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Abstract

Biological questions are increasingly being addressed using a wide range of quantitative analytical 

tools to examine protein complex composition. Knowledge of the absolute number of proteins 

present provides insights into organization, function, and maintenance and is used in mathematical 

modeling of complex cellular dynamics. In this chapter, we outline and describe three microscopy-

based methods for determining absolute protein numbers—fluorescence correlation spectroscopy, 

stepwise photobleaching, and ratiometric comparison of fluorescence intensity to known 

standards. In addition, we discuss the various fluorescently labeled proteins that have been used as 

standards for both stepwise photobleaching and ratiometric comparison analysis. A detailed 

procedure for determining absolute protein number by ratiometric comparison is outlined in the 

second half of this chapter. Counting proteins by quantitative microscopy is a relatively simple yet 

very powerful analytical tool that will increase our understanding of protein complex composition.

INTRODUCTION

The intersection of physics and computational, molecular, and cellular biology reflects 

major changes in our approach to basic cell biological questions in the post-genome era. 

New strategies to beat the resolution limit in live cells, examine dynamic processes with 

speed and accuracy, and perform these genome-wide challenge cell biologists to make 

quantitatively accurate measurements. Determining the protein composition of complex 

dynamic structures is needed for a complete understanding of cellular function. Quantitative 

analysis of fluorescence microscopy images can provide absolute protein numbers and 

information regarding stoichiometry of protein complexes. Knowledge of the number of 

proteins present in a given complex is crucial for the development of structural and dynamic 

models of cellular processes. Here, we discuss three methods for determining absolute 

protein numbers using quantitative fluorescence microscopy and provide a step-by-step 

protocol for counting molecules by ratiometric comparison of fluorescence intensity.

19.1 METHODS FOR COUNTING MOLECULES

19.1.1 IMAGING AND MEASUREMENT CONSIDERATIONS—In order to obtain 

reliable and quantifiable images for analysis, some general considerations should be kept in 

mind. General microscope alignment and sample preparation concerns are discussed in 

greater detail elsewhere (Rottenfusser, 2013; Salmon et al., 2013; Waters, 2013). In order to 

accurately measure fluorescence intensity, it is essential to maximize the signal-to-noise 
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ratio while also minimizing photobleaching. Microscope alignment, the objective lens, and 

the sample preparation contribute in large part to image quality. Proper alignment ensures 

even illumination across the field of view. The objective lens should have a high numerical 

aperture (NA) and be corrected for optical aberrations at a magnification level appropriate 

for the sample to obtain the greatest image intensity. For quantitative image acquisition in 

budding yeast, we acquire images on a widefield microscope with a 100× objective with an 

NA of at least 1.4. For proteins of interest in thicker specimens, it may be preferable to use a 

confocal microscope or total internal reflection (TIRF) microscopy to reduce out-of-focus 

light (Hallworth & Nichols, 2012; Joglekar, Bouck, et al., 2008; Ulbrich & Isacoff, 2007). 

The sample should be fluorescently labeled in a manner that ensures a consistent ratiometric 

relationship between fluorescent signal intensity and number of proteins of interest. This can 

be most easily achieved using a genetically encoded fluorophore that is both bright and 

stable (Douglass & Vale, 2008; Johnson & Straight, 2013; Xia, Li, & Fang, 2013). Imaging 

parameters should minimize sample photobleaching, and all methods discussed are very 

sensitive to loss of signal intensity due to unintended photobleaching during image 

acquisition (Coffman & Wu, 2012; Johnson & Straight, 2013). The detailed protocol that 

follows includes specific guidelines for optimization of image acquisition.

The details of postacquisition image analysis vary by method, but proper quantification of 

image intensity is universally important. The fluorescence intensity of a two-dimensional 

image can be measured from either the peak intensity of the spot (brightest pixel intensity) 

or the integrated intensity of the whole spot. We use integrated intensity for intensity 

quantification since this method does not assume a constant volume. When comparing 

multiple structures that differ in size and/or shape, measurement by integrated intensity will 

more accurately describe the intensity independent of fluorophore density (Fig. 19.1). 

Brightest pixel measurements will show a reduced signal intensity if a structure increases in 

size (reducing fluorophore density) and can result in misleading analysis of the number of 

fluorophores. It may also be necessary to sum intensity values of multiple z-planes if the 

structure of interest is larger than the resolution limit in z. For relatively small structures, 

such as yeast kinetochore spots, we acquire sufficiently closely spaced z-planes (with respect 

to the objective) to capture the in-focus image plane for analysis (Joglekar, Salmon, & 

Bloom, 2008). For larger structures, it may be necessary to use the sum intensity of multiple 

z-planes to fully capture the intensity (Coffman & Wu, 2012; Wu & Pollard, 2005). In 

addition to using integrated intensity measurements, it is important to correct for background 

fluorescence (Hoffman et al., 2001). This is done by measuring total integrated intensity of 

the region of interest and that of a slightly larger region and obtaining the background 

intensity value (Fig. 19.1D). This value is then subtracted to calculate the intensity of the 

spot of interest.

19.1.2 FLUORESCENCE CORRELATION SPECTROSCOPY—Fluorescence 

correlation spectroscopy (FCS) is a microscopy method in which the fluorescence intensity 

arising from molecules within a small volume is collected over time and correlated to obtain 

information regarding dynamics and concentrations. This method can be applied in vivo and, 

like other fluorescence microscopy techniques, is nondestructive. FCS measurements are 

highly sensitive and can be done at the single-molecule level (Chen, Muller, Ruan, & 
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Gratton, 2002). In principle, FCS measures the small changes in fluorescence intensity 

arising when a molecule enters the observation volume and the corresponding drop when it 

leaves (Braeckmans, Deschout, Demeester, & De Smedt, 2011; Bulseco & Wolf, 2013; 

Gosch & Rigler, 2005; Levin & Carson, 2004). Correlation analysis of the measured 

fluorescence intensity over time should reveal the concentration and diffusion rate of 

particles through the observation volume.

FCS experiments require a more specialized optical setup than stepwise photo-bleaching or 

ratiometric comparison of fluorescence intensity (Bacia & Schwille, 2003; Bulseco & Wolf, 

2013; Haustein & Schwille, 2007). Recent advances in microscope detector sensitivity 

(photomultiplier tube or avalanche photodiode (APD)) have allowed for greater sensitivity 

and analysis in FCS experiments (Ries & Schwille, 2012; Tian, Martinez, & Pappas, 2011; 

Vukojevic et al., 2005). In contrast to a standard laser scanning confocal microscope, for 

FCS experiments, the laser beam position remains constant and the fluorescence intensity 

within the observation volume is measured over time. The confocal FCS observation volume 

is defined by the focusing of laser excitation light, and, as with typical confocal 

microscopes, apertures are used to reduce out-of-focus light (Bulseco & Wolf, 2013). For 

aligned and optimized confocal FCS microscope systems, the observation volume is 

approximately 0.5 fL and 600 nm in diameter (Bulseco & Wolf, 2013; Slaughter & Li, 

2010).

FCS relies on the dynamic diffusion of particles through the observation volume, and this 

method is limited to measuring diffusion rates and molecule numbers for mobile samples. 

The length of observation is determined by the speed of particle diffusion and, as with the 

other techniques described here, it is important to consider and minimize photobleaching 

effects when choosing fluorophores and during image acquisition (Bacia & Schwille, 2003; 

Ries & Schwille, 2012). In addition to being limited to measuring mobile samples, FCS is 

best applied to certain concentration ranges (~1 fluorescent particle per observation volume), 

and concentrations that are too low or too high require very long observation times for 

reliable analysis (Enderlein, Gregor, Patra, & Fitter, 2004; Levin & Carson, 2004; Slaughter 

& Li, 2010).

Photon counting histogram (PCH) analysis (and fluorescence intensity distribution analysis) 

can be applied to the data to measure the absolute number of particles (Thompson, Lieto, & 

Allen, 2002). PCH analysis utilizes the fluorescence measurements observed within the 

observation volume and mathematically relates this intensity distribution to the number of 

molecules present (Chen, Muller, Berland, & Gratton, 1999; Chen, Muller, So, & Gratton, 

1999; Kask, Palo, Ullmann, & Gall, 1999). FCS imaging within a small observation volume 

and PCH analysis have been used to generate a calibration curve relating brightness and 

absolute number of particles and compare these to experimental structures in vivo (Shivaraju 

et al., 2012; Slaughter, Huff, Wiegraebe, Schwartz, & Li, 2008).

19.1.3 STEPWISE PHOTOBLEACHING—The measurement of protein counts by 

observation of photobleaching dynamics has been applied to a wide range of biological 

systems to determine number and stoichiometry of protein subunits. This method captures 

the irreversible photobleaching of fluorophores fused to the protein of interest at single-
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molecule resolution. In addition to imaging considerations previously discussed, the 

experimental setup should be optimized to minimize photobleaching multiple fluorophores 

in the same event (Coffman & Wu, 2012; Hallworth & Nichols, 2012). This includes those 

considerations discussed in the preceding text and the incorporation of well-characterized 

control structures. A range of structures have been used as controls to assess the reliability 

of detection and analysis, including various membrane-bound channels and receptors, 

cytosolic fluorophores, or the bacterial flagellar motor MotB (Coffman, Wu, Parthun, & Wu, 

2011; Leake et al., 2006; Padeganeh et al., 2013; Ulbrich & Isacoff, 2007).

There are two general approaches for the measurement of the number of proteins present in 

a given structure or complex by stepwise photobleaching—direct counting of 

photobleaching steps and the determination of the step size of a single photo-bleaching event 

to extrapolate the total number of fluorophores. The direct counting of photobleaching steps 

is most relatable for low protein numbers. The maximum number of steps that can be 

measured without additional mathematical extrapolation ranges from 5–7 to 15 steps (Das, 

Darshi, Cheley, Wallace, & Bayley, 2007; Ulbrich & Isacoff, 2007). The raw data can be 

further processed to enable detection of a larger number of photobleaching steps using a 

Chung–Kennedy filter or methods to detect changes in intensity state such as hidden Markov 

modeling (Chung & Kennedy, 1991; Engel, Ludington, & Marshall, 2009; McKinney, Joo, 

& Ha, 2006; Watkins & Yang, 2005). Alternatively, it is possible to measure the intensity 

drop corresponding to the photobleaching of one fluorophore and compare this value to the 

unbleached spot intensity to extrapolate the number of fluorophores in the structure. This 

approach has been used to determine the composition of various complexes including the 

bacterial flagellar motor and yeast centromeres (Coffman et al., 2011; Leake et al., 2006). A 

combination of photobleaching and brightness analysis has been used to measure the subunit 

composition of mammalian membrane proteins (Madl et al., 2010).

19.1.4 RATIOMETRIC COMPARISON OF FLUORESCENCE INTENSITY TO 
KNOWN STANDARDS—The stepwise photobleaching method can thus be applied in a 

manner that compares the fluorescence drop upon bleaching a single fluorophore to the total 

fluorescence of the sample. This is, in principle, similar to the ratiometric comparison of 

fluorescence intensity to determine the absolute protein number and allows for the 

measurement of a greater number of protein counts than direct stepwise photobleaching 

experiments. This method works by building a standard curve relating fluorescence intensity 

to number of molecules through careful and consistent measurement of fluorescence 

intensity of one or more fluorescence standards (Fig. 19.2). Alternatively, one can measure 

the ratio of bulk to single-molecule intensity of a standard and compare this to the bulk 

intensity of the labeled protein of interest to determine the intensity of a single fluorescent 

protein of interest (Graham, Johnson, & Marko, 2011). Fluorescence standards are discussed 

in greater detail later in the text and should be characterized using biochemical or electron 

microscopy assays to confirm their composition. The fluorescence of an experimental spot 

can then be measured under identical conditions and compared to the standard curve to 

determine protein count (Fig. 19.2C).

Ratiometric comparison of fluorescence intensities can be applied to a range of biological 

questions, including measurements of the budding yeast kinetochore to examine 
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transcription dynamics in Escherichia coli (Taniguchi et al., 2010; Yu, Xiao, Ren, Lao, & 

Xie, 2006) and the organization of the kinetochore–microtubule attachment in budding yeast 

(Joglekar, Bouck, et al., 2008; Joglekar, Bouck, Molk, Bloom, & Salmon, 2006; Joglekar, 

Salmon, et al., 2008). More recently, ratiometric comparison of fluorescence intensity has 

been applied to understand the γ-tubulin microtubule nucleation structure (Erlemann et al., 

2012). Fission yeast cytokinetic contractile ring proteins have been measured by comparing 

fluorescence intensity to a quantitative immunoblotting standard curve (McCormick, 

Akamatsu, Ti, & Pollard, 2013; Wu & Pollard, 2005). Overall, ratiometric comparison of 

fluorescence intensities is a powerful method of determining protein counts in a variety of 

systems that does not require highly specialized equipment. This method, like the FCS-

based counting and stepwise photobleaching, requires rigorous quantification of known 

fluorescence standards to validate and calibrate the experiment.

19.1.5 FLUORESCENCE STANDARDS—For all the methods discussed, it is essential 

to validate the acquisition and analysis methodology using a range of known fluorescence 

standards to determine the relationship between fluorescence intensity and number of 

molecules (Fig. 19.2). The protein composition and stoichiometry of these fluorescence 

standards have been characterized using a range of different procedures. The most 

straightforward standard, though technically challenging to image, is soluble GFP either in 

vitro or cytosolic (Lawrimore et al., 2011; Padeganeh et al., 2013). The typical E. coli 

flagellar motor is composed of 11 stators, and each contains two copies of the MotB protein, 

as determined by electron microscopy and biochemical analysis (Khan, Dapice, & Reese, 

1988; Kojima & Blair, 2004). Fluorescence imaging and stepwise photo-bleaching analysis 

have shown that GFP–MotB clusters contain approximately 22 times the intensity of a single 

GFP molecule (Leake et al., 2006). Subsequent studies have confirmed the composition of 

this structure by stepwise photobleaching and ratiometric comparison of fluorescence 

intensity (Coffman et al., 2011; Lawrimore et al., 2011). The virus-like particles (VLP), 

formed by proteins GFP–VP2/6, contains 120 GFPs as determined by electron tomography 

and an extinction coefficient predicted for 120 GFPs per virus capsid and has been used as a 

fluorescence standard for ratiometric comparison (Charpilienne et al., 2001; Lawrimore et 

al., 2011).

The centromere-specific histone H3 variant in budding yeast, Cse4p, has been used as a 

fluorescence standard, and recent studies have further clarified the composition of Cse4p 

clusters in vivo. Given the sequence-specific nature of the budding yeast centromere, it was 

thought that each chromosome contained only one Cse4p-containing nucleosome, making 

this an attractive fluorescent standard (Joglekar, Bouck, et al., 2008; Joglekar et al., 2006; 

Johnston et al., 2010). The 16 budding yeast kinetochores are clustered together into two 

close to diffraction-limited spots during M phase. These clusters have been shown to appear 

anisotropic during metaphase and more compact during anaphase (Haase, Stephens, 

Verdaasdonk, Yeh, & Bloom, 2012). The peak intensity value of these clusters is increased 

during anaphase as the spots are more compacted, but there is no change in integrated 

intensity between metaphase and anaphase (Fig. 19.1).

The single nucleosome concept was derived from chromatin immunoprecipitation 

demonstrating that Cse4p was concentrated at the centromere DNA (Furuyama & Biggins, 
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2007; Verdaasdonk & Bloom, 2011). However, the single Cse4p nucleosome standard failed 

to match protein numbers estimated from biochemistry. Various groups have measured the 

number of Cse4p proteins in each kinetochore cluster. Coffman et al. and Lawrimore et al. 

each generated a standard curve of fluorescence intensity versus number of molecules using 

some of the fluorescence standards described in the preceding text by stepwise 

photobleaching or ratiometric comparison of fluorescence intensity, respectively (Coffman 

et al., 2011; Lawrimore et al., 2011). Lawrimore et al. reported ~5 Cse4p per chromosome 

for a total of 80 per haploid cluster and Coffman et al. found ~7–8 Cse4p per chromosome 

for a total of 122 per cluster (Coffman et al., 2011; Lawrimore et al., 2011). These studies 

show that there are extra Cse4p molecules incorporated at random positions over 20–50 kb 

of DNA flanking the centromere. This anisotropy of Cse4p clusters is abolished in the 

mRNA processing pat1Δ or xrn1Δ mutants, and the number of Cse4p molecules associated 

with chromatin is also reduced (Haase et al., 2013; Maresca, 2013). These findings support 

the presence of extra Cse4p molecules per chromosome and show that these are not essential 

for chromosome segregation.

Using FCS of soluble GFP to calibrate APD confocal imaging, Shivaraju et al. found 1–2 

Cse4p per chromosome (depending on cell cycle stage) (Shivaraju et al., 2012). The FCS 

imaging methodology used in this study examines fluorescence in a defined volume that 

may be excluding fluorescence resulting from the extra Cse4p incorporated away from the 

centromere in anisotropic fluorescence clusters. Previous work has shown that Cse4p 

clusters change size/shape throughout the cell cycle (Haase et al., 2012), and thus, the use of 

maximum intensity instead of integrated intensity measurements could account for the 

variation in Cse4p intensity between metaphase and anaphase observed by Shivaraju et al. 

(2012). Therefore, it is possible that Shivaraju et al. had very accurately measured the Cse4p 

content at the centromere (~2 Cse4p per chromosome) while excluding the fluorescence 

intensity from the extra Cse4p molecules observed by Coffman et al. (2011), Lawrimore et 

al. (2011), and Shivaraju et al. (2012). The result that the centromere nucleosome contains 2 

Cse4p proteins is consistent with TIRF stepwise photobleaching of single nucleosomes in 

mammalian cells (Padeganeh et al., 2013) and BiFC complementation experiments 

(Aravamudhan, Felzer-Kim, & Joglekar, 2013).

Analysis of whole fluorescent clusters of Cse4p yields a number of 5–6 Cse4p per 

chromosome (80–96 molecules per cluster). Using these values, the ratiometric comparison 

of fluorescence intensity approach is consistent with independent protein measurements for 

cytokinesis (McCormick et al., 2013; Wu & Pollard, 2005), γ-tubulin small complex 

(Erlemann et al., 2012), and Cnp1 in fission yeast (Lando et al., 2012).

19.2 PROTOCOL FOR COUNTING MOLECULES BY RATIOMETRIC COMPARISON OF 
FLUORESCENCE INTENSITY

This protocol uses the protein copy number of Cse4–GFP (anaphase) published in 

Lawrimore et al. (2011) to calculate protein copy numbers of other GFP-fused proteins. As 

discussed earlier in the text, Cse4–GFP intensity has been compared to a range of other 

fluorescence standards of known composition to validate its use as a standard. Either 

GFP(S65T) or EGFP(S65T, F64L) can be used as they have similar emission spectra and 
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other properties (Patterson, Knobel, Sharif, Kain, & Piston, 1997). In addition to yeast, this 

protocol has been used to count the number of molecules in DT40 cells (Johnston et al., 

2010). The protocol in the succeeding text is primarily designed for imaging punctate spots 

in budding yeast cells; however, these methods can be adapted for imaging larger GFP 

signals or in other cell types. Since this method is based on comparing the intensity of a 

known standard (Cse4–GFP) to other samples, consistency during the experiment is crucial.

19.2.1 MINIMIZING INSTRUMENT ERROR—Before undertaking any quantitative 

fluorescence measurements, it is essential to understand how the specifications and setup of 

an imaging system will affect the precision of the measurements. The following steps will 

help minimize any potential systematic errors:

• Camera: Ensure that the camera you are using has high quantum efficiency for the 

EGFP emission spectrum (Tsien, 1998). The lower the quantum efficiency, the 

more variation will occur in all of the fluorescence intensity measurements. In 

addition, use a camera with the smallest possible pixel size. Images can be binned 

to increase signal if needed. Suggested pixel size of the images is 130 nm.

• Objective: Only use the highest NA and magnification objectives. An NA of 1.4 or 

higher and a magnification of 100× are required.

• Stage: Since fluorescence intensity reduces as a function of sample depth, a stage 

that allows accurate and consistent Z-steps should be used.

• Light source: The consistency of the light used in quantitative measurements is 

essential. No matter the light source used, the intensity of the light should be 

checked regularly. Measure the intensity of the light every 20 min after allowing 30 

min of warm-up to ensure the light source is stable. Arc lamps are less stable than 

laser and LED-based lighting systems and thus should be used with caution. 

However, frequent light intensity readings and allowing proper warm-up time will 

mitigate variation in light intensity.

• Imaging environment: Any ambient light will cause increased variation in 

fluorescence intensity measurements. All imaging should be performed in the 

darkest and most consistent conditions possible.

19.2.2 MEASURING INSTRUMENT VARIATION—The steps in the succeeding text 

directly measure the precision of an imaging system and are intended to quantify the amount 

of variation resulting from different imaging components that will influence fluorescence 

intensity measurements. Note that the sources of variation are additive in the order they are 

given. It is strongly suggested that the following steps be performed in the order given:

1. Dark noise

• Turn on the imaging system and allow for proper warm-up of all 

components.

• Take five, full-chip images with the camera shutter closed.
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• Measure the mean intensity of several regions across the full-chip image. 

Note any intensity variations present in the dark images and take it into 

account when selecting a region of interest for imaging.

• Measure the mean intensity and standard deviation of your region of 

interest to be used during imaging.

• Average the five mean intensity and standard deviation measurements 

together to calculate the noise due to electronic noise.

2. Light leakage

• Repeat the steps earlier in the text but with the camera shutter open but 

with no light from the light source allowed in the camera path to test for 

any possible light leakage.

3. Light noise

• Repeat the steps in the first section but allow excitation light through the 

objective. The light coming from the light source should be measured by 

carefully removing the objective or rotating the microscope turret to an 

empty slot and using a light meter to measure the intensity of the light. 

Suggested light intensity is 0.5 mW of 488 nm light. Any increase in the 

standard deviation will reflect the variation from the light source.

4. Sample buffer noise

• Repeat the steps in the first section with a slide filled with imaging buffer/

media. For yeast, use a synthetic media. Autoclaved rich yeast media 

containing sugar is highly autofluorescent and should not be used.

19.2.3 BUDDING YEAST IMAGING PROTOCOL—This section outlines the procedure 

for growth and imaging of the yeast strain expressing Cse4–GFP (KBY7006). To minimize 

protein count variation due to different health conditions of yeast, all yeast should be grown 

to an optical density (λ=660 nm) of at least 0.4 twice before starting an imaging culture. 

Image each strain until a sample size of 100 is obtained. Do not analyze any images where 

the GFP spot is moving:

1. Grow yeast in YPD media at 24 °C in 50 mL or greater flasks until reaching mid-

logarithmic phase (OD660 = 0.4–0.8).

2. Thirty minutes prior to imaging, turn on all imaging components.

3. Spin down 1 mL yeast culture for 1 min at 4000 rpm.

4. Aspirate supernatant and resuspend in 1 mL synthetic media.

5. Spin down 1 mL yeast culture for 1 min at 4000 rpm.

6. Aspirate supernatant and resuspend in 20–100 μL synthetic media depending on the 

size of the pellet.

7. Pipet yeast resuspension on a concanavalin A-coated coverslip, place coverslip on 

slide, and seal edges with VALAP (1:1:1 mix of vaseline/lanolin/paraffin).
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8. Immediately prior to imaging, measure the light intensity by removing the 

objective or moving turret to blank slot. Place light meter where slide will rest 

during imaging. Set light intensity to 0.5 mW.

9. Obtain Z-series image stacks with 40, 200 nm step sizes of yeast in anaphase. 

Anaphase yeast will have large buds and the GFP spots will be separated by 4–5 

μm. The objective should be focused above/below the coverslip so that the Z-series 

will pass through the coverslip before focusing on yeast. If the pixel size of the 

image is near 65 nm, use 2×2 binning.

10. Note the frame where the coverslip is in focus. There will be an autofluorescent 

residue on the coverslip surface to indicate when the coverslip is in focus.

11. Note the frame where the GFP spot is in focus.

12. After 20 min of imaging, remove the slide and check the image intensity. If the 

intensity has drifted, do not analyze the z-stacks acquired. Do not image a slide for 

longer than 20 min as the yeast viability will deteriorate over time.

19.2.4 MEASURING BACKGROUND-SUBTRACTED, INTEGRATED INTENSITY
—The image analysis described here entails measuring the integrated intensity (summing of 

all pixel values in a region of interest) of a larger and a smaller region of interest around the 

in-focus GFP spot and subtracting the integrated intensity of the surrounding background. 

Different imaging systems and specimens will require different regions of interest sizes. 

Ensure that region size and shape selected are large enough to capture the entire signal of the 

GFP spot. For most punctate GFP spots, a 5×5 pixel square (where 1 pixel=135 nm) is 

sufficient to encompass the GFP spot. For GFP signals that are not punctate, draw a region 

large enough to encompass the whole signal.

In order to measure the background of a GFP spot, draw a second region of interest centered 

on the region encompassing the GFP spot. For the punctate spots within a 5×5 pixel region, 

a larger 7×7 (where 1 pixel=135 nm) pixel square was used. The following equation 

describes how to calculate the background-subtracted, integrated intensity from the two 

concentric regions (adapted from Hoffman et al., 2001):

where Ismall is the integrated intensity of the smaller region, Ilarge is the integrated intensity 

of the larger region, Asmall is the area in pixels of the smaller region, and Alarge is the area in 

pixels of the larger region (Fig. 19.1D). To minimize error, the area of the larger region 

should be close to twice the size of the smaller region. However, regions of any size and 

shape can be used. In yeast, the nucleus is present during mitosis and has a slightly higher 

background than the cytoplasm. In cases where the GFP spot is against the nuclear envelope, 

the larger region can be shifted to capture more of the nuclear background. However, the 

larger region must fully encompass the smaller region.
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For specimens where the GFP signal background cannot be measured as described in the 

preceding text, regions distal to the GFP signal can be used if the background intensity is 

similar to the region proximal to the GFP signal. Alternatively, specimens lacking the GFP 

signal can be measured to calculate an average background. However, this method will 

introduce measurement error if the background intensities of the specimen lacking GFP 

differ or are highly variable. For these methods, use the same region sizes for the sample and 

the background and directly subtract the background-subtracted, integrated intensity from 

the sample’s integrated intensity.

19.2.5 DEPTH CORRECTION—The further away a GFP spot is from the coverslip 

surface, the lower the integrated intensity will be. To calculate the depth of a GFP spot, 

subtract the frame number of the coverslip from the frame number of the in-focus GFP spot. 

Plot the background-subtracted, integrated intensity against the depth. Perform a linear 

regression on the data and calculate the slope of the line. For each background-subtracted, 

integrated intensity, use the following equation to correct for depth variation:

where Idepth is the background-subtracted, depth-corrected, integrated intensity; fspot is the 

frame number of the in-focus GFP spot; fcs is the frame number of the coverslip; m is the 

slope of the linear regression; and IBGsub,PC is the background-subtracted, photobleach-

corrected, integrated intensity. Plot the depth-corrected data against the depth and perform 

another linear regression. Ensure the slope of the depth-corrected intensities is now zero.

19.2.6 CALCULATING PHOTOBLEACHING CORRECTION FACTOR—As a 

consequence of taking multiple pictures per Z-series, a small amount of photo-bleaching will 

occur. In order to minimize the variation that results from differing rates of photobleaching, 

each experimental strain should have a photobleaching curve constructed. Take five 

consecutive Z-series with the same settings used for normal image acquisition. A sample 

size of at least 10 GFP spots should be obtained. Measure the background-subtracted, 

integrated intensity of each in-focus GFP spot as described previously in the text. Use the 

slope of the background-subtracted, integrated intensity versus depth plot to correct for 

depth variation.

To calculate the photobleaching correction factor, calculate the four percent differences for 

each of the five timelapses taken. Then, average all of the percent difference together and 

divided by two. This step is summarized in the following equation:

where CF is the photobleaching correction factor; Idepthx is the background-subtracted, 

depth-corrected, integrated intensity of a particular timelapse; and Idepthx+1 is the 

background-subtracted, depth-corrected, integrated intensity of the next sequential 

timelapse.
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Multiply each background-subtracted, depth-corrected, integrated intensity by this factor to 

calculate the amount of integrated intensity lost due to photobleaching during image 

acquisition. Add this amount to the background-subtracted, depth-corrected, integrated 

intensity to correct for photobleaching. This step is summarized in the following equation:

where Idepth,photo is the background-subtracted, depth- and photobleach-corrected, integrated 

intensity; Idepth is the background-subtracted, depth-corrected, integrated intensity of a spot; 

and CF is the photobleaching correction factor.

19.2.7 GAUSSIAN FITTING AND RATIOMETRIC COMPARISON TO DETERMINE 
PROTEIN COUNT—Perform a least-squares fit to a Gaussian curve on the background-

subtracted, depth-and photobleach-corrected, integrated intensities to calculate the mean and 

standard deviation of each data set. To determine the intensity to copy number conversion 

factor, divide the mean and standard deviation of the experimental data set by the number of 

Cse4–GFP molecules/cluster(=96±19.2, anaphase) (Fig. 19.2C; Lawrimore et al., 2011). 

This conversion factor can be used to calculate the copy number of other proteins tagged 

with GFP.

CONCLUSIONS

The methods discussed in this chapter provide a starting point for researchers wishing to 

determine the absolute number of their protein of interest. A broad range of biological 

questions can benefit from knowledge of protein numbers, such as examining protein 

complex organization throughout the cell cycle, how protein composition is maintained, or 

allowing for mathematical modeling of protein complex architecture and behavior. The 

ratiometric comparison of fluorescence intensity to known standards allows for 

measurement of a broad range of protein numbers using standard high-end microscopy 

equipment. We encourage scientists to consider protein counting as another tool to address 

their research questions.
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FIGURE 19.1. 
Methods for measuring fluorescence intensity. (A) Simulated and convolved spheres of 

known subresolution diameters populated with a constant number of fluorophores (N=50) 

shown on the same intensity scale (generated using FluoroSim; Quammen et al., 2008). (B) 

Linescans through the brightest pixel of the simulated sphere images. The maximum 

intensity decreases as the size of the sphere is increased. (C) Comparison of maximum 

intensity and integrated intensity measurements. Integrated intensity values show a 4% 

difference between values measured for the largest and smallest spheres. For comparison, 

the maximum intensity values show an almost 40% difference. (D) The procedure for 

measuring background=corrected integrated intensity. Briefly, two square regions are drawn 

around the signal of interest and the integrated intensity values of these are recorded. Using 

the areas and integrated intensities of these squares, the final background=corrected 

integrated intensity can be calculated (Example shown is for the R=200 nm simulated sphere 

image from (A).).
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FIGURE 19.2. 
Generating a standard curve. (A) Representative images of standards used in Lawrimore, 

Bloom, and Salmon (2011) and yeast strains in which anaphase copy numbers were 

measured. Purified EGFP (top left panel) was imaged with 2.5=fold longer exposure time 

(1500 vs. 600 ms) than other specimens and image shown is an average of eight images. (B) 

Gaussian fits of depth= and photobleaching=corrected integrated fluorescence intensity for 

standards and anaphase GFP spots in yeast strains. Peak intensities of each Gaussian fit are 

provided with standard deviation. EGFP and GFP–MotB can be fitted with two Gaussian 

curves (peak 1 and peak 2). BG noise is the average background intensity corrected for in 

each sample. (C) Standard curve generated from EGFP=, GFP–MotB=, and GFP–
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VLP2/6=corrected integrated fluorescence intensity versus protein number (black circles) 

with GFP spots from yeast strains (white circles). The dotted line represents a linear 

regression of the three standards (black circles). Values±standard deviation. (D) Table of 

GFP copy numbers for three fluorescence standards used to generate the standard curve in 

(C).
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