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Abstract

Induction of mammalian heme oxygenase-1 and exposure of animals to carbon monoxide 

ameliorates experimental colitis. When enteric bacteria, including Escherichia coli, are exposed to 

low iron conditions, they express an heme oxygenase-like enzyme, chuS, and metabolize heme 

into iron, biliverdin and carbon monoxide. Given the abundance of enteric bacteria residing in the 

intestinal lumen, we hypothesized that commensal intestinal bacteria may be a significant source 

of carbon monoxide, with the consequence that enteric bacteria expressing chuS and other heme 

oxygenase -like molecules suppress inflammatory immune responses through release of carbon 

monoxide. Carbon monoxide exposed mice have altered enteric bacterial composition and 

increased E. coli 16S and chuS DNA by real-time PCR. Moreover, severity of experimental colitis 

correlates with increased E. coli chuS expression in IL-10 deficient mice. To explore functional 

roles, E. coli were genetically modified to overexpress chuS or the chuS gene was deleted. Co-

culture of chuS-overexpressing E. coli with bone marrow derived macrophages results in 

decreased IL-12 p40 and increased IL-10 secretion compared to wild-type or chuS-deficient E. 

coli. Mice infected with chuS-overexpressing E. coli have increased levels of hepatic carbon 
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monoxide and decreased serum IL-12 p40 compared to mice infected with chuS-deficient E. coli. 

Thus, carbon monoxide alters the composition of the commensal intestinal microbiota and 

expands E. coli populations harboring the chuS gene. These bacteria are capable of attenuating 

innate immune responses through expression of chuS. Bacterial heme oxygenase -like molecules 

and bacterial-derived carbon monoxide may represent novel targets for therapeutic intervention in 

inflammatory conditions.
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INTRODUCTION

Carbon monoxide (CO) has anti-inflammatory effects in experimental models of varied 

inflammatory conditions(1-4). Mammalian cells generate CO endogenously during heme 

degradation by the heme oxygenase (HO) enzymes. Heme oxygenase-1 (HO-1) plays a 

critical role in defending the body against oxidant-induced injury(5). We have previously 

demonstrated that CO ameliorates active inflammation in, T helper (Th)1/Th17(6)- and a 

Th2-mediated(7) models of chronic inflammatory bowel disease (IBD) through HO-1 

dependent pathways. In macrophages and in vivo, pharmacologic induction of HO-1 

recapitulates the immunosuppressive effects of CO, abrogating expression of the pro-

inflammatory cytokine, IL-12 p40(6), while increasing expression of the anti-inflammatory 

cytokine, IL-10(7).

Interestingly, enteric bacteria such as E. coli express HO-like enzymes. In E. coli this gene is 

named chuS (8, 9). Despite marked differences in amino acid sequence, these bacterial 

enzymes share a similar structure and heme-degrading function with mammalian HOs(8). In 

bacteria, HO-like molecules scavenge iron from heme as a nutrient source in low iron 

conditions(10). Consequently, bacterial HO-like enzymes are up- and down-regulated in low 

and high iron conditions, respectively(11, 10).

Mammalian HO-1 protects against immune-mediated damage regardless of whether 

expressed in mammalian cells or by genetically engineered luminal bacteria. Notably, 

administration of a commensal strain of Lactobacillus lactis that over-expresses mammalian 

HO-1 is associated with decreased mucosal injury and inflammation in a rat model of 

hemorrhagic shock(12).

We hypothesized that the HO-like activity of commensal enteric bacteria attenuates 

inflammatory responses via CO production. Here, we report that the severity of 

experimental colitis correlates with increased E. coli chuS expression, E. coli chuS 

expression attenuates inflammatory immune responses in macrophages, and infection of 

mice with E. coli that overexpress chuS is associated with increased CO production and 

decreased serum IL-12 p40 in a sepsis model.
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MATERIALS AND METHODS

Mice

Wild type (WT) and IL-10 deficient (Il10−/−) mice on a C57BL/6 background were reared in 

a specific pathogen free environment (SPF) at the University of North Carolina and the Beth 

Israel Deaconess Medical Center Laboratory Animal Resources Facilities. All animals were 

housed in accordance with guidelines from the American Association for Laboratory Animal 

Care and Research. Protocols and experiments were approved by the Institutional Animal 

Care and Use Committee of the University of North Carolina and Beth Israel Deaconess 

Medical Center (Permit Number: 10-091.3). Mice were euthanized as soon as they lost 20 

percent in body weight, or showed signs of hunching, ruffled fur, immobility, decreased 

food or water intake, rectal prolapse or bloody diarrhea. Otherwise, all mice were euthanized 

at the end of the experiment. Mice were killed by exposure to CO2 followed by cervical 

dislocation.

Exposure of mice to carbon monoxide

WT male mice on a C57BL/6 background at the age of 10 weeks were exposed to carbon 

monoxide (CO) (250 ppm for one hour daily) for 14 days. Fecal pellets were collected and 

snap frozen in liquid nitrogen on day 0 (before first treatment), on day 14 (maximal 

exposure to CO), and 14 days after last CO treatment (washout) on day 28.

Monoassociation studies

Germ-free Il10−/− mice on the SvEv/129 genetic background were maintained on a normal 

iron diet in the National Gnotobiotic Rodent Resource Center at the University of North 

Carolina and selectively colonized (monoassociated) by oral gavage with 200μl of an 

overnight culture of NC101 E. Coli grown in LB broth. At the indicated time points, mice 

were euthanized and cecal contents were immediately snap-frozen in liquid nitrogen, and 

fragments of mid-colon were harvested for colonic explant culture.

Bacterial sepsis model

WT C57BL/6 mice were infected with one of three E. coli NC101 mutant strains through 

intraperitoneal injection of 2×108 bacteria/mouse. Mice were euthanized 15 hours later. 

Blood was withdrawn for bacterial cultures and cytokine serum level. Livers were harvested 

for CO content and mammalian cytokine mRNA expression.

Bacterial strains lysates and growth curves

The nonpathogenic murine E. coli strain designated NC101 was originally isolated from a 

randomly chosen colony from the feces of WT mice raised in SPF conditions(13, 14). 

Construction of E. coli NC101 mutants with deleted chuS gene (ΔchuS) and overexpressed 

chuS gene (pGEN-MCST5chuS) was done using standard molecular biology techniques 

(Supplementary Methods). For growth curves, Luria-Bertani broth was inoculated with an 

overnight bacterial culture and incubated at 37°C. The OD600 of the cultures was measured 

at the indicated time points. For Western blot analysis of ChuS and for infection of BMDMs 

with the different strains of E. coli NC101, Luria-Bertani broth was inoculated with an 
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overnight bacterial culture and in the morning 100ul of each culture was incubated at 37°C 

for 3 hours in the presence of 250μM iron chelator (2,2 Bipyridil- (Sigma)). Bacteria were 

washed with PBS and concentrations were determined using OD600. To prepare bacterial 

lysates, anti-proteases (Roche) and Laemmli Buffer were added and the mixture was boiled 

for 5 minutes. Supernatants were frozen at -80°C for future use.

Bacterial RNA extraction

Bacterial cultures: bacteria were washed, pelleted and maintained in RNAprotect Bacteria 

Reagent (Qiagen) at -80°C. RNA extraction was performed using RiboPure™-Bacteria Kit 

(Ambion) according to manufacturer’s instructions. The presence of contaminating genomic 

DNA was assessed using no reverse transcriptase controls. Cecal content: approximately 

300 mg of freshly-harvested cecal contents were snap frozen in N2 (l) and stored at -80°C 

until ready for use. Frozen samples were thawed into 1 ml of RNAprotect Bacteria Reagent 

(Qiagen) while vortexing, incubated at 25°C for 5 min, and bacterial RNA was isolated as 

described previously(14).

Bacterial DNA isolation

Bacterial genomic (g)DNA isolation from E. coli was performed using a DNA purification 

kit (Wizard® Genomic DNA Purification Kit, Promega) according to manufacturer’s 

instructions. Bacterial gDNA isolation from fecal pellets: fecal pellets were snap frozen and 

maintained at -80°C until extraction. Samples were suspended in lysis buffer containing 20 

mg/ml lysozyme and incubated for 30 minutes at 37°C and further treated chemically by 

SDS and proteinase K and mechanically homogenized using a bead beater (BioSpec 

Products). Finally, gDNA was extracted using a DNeasy DNA extraction kit (Qiagen) and 

brought to a concentration of 10 ng/ul.

Enteric microbial population analysis

To study bacterial compositional changes in fecal pellets, we used terminal restriction length 

polymorphism (T-RFLP) as described by Azcarate-Peril et al.(15). Briefly, amplification of 

the 16S rRNA gene was performed using the 16S universal primers 8F-Hex (5'-AGA GTT 

TGATC(A/C) TGG CTC AG-3'), and 1492R (5'-GGT TAC CTT GTT ACG ACT T-3'). 

PCR reactions were purified using a QIAquick PCR Purification kit (Qiagen). Each sample 

was digested with three different restriction enzymes HhaI, MspI and RsaI) (New England 

Biolabs) according to manufacturer’s instructions and mixed with size standards 

(Bioventures Map Marker 1000). Samples were run on an ABI 3130xl capillary sequencer 

for fragment detection of each of the enzymes. Peaks falling outside of the size standards 

(50–1,000 bp) were removed and only fragments with a relative peak area ratio (Pi) of ≥1% 

were considered for further analysis. To generate Principal-Coordinates graphs we used the 

Qiime (Quantitative Insights Into Microbial Ecology) module specifically developed for T-

RFLP analysis.
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Bone marrow-derived macrophages

Bone marrow derived macrophages (BMDMs) were harvested from C57BL/6 mice and 

stimulated with L929 cell media (as a source of M-CSF) for 6 days before their harvest, as 

previously described (16, 14).

Infection of bone marrow macrophages with E. coli

BMDMs were infected with E. coli (MOI 1:20) in a 12ml plate in RPMI 1640 medium 

supplemented with 10% FCS, 10μM Hemin (Frontier Bioscience) and 750 μM 2’,2’ 

Bipyridil (Sigma) for 3, 8 and 20 hours. Supernatants were collected and immediately frozen 

for cytokine concentration and RNA was extracted from adherent BMDMs to determine 

cytokine expression levels.

Bacterial real-time RT-PCR and PCR

Real-time PCR assays were performed with genomic DNA extracted from bacterial cultures 

and from enteric luminal contents as well as RT-PCR on bacterial complementary DNA 

(cDNA). A negative (no-template) control was included in every run. Amplification, 

detection, and analyses were performed in a HT-7900 machine (Applied Biosystems). 

Isolated bacterial genomic DNA (20 ng) was amplified using the following cycle profile: 

95°C for 10 minutes followed by 40 cycles of 95°C for 15 seconds and 60°C for 30 seconds 

and 72°C for 30 seconds. A melting curve was included in all runs. CT was defined as the 

cycle at which the fluorescence became detectable above the background fluorescence. PCR 

primer sequences are provided (Supplemental Table 1).

Mammalian real time RT-PCR

RNA isolation and real time RT-PCR was performed as previously described(17). PCR 

primer sequences are available upon request.

Cytokine ELISAs

Murine IL-12 p40 and IL-10 (e-Bioscience) immunoassay kits were used according to the 

manufacturers’ instructions.

Western immunoblot

Specific polyclonal rabbit anti-mouse antibodies against the E. coli ChuS peptide (38.63 kD) 

were made by GeneScript and used at a 1:3000 dilution. Secondary antibody (donkey-anti-

rabbit, GE Healthcare, NA934V) was used at 1:10000). Protein levels in supernatants, 

isolated from lysates of the three bacterial strains, were measured and equalized using the 

Coomassi Plus Assay Kit (Thermo Scientific).

Tissue carbon monoxide (CO) determination

Harvested livers were immediately removed from sacrificed mice and placed in iced buffer 

(0.1 M KPO4 buffer, pH 7.4) and flash frozen in liquid nitrogen and then stored at -80°C. 

Samples were then shipped in dry ice to the Stanford University School of Medicine (S.S. 

and R.W.). Upon arrival, specimens were diced with scissors, and washed with iced buffer. 

100±2mg tissue were then sonicated at 50% power with an ultrasonic cell disruptor with a 
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1/8” microprobe (Model XL2000, Misonics Inc., Farmingdale NY) in 900 µL buffer using a 

2.0mL polypropylene microfuge tube in an ice bath(18). Sonicates were kept on ice. CO 

levels in liver sonicates were analyzed as previously described(18). Briefly, 5µL of 30% 

sulfosalicylic acid (SSA) were pipetted into triplicate 2mL clear vials with 35µL ddH2O 

added. Two sets of triplicate blank vials containing 5µL of SSA and 55µL of water was also 

prepared. All vials were capped and then purged with CO-free air. In the tissue vial sets, 

20µL of liver sonicate was then injected through the septa of vial caps and into the SSA. 

Vials were then vigorously shaken before incubation at 0°C. After 30 min, CO released into 

the vial headspace was quantitated by GC using a 60x0.53 cm (internal diameter) stainless-

steel column packed with 5A molecular sieve, 60–80 mesh at a temperature of 125°C, and a 

reduction gas detector (RGA2, Trace Analytical Inc., Menlo Park CA) operated at 

270°C(19, 20). The analyzer has a practical detection limit of 1 pmol CO/vial. Tissue CO 

concentrations were calculated as pmol CO produced/mg FW and expressed as fold change 

from controls.

Statistical Analyses

Statistical significance for data subsets from experiments performed was assessed by the 

two-tailed t-test using GraphPad Prism software version 5 (GraphPad Software, Inc. CA, 

USA). For non-parametric data a Mann-Whitney test was applied and a one-way ANOVA 

for comparison of multiple groups. For correlation analysis we used Pearson's correlation 

coefficient or Spearman's rank correlation coefficient for parametric or non-parametric data, 

respectively. Analysis of similarities (ANOSIM) between enteric bacterial communities 

generated through T-RFLP analysis, was calculated through the corresponding function in 

Qiime software. A value of P<0.05 was considered statistically significant.

RESULTS

Exposure of mice to CO alters the enteric microbial composition

Wild type (WT) mice were exposed to CO and enteric bacteria compositional changes 

evaluated by T-RFLP analysis. Through this technique, each bacterial group is represented 

by a different length of the 16S ribosomal gene fragment generated by a restriction enzyme. 

The variety of all fragments in a fecal sample represents the enteric bacterial composition. 

One hour daily exposure of mice to CO for 2 weeks resulted in significant enteric bacterial 

compositional changes (analysis of similarities (ANOSIM): R=0.33, P=0.001) that returned 

closer to baseline composition after a washout period (no exposure to CO) of 14 days 

(Figure 1A). Targeted qPCR studies for common enteric bacterial species revealed a 

significant increase in the abundance of Escherichia coli (E. coli) spp. (7.52 fold increase, 

P<0.02) in fecal pellets of mice after two weeks of daily exposure to CO that also returned 

towards baseline within two weeks after CO withdrawal (Figure 1B). qPCR analysis of 

other bacterial groups (Lactobacillus spp, Bacteroides spp, Enterococcus faecalis and 

Clostridium coccoides) did not reveal similar changes (Supplemental Figure 1). ChuS is an 

enzyme with heme oxygenase activity. The chuS gene is found only in some E. coli strains. 

Interestingly, qPCR of the chuS gene revealed patterns of change in CO exposed mice as 

demonstrated for E. coli spp, with a significant increase in the abundance of chuS in fecal 

pellets of mice after two weeks of daily CO exposure (3.63 fold increase, P<0.005) that 
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returned towards baseline two weeks after CO withdrawal (Figure 1C). These results led us 

to speculate that CO may exert immunomodulatory effects on the host, in part, through 

selection of bacteria that express HO-like genes.

E. coli NC101 express a heme oxygenase-like gene

E. coli NC101 (NC101) is a resident commensal microorganism in mouse colon(8) and 

mono-association of germ-free (GF) Il10−/− mice with NC101 results in colitis. Given that 

not all E. coli strains utilize heme(21), we first verified that NC101 carries the chuS gene. 

The E. coli 0157:H7 chuS gene sequence shares 99% nucleotide sequence similarity with an 

un-annotated gene in E. coli NC101 with a putative heme degradation activity (E. coli 

NC101 contig6, whole genome shotgun sequence. ACCESSION AEFA01000022; 

REGION: 288646..289674, ECNC101_06049) (Supplemental Table 2). The presence of 

chuS in NC101 was definitively confirmed by sequencing the chuS PCR product using 

primers designed from the un-annotated sequence (data not shown- for primers see 

Supplemental Table 1). Furthermore, alignment of the NC101 chuS gene sequence with 

sequences of other bacterial HO-like genes, reveals high similarity to sequences of 

phylogenetically related bacteria as opposed to phylogenetically distant bacteria (Figure 
1D). Functionally, incubation of NC101 with an iron chelator resulted in >300 fold increase 

in chuS mRNA expression, supporting a role for chuS in NC101 iron homeostasis (Figure 
2).

E. coli chuS expression correlates with intestinal inflammation

Colitis results in decreased enteric iron(22) and increased enteric heme availability(23), 

propagating an environment favorable for heme utilizing bacteria. Monoassociation of germ 

free Il10−/− mice with E. coli NC101 results in colitis that progresses over a period of 10 

weeks(14). Interestingly, increased fecal chuS expression correlates (R=0.51, P<0.05) with 

progression of inflammation as assessed by IL-12 p40 levels from colonic explant cultures 

(Figure 3).

chuS expression modulates innate immune responses

While colonic inflammation in Il10−/− mice correlates with increased chuS expression it is 

unknown whether chuS can affect the host inflammatory response, akin to mammalian 

HO-1. To begin to address this question, chuS was deleted (NC101 ΔchuS) and 

overexpressed [NC101(pGEN-MCST5chuS)] from wild type E. coli NC101 (WT NC101). 

chuS expression was 2000 times higher in NC101 (pGEN-MCST5chuS) compared to WT 

NC101, and was not expressed in NC101 ΔchuS (Figure 2). Exposure of the three bacterial 

strains to an iron chelator resulted in significant increase (P<0.005) of chuS expression in 

WT NC101 and NC101(pGEN-MCST5chuS) but not in NC101 ΔchuS (Figure 2). Similarly, 

ChuS protein was not expressed by NC101 ΔchuS and was highly expressed by 

NC101(pGEN-MCST5chuS) (Figure 2C). Moreover, while all strains have similar growth 

curves when iron is abundant (Supplemental Figure 2), NC101(pGEN-MCST5chuS) strain 

demonstrates a growth advantage when heme is the source of iron (Figure 2), supporting the 

physiological role of chuS in heme metabolism and iron homeostasis.
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Bone marrow derived macrophages (BMDMs) were cultured with the three NC101 strains. 

IL-12 p40, a pro-inflammatory cytokine, was significantly decreased, while IL-10, a central 

anti-inflammatory cytokine, was significantly increased in BMDMs infected with 

NC101(pGEN-MCST5chuS) (P<0.05) compared to BMDMs infected with WT NC101 or 

NC101 ΔchuS (Figure 4). Similarly, in BMDMs infected with NC101(pGEN-MCST5chuS), 

mRNA expression of Il12b and Il10 was decreased and increased, respectively, compared to 

BMDMs infected with WT NC101 or NC101 ΔchuS(Figure 4). In BMDMs infected with 

WT NC101 and NC101 ΔchuS, differences in IL-12 p40 and IL-10 expression were not 

detected.

To examine whether alteration of macrophage cytokine expression by NC101 (pGEN-

MCST5chuS) is mediated by a bacterial product requiring ongoing active bacterial 

metabolism, BMDMs were cultured with heat killed bacteria. There was no difference in 

IL-12 p40 or IL-10 expression (Supplemental Figure 3), supporting the requirement of live 

NC101 (pGEN-MCST5chuS) to modulate cytokine expression. Furthermore, incubation of 

NC101 strains with BMDMs separated by a membrane non-permeable to bacteria (0.4um), 

resulted in decreased IL-12 p40 and increased IL-10 induction by NC101 (pGEN-

MCST5chuS) compared with NC101 ΔchuS (Figure 5), implicating a soluble substance 

released by live bacteria. Bacterial numbers of NC101 (pGEN-MCST5chuS) in the upper 

chambers were similar or higher compared to the two other strains (Supplemental Figure 
4), excluding the possibility that immunologic differences detected between strains are a 

consequence of reduced bacterial numbers.

E. coli NC101 chuS demonstrates immunomodulatory effects and increases CO in vivo

We hypothesized that chuS expression mediates immune modulation through release of CO, 

since CO is a soluble gas and a product of HO activity. To test this hypothesis, WT mice 

were injected intraperitoneally with equal numbers of each E. coli strain. There was a "dose 

response" correlation with increased hepatic CO and chuS abundance (Figure 6A). 

However, the only difference that reached statistical significance was that increased hepatic 

CO was detected in mice infected with NC101 (pGEN-MCST5chuS) compared to those 

infected with NC101 ΔchuS (17.8±3.4 vs 13.5±2.7 pmol CO/mg liver, respectively; P<0.05). 

Since CO has been shown to increase expression of mammalian HO-1 predominantly 

through recruitment of the transcription factor Nrf2(24, 25), the expression of mammalian 

Hmox1 and Nqo1, target genes of Nrf2, was determined. Hmox1 and Nqo1 expression was 

significantly increased in the livers of mice infected with NC101 (pGEN-MCST5chuS) 

compared to the other strains (Figure 6B, C). Despite significantly increased bacterial 

numbers in the blood of mice infected with NC101 (pGEN-MCST5chuS) (Figure 6), IL-12 

p40 was not increased in sera from these mice (7023±3840 pg/ml; 5661±3447 pg/ml; 

6006±2946 pg/ml) and IL-10 was marginally higher (6447±3190 pg/ml; 4212±2244 pg/ml; 

5640±2890 pg/ml) compared with WT- NC101 and NC101 ΔchuS, respectively. Moreover, 

the ratio of IL-12 p40/ bacteria in the NC101 (pGEN-MCST5chuS) injected mice- was 

significantly lower compared to the two other groups (Figure 6). Together, these data 

support in vivo immune modulation mediated by E. coli NC101 that overexpresses the chuS 

gene.
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DISCUSSION

The importance of mammalian HO activity in modulating immune responses has been 

demonstrated in multiple models of inflammatory disease(5, 4). Furthermore, enzymatic 

activity of HO on its substrate heme results in production of carbon monoxide (CO), which 

also exerts anti-inflammatory effects in cells and in vivo, in part through HO dependent 

pathways(6). Our group has shown that induction of mammalian HO-1 ameliorates colitis in 

several experimental models of intestinal inflammation(6, 7, 17). Moreover, we recently 

demonstrated that the enteric microbiota induce colonic expression of HO-1 in WT but not 

colitis-prone Il10−/− mice and that HO-1 expression inversely correlated with colonic 

inflammation and IL-12 p40 and TNF expression. Pharmacologic induction of HO-1 

protected Il10−/− mice from microbiota induced colitis when transitioned from germ free 

(GF) to conventional conditions(17). These experiments highlight the importance of 

mammalian HO-1 and CO in the maintenance of intestinal homeostasis. Consequently, 

HO-1, with pleiotropic anti-inflammatory effects, is a potential therapeutic molecule of 

interest in various inflammatory diseases including IBD

The metabolic capacity of the enteric microbiome is large and diverse, having profound 

effects on the host's health. Various enteric bacteria (e.g. E. coli, Shigella dysenteriae) 

express genes with HO activity. Given pleiotropic anti-inflammatory effects of CO, we 

hypothesized that CO exposure may alter the enteric microbial composition. Wild type mice 

(as opposed to mice with experimental IBD) were utilized to assess CO-induced changes in 

enteric microbial communities to avoid the confounding factor of microbiome alterations as 

a consequence of inflammation, as CO ameliorates intestinal inflammation(6, 7) and 

likewise, inflammation shapes microbial composition(26). Indeed, significant enteric 

microbial compositional changes were demonstrated following CO exposure that were 

reversed two weeks after exposure was discontinued (Figure 1A).

Interestingly, abundance of E. coli spp and chuS DNA increased with CO administration, 

while abundance of other bacteria, that do not express chuS or heme oxygenase genes, such 

as Lactobacillus spp, Bacteroides spp, Enterococcus faecalis, Clostridium coccoides and 

Segmented filamentous bacteria did not change (Supplemental Figure 1), suggesting that 

CO exposure of mice may result in selection for bacteria that can potentially produce CO 

endogenously. This may be partially supported by our observation that two weeks after 

withdrawal of CO exposure, mice enteric bacterial population (Figure 1A), E. coli gDNA 

level (Figure 1B) and chuS gDNA level (Figure 1C) returned to near baseline levels (before 

CO exposure). Similarly, others have demonstrated that a temporal exposure to an 

environmental factor, such as an antibiotic, results in an alteration of bacterial population 

composition and a quick return to baseline upon withdrawal(27). An alternative explanation 

for the alterations in the composition of luminal bacterial population may be a shift of 

bacteria from the mucosal to the luminal niche. We believe this option is less probable given 

the total number of bacteria in the lumen did not changed (data not shown).

Given the large biomass of enteric bacteria, some of which express HO-like genes, we 

became interested in whether enteric bacterial heme oxygenases physiologically participate 

in intestinal immune homeostasis. CO producing bacteria have been shown to be protected 

Maharshak et al. Page 9

Microbiol Immunol. Author manuscript; available in PMC 2015 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from direct bactericidal activity mediated by CO(28). While the exact mechanisms for 

bacterial resistance to CO are not clear, they may be involved in downstream signaling of 

CO, such as redox sensing (soxS and oxyR) or through genes that are associated with biofilm 

formation (tqsA and bhsA)(28). Specifically, it has been shown that resistance of 

Mycobacterium tuberculosis to CO is dependent on the cor gene, whose function is not 

entirely clear(29). Some of these mechanisms possibly allow survival of chuS expressing 

bacterial species in environments toxic to other enteric bacterial species. To verify that 

bacterial heme oxygenases have a role in the inflammatory process, the bacterial strain E. 

coli NC101 (NC101) was utilized. NC101 is a commensal enteric bacteria in mice with 

functional similarities to adherent-invasive E. coli (AIEC) strain LF82 isolated from patients 

with chronic ileal Crohn's disease(30). Monoassociation of germ-free Il10−/− mice with 

NC101 induces colitis by 5 to 7 weeks(13). We demonstrated that NC101 carries and 

expresses chuS, which is 99% homologous to a gene in E. coli 0157:H7 with HO activity. 

chuS expression in NC101 in vivo correlated with inflammation in monoassociated germ-

free Il10−/− mice. During inflammation, competition for iron is increased(22) and 

intraluminal heme becomes more available(23), both conditions favor increased expression 

of chuS(10). Moreover, in another murine model of IBD, a low iron diet was associated with 

decreased ileal inflammation(31). Altogether, these findings may support a survival 

compensatory mechanism of these bacteria, aimed to decrease the hostile inflammatory 

environment by increasing chuS expression to reduce the inflammatory response (and IL-12 

production) by the host. Similar mechanisms have been previously demonstrated for E. coli 

that expressed stress response genes aimed to protect it from oxidative stress upon intestinal 

inflammation(14). However, whether HO-like enzyme expression by enteric bacteria 

mediates anti-inflammatory properties in the setting of low intestinal iron availability in 

experimental IBD and whether expression of chuS gene by E. coli ameliorates intestinal 

inflammation in vivo remains to be determined by performing a formal mono-association 

study of germ-free Il10−/− and WT mice with WT NC101 or ΔchuS E. coli bacteria.

We have previously shown that in macrophages activated by bacterial products, induction of 

mammalian HO-1 in BMDMs (through exposure to CO or protoporphyrins), resulted in 

inhibition of inflammatory mediators including IL-12 p40 and induction of anti-

inflammatory pathways such as IL-10 and IL-22(7). However, whether bacterial expression 

of chuS mediates anti-inflammatory effects, akin to mammalian HO-1, has not been 

previously investigated. In BMDMs, overexpression of chuS in NC101 resulted in decreased 

production of IL-12 p40 and increase of IL-10, compared to BMDMs infected with WT 

NC101 or ΔchuS. Although the major anti-inflammatory effect of chuS over-expression is 

probably mediated through IL-10 production, there seems to be also a direct anti-

inflammatory effect of chuS over-expression by lowering IL-12 p40 levels through IL-10 

independent pathways. This was demonstrated when we infected BMDMs, isolated from 

Il10−/− deficient mice, with the three strains and found that exposure to the NC101 (pGEN-

MCST5chuS) strain resulted in a trend towards lower IL-12 p40 levels (Supplemental Figure 

5). Further, expression of TNF-α by the infected BMDMs did not change (data not shown) 

among the three groups, supporting the importance bacterial HO modulation of IL-10 and 

IL-12 p40 in BMDMs. These experiments were conducted in a low iron (through the 

addition of an iron chelator to the media) and heme-rich environment as an alternative iron 
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source and chuS substrate. Hence, bacterial heme oxygenases may have similar 

immunomodulatory effects to mammalian HO-1. Since heat killed bacteria did not 

demonstrate similar activities, this process is dependent on an active secretion and/or 

metabolism of immunologically active substances. Immunomodulatory effects of live 

bacteria were apparent when BMDMs were separated from the bacteria by a membrane that 

allowed only products <0.4μm to diffuse freely between chambers, demonstrating that 

physical interaction between bacteria and BMDMs or bacterial internalization is not 

necessary for modulation of cytokine expression. Bacterial presence from the BMDMs 

chamber was absent at the end of the incubation period and the number of bacteria of the 

NC101 (pGEN-MCST5chuS) strain were equal or higher in the bacterial chamber compared 

to WT NC101 and ΔchuS NC101, suggesting that demonstrated differences in cytokine 

expression are not due to differences in bacterial number(Supplemental Figure 4). 

Therefore, release of a soluble factor by NC101 (pGEN-MCST5chuS) mediated the 

described immunologic effects. In vivo, CO have been previously demonstrated to be 

protective against sepsis through increased clearance of bacteria(32, 33). Our findings 

support a decreased immune response mediated also by a soluble factor released by bacteria. 

We speculate this factor to be CO, although we have not directly shown that NC101 (pGEN-

MCST5chuS) bacteria release more CO than the other two strains.

There were no significant differences in IL-12 p40 or IL-10 expression in BMDMs 

incubated with WT or ΔchuS NC101. In addition, despite decreased growth of ΔchuS under 

low iron conditions (Figure 2A), this bacterial strain was fully capable of replication, 

perhaps through recovery of iron through alternate pathways(34). Hence, the 

immunomodulatory effects of chuS may be apparent only when there is a significant 

expression of the gene (as found in NC101 (pGEN-MCST5chuS)) and sufficient substrate in 

the environment.

Finally, following in vivo infection of mice, despite significantly increased numbers of 

NC101 (pGEN-MCST5chuS) recovered from the blood, IL-12 p40 levels per bacteria (CFU) 

were significantly lower compared to mice infected with WT ΔchuS NC101. One of the 

limitations of this study is that the NC101 (pGEN-MCST5chuS) has a growth advantage in 

substrate rich (and possibly substrate poor) environments compared to the other two strains. 

Nevertheless, this finding also strengthens our hypothesis that this strain has specific 

immunomodulatory properties mediated by chuS, as blood IL-12 p40 levels per bacteria 

were significantly lower in vivo compared to the other strains. Moreover, hepatic CO 

content of mice infected with NC101 (pGEN-MCST5chuS) was increased compared to other 

strains, leading to speculation that CO released by bacteria is responsible for attenuating the 

inflammatory response. However, we also demonstrate that NC101 (pGEN-MCST5chuS) 

induces hepatic Hmox1 expression to a greater extent than the WT NC101 and NC101 

ΔchuS, suggesting that mammalian HO-1 induction could also contribute to increased 

hepatic CO and immunomodulation. Another limitation of the current study is the lack of 

experiments using a NC101 ΔchuS complemented by the deleted gene, that should have 

demonstrated reversed effects for this strain. Nevertheless, the main aim of this work was to 

examine whether over expression of chuS by the NC101 (pGEN-MCST5chuS) is associated 
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with a decreased inflammatory response compared to the WT-NC101, as has been 

demonstrated and eventually further supported by the use of the ΔchuS NC101.

In addition, these findings add another layer to the understanding of the importance of CO as 

a regulator of the immune system. Similar to our findings, that bacteria capable of releasing 

CO, can modulate the innate immune response, others have demonstrated that CO-releasing 

molecules (CORMs) may reduce endotoxic shock response (35, 36) and modulate systemic 

IL-12 level. These actions have been demonstrated to be mediated modulation of TLR4 

expression on dendritic cells(37). Other mechanisms for immune tolerance induced by 

dendritic cells include heme oxygenase(38) and CO(39) dependent induction of T regulatory 

cells, modulation of TLR4 expression(40), and inhibition of antigen presentation to T 

cells(41). Moreover, CORMs can directly affect the adaptive immune response through 

modulation of pro-inflammatory Th1/Th17 and anti-inflammatory Th2 cells(42). These wide 

range of anti-inflammatory properties of CO and heme oxygenase have been found to be 

effective in various animal models. CORMs improved clinical and histological signs of 

experimental allergic encephalomyelitis(43) and exerted strong protective effect in type 1 

diabetes in mice(44) and CO exposure ameliorated the immune response and damage in a 

systemic lupus erythematosus model in mice(39).

Together, these findings suggest that enteric bacterial heme oxygenase expression may be 

involved in regulation of the enteric immune response. Our work as an aggregate begins to 

elucidate the cross-talk between mammalian HO-1 and the enteric microbiota. The enteric 

microbiota induce mammalian HO-1 and HO-1-derived CO(17), which in turn, may shape 

the enteric microbiota perhaps through selection for bacteria that express HO-like 

molecules. Thus, we speculate that host-microbe interactions in the intestine through 

mammalian and bacterial heme oxygenases are central participants in the in maintenance of 

homeostasis. These findings are particularly relevant to the pathophysiology of IBD. The 

prevalence of IBD and of other immune mediated diseases has been continuously increasing 

during the last few decades. Alterations in bacterial populations and function and in the 

immune response towards them have been shown to occur in these patients and have been 

regarded as a possible consequence of a cleaner environment and lack of early exposure and 

education of the immune response ('the Hygiene theory') or from loss of certain important 

bacterial groups that may have beneficial effects for the host ('the Old Friends theory')(45). 

Our findings may add an important evidence of how alterations in bacterial function may 

affect the immune response and may pave the way for future therapeutic interventions. More 

generally, modulation of bacterial HOs, should be examined in other models of systemic 

immune mediated diseases where CO have been shown to be beneficial, such as diabetes 

and multiple sclerosis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

BMDMs bone marrow derived macrophages

CO carbon monoxide

CORMs CO releasing molecules

E. coli Escherichia coli

GF germ-free

HO heme oxygenase

IL interleukin

IBD inflammatory bowel diseases

SPF specific pathogen free

T-RFLP terminal restriction length polymorphism

WT wild type
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Figure 1. Carbon monoxide (CO) exposure alters enteric microbial composition in mice
Ten C57BL/6 mice were exposed to CO (250 ppm for one hour/day) for 14 days. Microbial 

composition alterations were analyzed before CO exposure, after 14 days of exposure, and 

14 days after exposure by T-RFLP. (A) Principal coordinate analysis (PCoA) plot of 

bacterial populations demonstrates a significant effect of CO (gray circles, week 2) and CO 

withdrawal (black squares, week 4) on microbial populations compared to pre-exposure 

(triangles, week 0). (B) qPCR analysis of the 16S rRNA gene for E. coli spp. (C) and of 

chuS gene demonstrates an increase in abundance during CO exposure and a decrease 

towards baseline following withdrawal. Both were normalized to the abundance of total 

bacteria gDNA and represent a fold increase compared to day 0. (D) Multiple sequence 

alignment of bacterial heme oxygenase sequences. Alignment of the E. coli NC101 heme 

oxygenase, chuS, against heme oxygenases of other bacteria reveal >98% sequence 

similarities with phylogenetically proximal bacteria such as Shigela dysenteriae and E. coli 

O157:H7 as opposed to phylogenetically more distant bacteria such as Pseudomonas 

aeroginosa, Staphylococcus aureus and Neisseria meningitidis. Tree was built through 

clustalw software using rooted phylogenetic tree with branch length function on bacterial 

heme oxygenases gene sequences.
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Figure 2. Wild type (WT), chuS overexpressing (pGEN-MCST5chuS), and chuS deleted(ΔchuS) 
E. coli NC101 strains growth curves and chuS expression in response to changes in iron 
availability
(A) A growth curve (representative of 3 experiments) of the three NC101 strains in the 

absence of iron and in the presence of heme (as an alternative iron source) demonstrates a 

growth advantage in NC101(pGEN-MCST5chuS) compared to the two other strains. (B) 
chuS mRNA expression normalized to total bacteria 16s rRNA expression is significantly 

higher in WT E. coli NC101 compared to ΔchuS and in (pGEN-MCST5chuS) compared to 

WT NC101. In low iron conditions, expression of chuS is significantly increased in 

NC101(pGEN-MCST5chuS) and WT E coli NC101 and is absent in ΔchuS. (C) Western 

immunoblot (representative gel displayed from 3 experiments with identical results) 

demonstrates increased ChuS protein expression in NC101(pGEN-MCST5chuS) and no 

expression in NC101 ΔchuS. Equal amounts of protein (3.4ug protein) were loaded on the 

gel.
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Figure 3. chuS expression in E. coli NC101 monoassociated Il10−/− mice correlates with colonic 
IL-12 p40 secretion
129S6/SvEv germ free Il10−/− mice were colonized with E. coli NC101. Four mice were 

sacrificed at 3 different time points during a 10 week time course. (A) chuS expression 

normalized to total bacteria 16s rRNA expression increased significantly from week 1 to 

week 10 post colonization of mice. (B) Colonic IL-12 p40 secretion from colonic explants 

correlate with E. coli NC101 chuS expression from cecal contents (R=0.51, P<0.05).
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Figure 4. Expression of cytokines in bone marrow derived macrophages (BMDMs) cultured with 
genetically altered chuS and WT E. coli NC101 strains
BMDMs were cultured with WT, chuS overexpressing (pGEN-MCST5chuS),and chuS 

deleted (ΔchuS) E. coli NC101. Total RNA was extracted from cells and mRNA was 

assessed by qPCR and normalized to β-actin. Cytokine protein level was assayed by ELISA 

from supernatants. Expression of Il12b mRNA was assessed by qPCR after 3.5 hours, IL-12 

p40 protein level was assessed after 8.5 hours, Il10 mRNA was assessed by qPCR after 8.5 

hours and IL-10 protein level was assayed by ELISA from supernatants after 20 hours of 

incubation. Il12b mRNA expression normalized to β-actin (A) and IL-12 p40 protein level 

(B) production were significantly decreased in BMDMs incubated with NC101(pGEN-

MCST5chuS) compared to WT NC101 and NC101 ΔchuS. Il10 mRNA expression 

normalized to β-actin (C) and IL-10 protein (D) production were significantly increased in 

BMDMs incubated with NC101(pGEN-MCST5chuS) compared with WT NC101 and 

NC101 ΔchuS. Each result represents the mean± SEM from 5-7 independent experiments.
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Figure 5. IL-12 p40 and IL-10 regulation in BMDMs by NC101(pGEN-MCST5chuS) is mediated 
by a soluble factor secreted by live bacteria
(A) Culture of BMDMs with WT, chuS overexpressing (pGEN-MCST5chuS), and chuS 

deleted(ΔchuS) E. coli NC101 in two chambers separated by a membrane permeable to 

substances <0.4um, resulted in decreased IL-12 p40 production and (B) increased IL-10 

production by BMDMs incubated with the NC101(pGEN-MCST5chuS) compared to the 

other strains. Results are presented as mean±SEM from 3-4 independent experiments.
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Figure 6. chuS expression results in increased hepatic CO and expression of Nrf2 dependent 
genes in a sepsis model
Mice (n=8/group) were inoculated intraperitoneally with WT, chuS overexpressing (pGEN-

MCST5chuS),and chuS deleted(ΔchuS) E. coli NC101 strains. (A) Hepatic CO was 

measured as described in the methods 15 hours after infection and presented as pmol CO per 

mg hepatic tissue for individual mice. (B) Hepatic Nqo1 and (C) Hmox1 expression was 

determined by real time RT-PCR and presented normalized to β-actin for individual mice. 

(D) Blood bacterial load was determined by plating blood samples from each of the mice on 

LB gel plates and counting number of CFUs after an overnight incubation period. Bacterial 

CFU/ml was significantly higher in the blood of mice infected with (pGENMCST5chuS) 

compared with the two other bacterial strains. (E) Serum IL-12 p40 levels assayed by 

ELISA normalized to number of CFU/ml were significantly lower in mice infected with 

NC101(pGEN-MCST5chuS). Results are presented as mean± SEM.
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