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Abstract

Comprehensive understanding of cellular signal transduction requires accurate measurement of the

information flow in molecular pathways. In the past, information flow has been inferred primarily

from genetic or protein-protein interactions. Although useful for overall signaling, these

approaches are limited in that they typically average over populations of cells. Single cell data of

signaling states are emerging, but these data are usually snapshots of a particular time point or

limited to averaging over a whole cell. However, many signaling pathways are activated only

transiently in specific subcellular regions. Protein activity biosensors allow measurement of the

spatiotemporal activation of signaling molecules in living cells. These data contain highly

complex, dynamic information that can be parsed out in time and space and compared with other

signaling events as well as changes in cell structure and morphology. We describe in this chapter

the use of computational tools to correct, extract, and process information from timelapse images

of biosensors. These computational tools allow one to explore the biosensor signals in a

multiplexed approach in order to reconstruct the sequence of signaling events and consequently

the topology of the underlying pathway. The extraction of this information, dynamics and

topology, provides insight into how the inputs of a signaling network are translated into its

biochemical or mechanical outputs.
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1. Introduction

Optical microscopy has been widely applied to study the dynamics of molecules in

biological systems. Accompanied by the development of fluorescently-tagged proteins,
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microscopy can provide insightful information about not only the state of single cells, but

also subcellular variation in protein concentration and dynamics (Slavík, 1996). For

instance, Fluorescence Speckle Microscopy (FSM) has been used to track directly protein

motion and aggregation in supra-molecular structures (Waterman-Storer et al., 1998).

Alternatively, Fluorescence Correlation Spectroscopy (FCS) characterizes protein dynamics

by statistical analysis of intensity fluctuations measured within a small volume (Schwille

and Haustein, 2009). This method has been used to quantify the motion and interaction of

diffusing proteins and organelles (Digman and Gratton, 2011). There are many different

microscopy techniques designed to approach a wide variety biological questions and we

refer to (Goldman et al., 2010) for a complete description.

Although very informative, canonical microscopy techniques are limited to report only local

variations of protein concentration. However, the functionality of many proteins depends not

only on concentration but also on the protein’s activation state. For instance, members of the

small GTPases family of proteins are only active when bound to the nucleotide GTP and

become inactive when GTP is hydrolyzed to GDP (Raftopoulou and Hall, 2004). A

considerable amount of research has been done in the past decade to include the state of

molecular activity as an experimental readout. This effort led to the development of

fluorescent constructs that report protein activation in living cells, which are referred to here

as ‘activity biosensors’ or simply ‘biosensors’ (Newman et al., 2011; VanEngelenburg and

Palmer, 2008). The sensitivity of biosensors is often sufficient to resolve subcellular

variations in the activation state, even with mild, physiologically relevant stimulation of

pathways or with changes due solely to endogenous fluctuations. Therefore, unlike standard

fluorescent protein tagging strategies, biosensors can track the spatiotemporal propagation of

signals within a cell rather than just the redistribution of protein molecules (Figure 1).

The goal of this chapter is to illustrate the steps necessary to acquire time-lapse image

sequences of biosensors and to derive the information flow in signaling pathways from the

spatiotemporal variations of the sensor’s activation. The information flow defines both the

topology of signal transduction and the activation kinetics. Importantly, information flow is

a generic concept that captures not only the activation and/or transport of signaling

molecules as illustrated in Fig. 1, but also morphological events like the assembly and

disassembly of supra-molecular structures, the motion of a particular subcellular region, or

force generation. One of the key strengths of studying information flow is that it does not

require a direct link between the observed components. Sampled components may be linked

by several unobserved and potentially unknown intermediates, and yet, their relationships

can still be inferred. Therefore, measuring information flow provides a general means to

establish the organization of cellular signal transduction pathways, even when knowledge or

observations of the network components are incomplete.

2. Activity biosensors

2.1 Types of activity biosensors

The term “biosensor” has been applied to a wide range of imaging probes that detect

localization and/or activation of a particular molecule. Many of them are irreversible in

measuring the activation or deactivation of a molecule, making them unsuitable for the
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analysis of information flows in signaling pathways. To deduce information flows,

biosensors must report changes in the activation state of a molecule in both directions, from

an inactive to an active state and vice versa. Therefore, for the remainder of the chapter we

will focus only on this class of biosensors..

Many activity biosensors share a common design scheme in which an “affinity reagent” that

binds only to the active form of the probed signaling molecule is coupled to a “readout

module” which changes its optical properties, most often its fluorescence, in response to

binding or unbinding of the affinity reagent. Activity biosensors can be divided into two

broad categories. The first category, perhaps the most common, uses protein-based affinity

reagents and readout modules. These are genetically encoded biosensors in which protein-

based fluorophores are incorporated such that binding between the affinity reagent and the

target affects fluorescent properties, usually FRET (Periasamy, 2001). FRET is an excellent

readout for biosensors because small changes in the distance or orientation between the two

fluorophores can cause large changes in FRET efficiency, allowing sensitive detection of

protein binding or conformational changes. For example, one member of the FLARE

(Fluorescence Activation Reporter) family of Rho GTPase sensors (Hodgson et al., 2008)

consists of the RhoA protein fused to a CFP-donor followed by a YFP acceptor fluorophore

and finally the RhoA-binding domain (RBD) of the RhoA effector molecule Rhotekin, all in

a single protein (Pertz et al., 2006). As RhoA is activated by binding to GTP, it undergoes a

conformational change that increases its affinity for the RBD. RBD-binding then folds the

sensor so that the two intermediary CFP and YFP fluorophores are brought into close

proximity, resulting in a heightened FRET efficiency. Many biosensors of this class with

similar design principles have been designed over the past 10 years to monitor the activity of

a wide class of molecules. We refer to reviews such as (Newman et al., 2011;

VanEngelenburg and Palmer, 2008) for comprehensive tables and descriptions of these

sensors.

The second category of activity biosensor uses a hybrid design where the affinity reagent is

a protein but the readout module is an environmentally sensitive dye. For these biosensors,

the dye is ligated to the protein domain in a region where binding of the activated molecule

of interest alters the local solvent environment near the dye, thereby altering the dye’s

fluorescent properties. These sensors can be significantly brighter than their fluorescent

protein relatives, and report activation of endogenous proteins, but they can must be

mechanically loaded (ie via microinjection, electroporation etc), which limits the number

and type of cells that one can image. One example of this type of biosensor is a Cdc42

biosensor using a domain of WASP, a Cdc42 interacting protein that binds selectively to the

activated (GTP-bound) Cdc42 but not other closely related GTPases (Abdul-Manan et al.,

1999; Nalbant et al., 2004). This domain was used as the affinity reagent and an

environmentally-sensitive merocyanine dye was fused to this domain. When the sensor

binds to endogenous Cdc42, the solvent environment of the merocyanine dye changes. This

leads to increased fluorescence intensity at a particular wavelength. To distinguish activity-

associated changes in intensity from changes in localization the affinity reagent is fused with

a second tag, in the of the Cdc42 biosensor a GFP, serving as a reference signal for

ratiometric analyses (see below).
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2.2 Design of the affinity reagent

One of the most important aspects of biosensor design is the selection of the affinity reagent.

The key attribute of the affinity reagent is that it must recognize an inter- or intra-molecular

change in structure or binding caused by activation of the molecule of interest. Most

biosensors are produced using rational design methods where candidate affinity reagents are

based on known binding partners. For example, for the Cdc42 and RhoA biosensors, the

affinity reagent was based on effector proteins known to specifically bind to the active form

of the respective GTPase. As another example, in the Perceval ATP/ADP sensor (Berg et al.,

2009), a circularly permuted mVenus is connected to a portion of a protein, GlnK1, that

changes structure upon ATP binding. In this case ATP or ADP binding to the GlnK1 domain

differentially alters the mVenus structure leading to measurable changes in fluorescence at

different wavelengths. Most recently, affinity reagents have been developed by high

throughput screening of fixed biosensor scaffolds, conferring binding affinity for otherwise

intractable targets.

2.3 Practical considerations

Ideally a biosensor should have no effect on cellular processes and behavior. However, most

biosensors interact with endogenous signaling molecules and, because of this interaction,

high levels of biosensor expression can interfere with endogenous signaling through

participation in endogenous signaling process and by sequestering signaling molecules or

cofactors. It is therefore important to keep biosensor probe levels as low as possible to

minimize these perturbations. The behavior of cells containing biosensor should always be

compared to the behavior of cells that are not treated or contain a mock biosensor without

interacting domains (e.g. CFP alone). To obtain sufficient signal from cells expressing low

levels of the biosensor, light collection must be maximized. However, care must be taken

not to increase irradiation to the level where the biosensor bleaches or to where increased

phototoxicity becomes significant. There are several approaches to reduce both

photobleaching and phototoxicity; including use of neutral density filters and/or long

exposure times, rather than short excitation with intense irradiation, as well as the use of

enzyme systems that efficiently scavenge free oxygen in the medium to prevent damage

from free radical formation (e.g., oxyfluor, Oxyrase Inc.)

When imaging the spatiotemporal dynamics of a FRET-biosensor, one has to consider the

low dynamic range of activation. FRET-based sensors generally measure binary changes

(inactive vs. active) between a low and a high FRET state. The difference between the two

states varies widely between sensors and can be small. Thus, it is important to determine the

differences in the acceptor-to-donor emission ratios between the active and inactive states in

order to establish the relevant activation range of a biosensor. To accomplish this, the

biosensor construct should be mutated (creating dominant-negative or dominant-positive

mutants) in order to determine the minimum and maximum FRET signals in a native cellular

environment.

2.4 Image acquisition and data processing

While many methods exist for measuring FRET efficiency in FRET-based biosensors, the

most common involves acquiring raw localization and activation images. These images are
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then processed into a ratiometric image that indicates the local fraction of active and total

amount of signaling protein. This method is referred to as “sensitized FRET” (Periasamy,

2001). When using a CFP as donor and YFP as an acceptor fluorophore, images from three

channels are recorded: CFP excitation with CFP emission (donor localization image), CFP

excitation with YFP emission (FRET; activation image), and YFP excitation with YFP

emission (acceptor localization image). Ideally, images should be captured simultaneously

to avoid artifacts caused by cell movement in between frames. However, depending on the

rate of change of the activity being measured and the morphodynamic activity of the cell,

they can be captured sequentially.

Measurement of FRET efficiency via ratiometric analysis relies on the differences between

the localization and activation images, which are frequently subtle. This requires that any

other potential differences between these images be removed prior to calculating the ratio

image. Therefore, several corrections are required, and they are specific to the imaging

system used to collect the raw data. The first two corrections are termed dark current and

shade corrections, and they ensure that the measured spatial variations in image intensities

are accurate within each image and comparable across the different image channels. Dark

current noise refers to activation of the image sensor independent of incident light, which

can show significant spatial variation depending on the camera. The shade correction

compensates for the non-homogeneous illumination of the sample, which typically declines

in a smooth gradient from the center to the edge of the illuminated field. Background

subtraction and photobleach corrections ensure that the measured intensities are comparable

over time and across experiments at the whole-image level. Background subtraction corrects

for differences in spatially uniform, non-biosensor derived image intensities such as media

autofluorescence, over which the biosensor image intensities are superimposed. Photobleach

correction adjusts for the changes in fluorescence intensities over time associated with the

bleaching of either donor or acceptor. Finally, spectral overlap and imperfect spectral filters

cause ‘bleed-through’ between the donor localization image and the acceptor localization

image and the activation image, respectively. Bleed-through corrections therefore produce

fully independent activation and localization images. These are typically not used for

biosensors in which all components are combined in a single chain.

Our lab provides a software package that implements these corrections (download from

lccb.hms.harvard.edu). The workflow of the software is shown in Figure 2. It is also possible

in this package to correct for image misalignments associated with chromatic aberration

and/or mechanical shifts between different cameras (transformation step in Figure 2).

Further details can be found in the online documentation and in (Hodgson et al., 2008;

Machacek et al., 2009).

3. Extracting activity fluctuations in a cell-shape invariant space

Many signaling pathways are highly regulated and compartmentalized. Moreover, the same

signaling protein can be involved in different pathways at different cellular locations. For

instance, the small GTPase Rac1 promotes actin polymerization through the recruitment of

actin nucleators in cell lamellipodia while it also regulates focal adhesion maturation just

few microns away from the actin nucleation sites (Burridge and Wennerberg, 2004). In order
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to understand such differences in regulation, signaling events need to be probed with a

resolution that matches the spatial variability.

To locally probe signals in living cells we propose an in silico compartmentalization of the

cell area that is adaptive to cell shape changes (Lim et al., 2010; Machacek and Danuser,

2006; Machacek et al., 2009). Using time-lapse image sequences of cells containing activity

biosensors, the cell perimeter is segmented into sampling windows (See Figure 3A) in each

of which the local signaling activity is determined by averaging the biosensor readout over

all its pixels. The segmentation is performed in all frames of the sequence. Therefore, each

window gives rise to a time series that represents the local fluctuation in biosensor signal.

A major challenge in implementing the windowing strategy is to match corresponding

windows from one frame to the next. This is an important requirement because the time

series extracted from one window should represent signal fluctuations of a unique cellular

region. This prerequisite becomes difficult to satisfy when the cell undergoes significant

changes in morphology, either by changing the cell edge shape or the total area. Different

solutions to this problem have been proposed (Bosgraaf et al., 2009; Tyson et al., 2010). Our

lab has focused on studies of the connection between the spatiotemporal organization of

signaling activities and cell morphological outputs like protrusion, retraction, and migration.

Therefore, we developed a strategy for the definition of a cell-shape invariant window mesh

– that is, an in silico compartmentalization which can be applied irrespective of cell shape or

shape changes. After identifying and tracking the local motion of the cell edge, the sampling

windows at the cell border follow the frame-to-frame edge displacement. The sampling

windows in the cell interior are then constructed relative to these windows in a manner

which maintains a fixed relationship to the cell edge. For subsequent processing of the

signaling fluctuations the sampled image values are mapped window by window, time point

by time point into an activity map (Figure 3B). Importantly, this mathematical

representation of image variables is independent of cell shape – cell-shape invariant -

allowing comparison of signaling patterns between cells with distinct morphologies.

Moreover, in experiments where multiple image variables are acquired, such as

simultaneous imaging of multiple biosensors, this mapping enables the analysis of the

spatial and temporal relations between variables by correlation methods (described below).

Using this approach we have recently explored the relationships between cell

morphodynamics and the underlying forces, cytoskeleton dynamics and regulatory signaling

(Ji et al., 2008; Lim et al., 2010; Machacek et al., 2009).

Knowledge of the spatial scale of signaling and morphodynamic events is crucial for a

meaningful definition of sampling window size. If the window size is too large relative to

the spatial variation of the sampled signals, significant fluctuations will be averaged out. If

the window size is too small, the readout may be too noisy and neighboring windows may

measure the same signaling event. Both issues prevent meaningful analysis of signaling

dynamics via fluctuation series. A practical tool to define the window size is the spatial

autocorrelation of the activity map (Welch et al., 2011). The autocorrelation can be

interpreted as a measure of self-similarity, and is discussed in detail below. By choosing the

full width at the half maximum of the spatial autocorrelation as the window size the

windows offer a practical compromise between spatial resolution, noise and self-similarity.
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4. Correlation analysis of activity fluctuations for pathway reconstruction

This section describes a set of statistical techniques that can be applied to time series data

generated from a biosensor movie that has been processed and sampled by the methods

described above. The goal of this analysis is to determine correlations, time delays and

spatiotemporal scales of the sampled signals with the ultimate goal of piecing together the

sequence of signaling events in a pathway.

4.1 Defining the spatiotemporal scale of events

The length and time scales at which signaling events occur are not only biologically

meaningful, but are important factors in defining the parameters of data acquisition and data

analysis. As discussed above, the spatial scale of signal variations determines the

appropriate window size to be used for the sampling of activity maps. Analogously, the

temporal scale of signaling variations dictates the frame rate at which biosensor movies must

be acquired. Both the spatial and temporal scales are a priori unknown properties of the

studied pathway. Here we introduce autocorrelation and power spectrum as two methods for

determining these scales and for ensuring compliance of the experimental setup and data

analysis with the Nyquist theorem. The Nyquist theorem asserts that a continuous, noise-free

signal has to be sampled with a rate greater than twice the fastest frequency present in the

signal in order to fully reconstruct the original signal (Brigham, 1988). Although

conceptually simple, the theorem has important practical implications for experimental

design. For instance, Ptk1 cells exhibit a protrusion/retraction cycle with a period of ~130

seconds (Tkachenko et al., 2011). Converted into a frequency, this yields 0.008 cycles per

second, or 8 miliHertz (mHz). However, these long cycles may be superimposed by faster

switches between protrusion and retraction that occur every ~40 seconds (25 mHz).

According to the Nyquist theorem, one would therefore need to acquire an image faster than

every 20 seconds (50 mHz) to capture the processes that produce both slow/long and fast/

short edge movements. In practice, sampling at the Nyquist frequency will not be sufficient

for a meaningful analysis because of the measurement noise present in the signal. As a rule

of thumb, the sampling should be at least twice the Nyquist frequency. Thus, in the example

of PtK1 cell protrusions movies have to be acquired with frame rates of 10 seconds or faster.

4.1.1 Autocorrelation—The autocorrelation function (ACF) defines how data points in a

time series are related, on average, to the preceding data points (Box et al., 1994). In other

words, it measures the self-similarity of the signal over different delay times. Accordingly,

the ACF is a function of the delay or lag τ, which determines the time shift taken into the

past to estimate the similarity between data points. For instance, in a structured process

where nearby measurements have similar values but distant points have no relation, the

autocorrelation decreases as the lag τ increases. Conversely, the autocorrelation of an

unstructured processes like white noise is, in theory, equal to zero for all values of τ>0
because there is no effect from one time point on another. This fact is exploited to determine

the significance of the autocorrelation values. This significance can be estimated by

comparing the autocorrelation of a given time series X with the standard error of the

autocorrelation of a white noise with the same variance and number of points as that in X. A

value is considered significant if its magnitude exceeds the standard error of the white noise
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(Box et al., 1994). A positive autocorrelation value for a particular lag τ can be interpreted

as a measure of persistence of data points separated by this lag to stay above and/or below

the mean value of the signal. A negative autocorrelation indicates that data points separated

by this lag tend to alternate about the mean value. An important piece of information

provided by the ACF is the maximum lag τmax that still has a significant value. This lag

indicates the “memory” or temporal persistence of the fluctuation series. Data points

separated by time lags greater than τmax are completely uncoupled. The ACF is often

redundantly plotted for positive and negative values of τ, although by definition it is

symmetric about τ=0. Of note, the ACF can also be computed in space. In spatial

autocorrelation the lag τ is then interpreted as a distance between data points. In either case

the characteristics of the temporal and spatial autocorrelation of a signaling process help us

to understand the scale at which the pathway operates. These scales help us to define

appropriate sampling, and provide information on the spatiotemporal characteristics of the

associated signal transduction network.

4.1.2 Power Spectrum—The spatial and temporal scales at which cellular signaling

operates can be further dissected by analyzing the power spectrum of extracted time-series.

The power spectrum measures how the variance of a time series is distributed over different

frequencies (Box et al., 1994). The interpretation of the power spectrum is linked to the

definition of Fourier series, which describe a signal as a sum of sine and cosine waves with

different frequencies and amplitudes (Brigham, 1988). In this sum, each pair of sine and

cosine waves with a given frequency ω has a specific amplitude. The power spectrum

delineates the amplitudes for all sampled frequencies ω, giving a measure of the contribution

of each particular frequency to the net temporal behavior of the signaling system. In

practice, the power spectrum is calculated from an averaging process. The signal is split into

N overlapping windows, Fourier transformed and the amplitude values in each frequency are

averaged over all windows to create a global power spectrum density. This averaging

process corrects for the fact that the variance of the spectrum increases with the number of

points if the entire signal is used as one window. Additionally, it also provides the

confidence interval based on the standard deviation calculated from all the overlapping

windows (Brillinger and Krishnaiah, 1983). The power spectrum is closely related to the

ACF, and in fact can be mathematically defined as the Fourier transform of the

autocorrelation function. Like the ACF, the power spectrum is symmetric about the y-axis.

We discuss below the relationship between the ACF, power spectrum and temporal

resolution, but the very same considerations apply to data sequences sampled in space.

Whether analyzing spatial or temporal behaviors, the power spectrum allows us to identify

specific scales or ranges of scales which dominate the spatiotemporal behavior of the

signaling network being observed.

4.1.3 Optimizing the spatiotemporal sampling of activity fluctuations—As

mentioned above, the accurate measurement of the topology and kinetics of information

flow in signaling networks requires sampling of the associated activities at appropriate

spatiotemporal scales. These scales are rarely known prior to the experimental process and it

is therefore necessary to estimate them from measurements of the signaling system of

interest. We describe here how the ACF and power spectrum support this scale selection.
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The former is a time domain method that estimates the overall memory of the system that

generated the time series whereas the power spectrum shows the combination of frequencies

or frequency bands that compose the signal. For activity biosensor movies, it is generally

easier to consistently estimate the ACF than the power spectrum. This is because a reliable

estimation of the power spectrum requires the acquisition of longer time series (Box et al.,

1994). Yet, both techniques can assist in identifying the sampling rate required for the

reconstruction of signaling events. In general, this involves iterating between experiment

and estimation of the ACF and power spectrum until certain requirements are met. For

instance, starting with an image acquisition rate F0, one can estimate the autocorrelation of

the sampled signals and record the maximum significant lag τmax. To test whether F0 is

sufficient, one can estimate the autocorrelation using a down-sampled version of the signals,

where for example every other frame is excluded from the analysis. If the maximum lag

 of the down-sampled signal has the same value as τmax, then the current sampling rate

F0 is more than sufficient, and can be decreased to reduce image acquisition artifacts such as

phototoxicity or photobleaching. However, if the new maximum lag  is smaller than

τmax, no conclusions can be drawn about the sufficiency of F0. A new experiment with a

faster frame rate F1 needs to be performed. Once again, the ACF and the maximum lag 

associated with the new frame rate F1 need to be estimated and compared with τmax.

Similarly to the previous comparison, F1 over-samples the signals if  but no

conclusions can be drawn if . New experiments with faster frame rates are

needed until the condition  is satisfied. The satisfaction of this over-sampling

condition implicitly translates into compliance with the Nyquist theorem. Similarly, the

power spectrum can also be used to elucidate the necessary spatiotemporal sampling scales.

Starting with an under-sampled signal, gradual increases in the frame rate should result in

increasing amplitudes in higher frequency bands of the power spectrum. This is because

higher acquisition rates allow measurement of fluctuations associated with high-frequency

signaling behaviors. Over-sample conditions are reached when an increase in the sampling

rate does not result in additional significant amplitudes in the power spectrum. This

indicates that the highest-frequency signaling behaviors have already been captured, and

faster imaging will provide little additional information.

The same procedures described above can be applied to the spatial component of the

sampled signals. Here, the analysis needs to determine first whether the image pixel size is

sufficiently small to capture the spatial variation of the observed signaling activity. If this is

not the case, then the imaging setup must be modified by either an increase in magnification

and/or decrease in camera pixel size. If however the pixel size is sufficiently small, the

spatial autocorrelation function or power spectrum can be used to determine the allowable

spatial binning of the signal, i.e. the size of the sampling windows. For FRET-based

biosensors utilization of immersion objectives is usually necessary to collect the weak

fluorescence signal these probes emit. Immersion objectives have a magnification of 40×

and more, which implies sub-micron pixel sizes (depending on the camera). Considering the

range of diffusion rates of signaling molecules in cells, this is generally sufficient for the

sampling of signaling events. Hence, the spatial scale analysis is generally limited to
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defining the appropriate binning of an inherently oversampled signal into sampling

windows.

Figure 4 shows an example of the effects of the chosen sampling rate on the reconstruction

of a theoretical signal. The simulated signal used in this example has two frequency bands

[0.009–0.01] Hz and [0.04–0.05] Hz with lower amplitude values for the second band. In

Figure 4, both autocorrelation and power spectrum were calculated by sampling the original

signal every 5, 10 and 20 seconds (or 0.2, 0.1 and 0.05 Hz). The immediate decay of the

autocorrelation function to an insignificant value in Figure 4B would suggest a short

memory in this time series. However, the power spectrum in 4C clearly shows information

in the 0.009–0.01 Hz frequency band. This example illustrates two key properties of the time

scale analysis via ACF and power spectrum. First, per the Nyquist theorem, at a sampling

rate of 0.05 Hz no signal faster than 0.025 Hz can be reconstructed. Therefore, the sampling

in this example is insufficient for a complete recovery of the full information contained in

the signal. Second, while the computation of the autocorrelation function is more robust for

short time series, the power spectrum can recover partial information about the signal (only

the first frequency band of the signal was recovered in Figure 4C). Following the logic

introduced above for optimizing the time sampling, increasing the sampling frequency to 0.1

Hz results in both a more informative ACF and power spectrum (Figure 4 E, F) although the

power spectrum still can not fully resolve the entire range of frequencies in the signal. A

further increase to 0.2 Hz does not change the maximum lag in the autocorrelation (Figure 4

H), indicating 0.2 Hz as a reliable frequency for reconstruction of the original signal, and

allowing complete reconstruction of the signal’s frequency components in the power

spectrum. This illustrates how, even without a priori knowledge of the spatiotemporal scales

over which a signaling network operates, iteration between experiment and analysis needs to

be implemented for selection of the appropriate sampling scales.

4.2 Establishing relationships between pathway events

The ACF and power spectrum are valuable tools for understanding the dynamics of a signal

and therefore a single component of a signaling network. However, much of the

functionality of a biological system relies on the interactions among their constituents. We

introduce here two statistical tools that can be used for uncovering relationships between

measured signals and thereby allow inference of the nature of interactions between the

measured signaling components: the cross-correlation and coherence. Analogous to how the

ACF and power spectrum measure the relationship between a signal and itself at different

time delays or frequencies, the cross-correlation function (CCF) and coherence quantify

linear relationships between two different signals in the time and frequency domain,

respectively. Combining these with spatially localized sampling, the relationship among

signal events can be probed for different cellular regions.

4.2.1 Cross-correlation—Analogous to the ACF, the CCF determines the strength of any

linear relationship between two sampled time series representing two different signaling

activities as a function of a given lag τ (Box et al., 1994). One can think of the lag in the

following way: a positive lag means that one time series is fixed as the reference and the

second time series is shifted into the past, i.e. the events in the second time series happen
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after the potentially corresponding events in the reference series. With a negative lag, the

second time series is shifted into the future, i.e. the events in the second time series happen

before the potentially corresponding events in the reference series. The cross correlation

value for a particular τ indicates how strong the similarity of the two time series is at that

particular lag. Unless the two time series are identical or symmetric, the cross-correlation

function is not symmetric about τ = 0. Once the CCF is computed, the key question is

whether the magnitude of the function maximum is statistically significant. The cross-

correlation between two signals X and Y is considered significant if it exceeds for at least

one time lag τ the CCF of two uncorrelated random signals with the same variance and

number of points as in X and Y. Among several mechanisms, a likely explanation for a

significant positive cross-correlation could be that the events of one time series partially

activate the events of the second time series. Conversely, a significant negative magnitude

likely indicates that the events of one time series inhibit events of the second time series.

Although cross-correlation is not a strictly causative measure (Vilela and Danuser, 2011) the

time lag associated with the CCF maximum defines which of the two time series happens,

on average, first, suggesting upstream – downstream relations between the activities. Thus,

the CCF provides insight not only of the strength and nature of the relationship between two

signaling activities, but also predicts the temporal organization and kinetics of this

relationship.

4.2.2 Coherence—Complementary to the cross-correlation, the coherence is a measure of

the relationship of two signals in the frequency domain (Brillinger and Krishnaiah, 1983).

Mathematically, it is defined as the Fourier transform of the cross-correlation. The

coherence quantifies the overall linear coupling of two time series as a function of the

specific frequencies or frequency bands shared between them. Because of this selectivity of

shared frequencies, the coherence can resolve situations where one signaling activity relates

to multiple other signaling activities, but at different frequency bands(Brillinger and

Krishnaiah, 1983).

Figure 5 illustrates the use of cross-correlation and coherence for characterizing the

relationship between two hypothetical activities X and Y. Panel A shows the two time series

and how their information is transmitted through a communication channel (Feinstein,

1958). The cross-correlation and coherence analyses serve the purpose of identifying

whether there is any linear information flow between X and Y through the channel. In a

cellular context, this communication channel conceptualizes the cascade of physicochemical

events that link the activation/deactivation of one particular signal to the activation/

deactivation of another signal. Dependent on the kinetics and the complexity of this event

cascade, the information transfer between the signals may lead to more or less delay, which

is decoded by the time lag τ of the dominating cross-correlation maximum or minimum.

Also, in the absence of strong feedback, the sign of the time lag indicates the directionality

of information flow. As illustrated in Fig. 5C, the coherence informs us about the

frequencies that are transmitted through the channel. Importantly, frequency and time delay

are not equivalent. Two particular signals may be coupled through distinct frequency bands

but both bands may have the same time lag because the molecular processes underlying the

information flow obey the same overall kinetics. On the other hand, one particular signal
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may communicate with two other signals in the same frequency band but with different time

lags.

4.3 Integrating results: Averaging over multiple windows and cells

We have described in the previous sections statistical tools that allow the analysis of a single

time series or a pair of time series extracted from one local sampling window of a biosensor

dataset. However, the data from an individual sampling window are very noisy. Therefore,

correlation, power spectra, and coherence measurements must be averaged over multiple

windows and over multiple cells. Averaging these metrics requires some caution as simple

mean values may be biased due to a relatively small number of potentially non-normally

distributed data points. Here, we illustrate the use of the bootstrap technique to allow

accurate averaging. This technique generates a large number of samples by randomly

resampling the existing data with replacement (Zoubir and Iskander, 2004). For more robust

results, variance stabilization methods can be added (Zoubir and Iskander, 2004). Figure 6

shows a mean ACF bootstrapped from the time series of different sampling windows in a

mouse embryonic fibroblast (MEF) expressing a FRET-based activity biosensor of the small

GTPase Rac1 (Machacek et al., 2009). First, the autocorrelation for time series extracted at

individual windows is calculated. Then the bootstrap algorithm samples with replacement

the autocorrelation values from all windows for a given lag to estimate one final value with

a confidence interval. This process is repeated for all lags resulting in a global

autocorrelation function for the entire cell.

The same approach can be taken to compute an average cross-correlation function between

two activities. Importantly, the data entering the bootstrap can originate from windows in a

single or multiple cells. The fundamental assumption underlying the analysis is that although

each of these windows generates a random fluctuation series, their statistical properties are

conserved between windows and between cells. Practically, this means that data from

windows with similar properties are integrated, e.g. from all windows at the boundary of

moving cell edges, or from all windows at the boundary of quiescent cell edges, or from all

windows 5 microns from the cell edge. How these windows are categorized varies with the

specific application and research question. Given these assumptions, the bootstrap allows

accurate aggregation of results across cells and cell regions, increasing the statistical power

of these results and the generality of their biological implications.

4.4 Integrating results: Multiplexing of different activities using a common fiduciary

Current biosensor designs and imaging technology do not allow the simultaneous

observation of more than two, or maximally three, molecular activities in living cells at

sufficient spatiotemporal resolution (Hodgson et al., 2008; Welch et al., 2011). However, the

goal of these live cell fluctuation studies is to reconstruct the flow of information in

pathways with tens of components. To achieve this goal, fluctuation data of different

biosensors imaged separately in different experiments must be integrated in silico. We refer

to this approach as computational multiplexing (Welch et al., 2011). To allow computational

multiplexing, two important requirements need to be fulfilled. First, identical experimental

conditions must be maintained across all experiments. Second, each experiment must

measure one activity which is common to at least one other experiment. This common
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activity shared between experiments provides a reference or ‘fiduciary’, allowing the time

series from different experiments to be linked (Machacek et al., 2009; Welch et al., 2011).

The simplest strategy for computational multiplexing is to relate all experimental data to a

single common fiduciary across all experiments. This strategy was established for the first

time by Machacek et al. (Machacek et al., 2009) where the cell edge velocity was exploited

to characterize the coordination of the small GTPases Rac1, RhoA and Cdc42 during cell

protrusion. Basal fluctuations of these signaling molecules were measured over time in the

context of cells undergoing directed migration. Each experiment imaged the activity of one

GTPase at the time. Based on the cross-correlation analysis between biosensor activity and

cell edge velocity the timing of each one of the GTPases relative to the onset of protrusion

was identified. This alignment of GTPase activity and cell edge motion indirectly made

predictions as to how the GTPases would be timed (and spatially shifted) relative to one

another. These predictions were then confirmed in experiments where two spectrally

orthogonal biosensors were imaged concurrently (Machacek et al., 2009). Thus by

exploiting a fiduciary common to several experiments, computational multiplexing allows us

to infer the flow of information in signaling networks with many more components than can

be observed in one experiment.

4.5 Integrating results: Comparing correlation and coherence data between different
subcellular locations

The propagation of signaling events is organized not only in time but probably also in space.

Here we give a glimpse of how local sampling of biosensor activity fluctuations in small

windows can be exploited to test this notion. We demonstrate the variation in the relation

between the activity of the small GTPase Rac1 and cell edge motion at various distances

from the cell boundary. Rac1 is thought to activate the formation of protruding lamellipodia

(Raftopoulou and Hall, 2004). Thus, it would be expected that signaling information would

flow from Rac1 activation to cell edge protrusion. Furthermore, this relationship would be

expected to taper off rapidly with increasing distance from the protruding edge. Figure 7

shows Rac1 activity sampled in 45 windows at the cell boundary (A) and in 45 windows 2

microns away from the cell edge (B). For the windows at the cell edge velocity values of the

local cell edge motion are sampled as well (C). Both cross-correlation and coherence reveal

a stronger interaction between the cell edge velocity and Rac1 activity sampled 2 microns

away from the cell edge. The time lag of the cross correlation peak indicates that Rac1 is

activated, on average, ~40 seconds after the increase in cell edge velocity. The cross-

correlation peak for windows at the cell edge is weaker than for those at 2 microns distance

and the time shift between edge motion and Rac1 activation increases. These fundamentally

distinct behaviors of Rac1 at the cell edge versus further away from it are corroborated by

distinct bands of significant coherence. At 2 microns from the cell edge the coherence peaks

at 0.01 Hz, or in a cycle of 100 seconds. This cycle time coincides with the ~100 s period of

the protrusion/retraction cycles in these cells, suggesting that Rac1 activity at 2 microns

from the edge is part of a feedback mechanism that links edge motion to the reactivation of

GTPase signals away from the cell edge, probably in maturing adhesions. The coherence

function at the cell edge covers a wider range of frequencies. This indicates that activation

of Rac1 at these distances is more random and not directly related to the protrusion/

retraction cycle. Current work in our labs is focused on investigating the molecular
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differences between these different regimes of Rac1 regulation. This example highlights

how the combination of the approaches described in this chapter can provide unprecedented

understanding of the dynamics and variability of signal transduction with sub-cellular

resolution.

5. Outlook

We present in this chapter the basic concepts of using fluctuations in signaling activity as

measured by biosensors for the reconstruction of information flows in signaling networks.

Autocorrelation and power spectral analyses can characterize the spatiotemporal properties

of individual signaling components, and coherence and cross-correlation provide a measure

of the relationships between different signaling components. Furthermore, in combination

with an experimental fiduciary, methods like cross-correlation and coherence can be used to

computationally multiplex data from different experiments in pathway models that consider

many more components than can be observed directly in a single experiment. Although

informative, these basic, linear statistical methods are unable to uncover more complex

relationships among signaling components such as feedback loops. In order to clarify such

interaction, we foresee the use of more sophisticated tools that can further decompose the

link between two signals and probe the possibility of bi-directional information flow. Some

tools from the fields of economics and neuroscience possess this capability; however a

substantial effort is still necessary to adopt these tools to biosensor fluctuation data.
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Figure 1. Protein translocation versus spatial propagation of protein signals
Protein translocation is illustrated by dotted arrows, and measured signal propagation by

solid arrows. In A, a fluorescently-tagged molecule diffuses in space. The fluorescent signal

only reports the translocation of the molecule. B and C show two different mechanisms for

the spatial propagation of signals. In B, an initially inactive signaling molecule is activated

(step 1). The activation state is monitored by a biosensor, in this example a FRET-based

sensor, that reads out conformational changes associated with a state switch of the signaling

molecule. In this scenario, the signal is transmitted by physical translocation of the activated

molecule by diffusion (step 2). In C, activation of the signaling molecule (step 1) promotes

transient binding of an effector (green), which diffuses and activates a second intermediary

molecule (purple, step 2). The latter then binds and activates another signaling molecule of

the first kind (step 3). This leads to signal propagation in space which differs from the

translocation of the biosensor.
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Figure 2. Image corrections and processing required for FRET-based biosensor readouts of
signaling activities
The end product of the workflow is a ratio image that indicates the spatial biosensor activity

at each frame of the movie.
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Figure 3. Windowing process
A, Segmentation of a cell into sampling windows. B, Sampling of the fluorescence signal

and construction of the spatiotemporal activity map. Figure is reproduced, with permission,

from references (Lim et al., 2010; Welch et al., 2011).
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Figure 4. Sampling effects in the autocorrelation and power spectrum
The first column [A, D and G] shows the continuous signal (in blue) and the signal samples

(in red) used to calculate the autocorrelation and power spectrum. The second column [B, E
and H] shows their autocorrelation functions. The red dashed lines indicate the 95%

confidence level of autocorrelation values. The third column [C, F and I] illustrates the

power spectrum. The red dashed lines indicate the confidence interval with p-value of 0.05.

The confidence interval in this case indicates the precision of the power spectrum

estimation.
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Figure 5. Characterization of information flow between two activities X and Y through a
communication channel
A, the communication channel conceptualizes the cascade of molecular events that is

triggered by one of the activities and contributes to the modulation of the other activity. B,

cross-correlation between the activities. Here, activity Y is used as the reference.

Accordingly, the positive time lag of the peak correlation value suggests that the fluctuations

in activity Y lags those of activity X, leading to prediction that X may be upstream of Y. C–
E, coherence analysis. Panels C and E show the power spectra of the two activities. Panel D

illustrates that the coherence (in red) represents the overlap of the two spectra.
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Figure 6. Bootstrap method to extract an average autocorrelation function of a molecular
activity (in this example Rac1 activation) sampled in all windows along the cell edge
The autocorrelation is first calculated for time series in individual windows. In the sampling

process, values of the autocorrelation that fall inside the confidence bounds (red dashed

lines) are set to zero. A 95% confidence interval is estimated for each value of the

bootstrapped autocorrelation based on the empirical distribution built by the algorithm.
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Figure 7. Spatial variation of the relationship between cell edge velocity and Rac1 signaling
sampled at different distances from the cell edge
A–B, spatiotenmporal activity maps of Rac1 signaling sampled at the cell edge and 2

microns inwards, respectively. C, cell edge velocity map. D–E, cross-correlation (with edge

velocity as reference) and coherence between the cell edge velocity and Rac1 activation

sampled at the edge and 2 microns inwards.
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