfated GAGs (25). In this previous study, Ca®"
adduction gave an improvement in the production of struc-
turally significant product ions compared with those from
precursors lacking metal cations. However, the precursors
in prior studies were not exhaustively deprotonated. In all
the compounds studied in this work, the precursor ions
used had all acidic groups deprotonated or had one proton
present. In most cases, a single precursor provides all the
structural information (monosaccharide composition and
the sites of sulfo group substitutions), but in few cases, a
combination of assignments from fully deprotonated and
from a singly protonated acidic group provided the full
structural characterization. The work here demonstrates
that this approach, recently demonstrated in our laboratory
for the pentasaccharide drug Arixtra® (46), is generally ap-
plicable to Hp and HS oligomers of a broad range of lengths
and degrees of sulfation.
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