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Abstract
Neurodegeneration, the progressive loss of function in neurons that eventually leads to their death,
is the cause of many neurodegenerative disorders including Alzheimer’s, Parkinson’s, and
Huntington’s diseases. Protein aggregation is a hallmark of most neurodegenerative diseases,
where unfolded proteins form intranuclear, cytosolic, and extracellular insoluble aggregates in
neurons. Mounting evidence from studies in neurodegenerative disease models shows that
molecular chaperones, key regulators of protein aggregation and degradation, play critical roles in
the progression of neurodegeneration. Although chaperones exhibit promiscuity in their substrate
specificity, specific molecular features are required for substrate recognition. Understanding the
basis for substrate recognition by chaperones will aid in the development of therapeutic strategies
that regulate chaperone expression levels in order to combat neurodegeneration. Many
experimental techniques, including alanine scanning mutagenesis and phage display library
screening, have been developed and applied to understand the basis of substrate recognition by
chaperones. Here, we present computational algorithms that can be applied to rapidly screen the
sequence space of potential substrates to determine the sequence and structural requirements for
substrate recognition by chaperones.

1. Introduction
Acquired or inherited mutations that result in modifications to protein structure can cause
various genetic disorders, including cancers, where the mutant gene product interferes with
cellular processes like synthesis, transport, stability, or enzymatic activity. In contrast,
conformational diseases, which include neurodegenerative diseases like Alzheimer’s (AD),
Parkinson’s (PD), Huntington’s disease (HD), and prion encephalopathies, develop due to
conformational rearrangements in a specific protein. These rearrangements lead to the
formation of protein aggregates in ordered fibrillar structures known as amyloids, which can
be found inside and outside of brain cells (1). A histological feature shared by these diseases
is the occurrence of lesions in brains, consisting of the intra- or extracellular accumulation of
misfolded, aggregated, and ubiquitinated proteins that are intimately associated with
neurodegeneration. In AD, lesions are observed as intracellular neurofibrillary tangles that
contain hyperphosphorylated Tau protein and extracellular plaques that contain β-amyloid
(Ab) peptides (2). In PD, the cytoplasmic lesions, called Lewy bodies, are composed
primarily of the protein α-synuclein (3). In HD, intranuclear and cytoplasmic inclusion
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bodies comprised of the protein huntingtin are formed (4). Another critical feature shared by
many neurodegenerative disorders is the presence in the brain lesions of molecular
chaperones and components of the ubiquitin-proteasome degradation system (5,6). The
ubiquitous role of molecular chaperones in neurodegenerative disease presents an interesting
conundrum: How do chaperones recognize their substrates among other proteins in vivo?
Many hypotheses have been posited that led to the development of experimental techniques
to determine the sequence/structural basis for substrate recognition by chaperones. Here, we
review the most common computational techniques employed to rapidly identify critical
determinants of protein-protein interactions that can directly be applied to chaperone-
substrate systems.

1.1. Molecular chaperones in neurodegenerative diseases
Cells are equipped with potential mechanisms of defense against physical and chemical
stress, the most common of which is elevated expression of a set of highly conserved genes
that encode heat shock proteins (Hsps) (7,8). This set of proteins, including members of the
Hsp70, Hsp90, Hsp110, HSP104, Hsp40, and many small Hsps, function as molecular
chaperones defending the cell against the accumulation of damaged or mutant proteins (9–
11). In addition to their role in protein folding, chaperones are involved in the translocation
of many proteins across cell membranes and macromolecular assembly and disassembly, as
well as facilitating the transfer of misfolded proteins to the proteasome for degradation (11–
13). Chaperones function by transiently binding to exposed hydrophobic surfaces in target
proteins in an ATP-dependent manner, shielding them from aberrant interactions with other
proteins and folding intermediates in the cellular environment (14). Overexpression of
chaperones of the Hsp70 and Hsp40 families has been shown to suppress the aggregation
and toxicity of polyQ-containing proteins (6). The most compelling evidence for the critical
role of chaperones in conformational diseases comes from in vivo studies of
neurodegenerative disorders in Drosophila (15–18). In one study, the expression of
expanded polyQ controlled by an eye-specific promoter caused severe degeneration of
external eye structures, resulting in loss of the retina. This effect could be rescued by over-
expression of human Hsp70 (18). Additionally, mounting biochemical evidence establishes
that chaperones play a critical role in neurodegeneration and aging. Hence, this class of
proteins holds much promise as a therapeutic target for the treatment of neurodegenerative
disorders (19).

1.2. Mechanism of chaperone-assisted protein (re)folding
The diverse functions of molecular chaperones typically involve iterative ATP-dependent
substrate binding and release cycles, until the substrate has gained its active conformation or
has been marked for degradation (20,21). Chaperones from different Hsp families work in
concert to carry out the multitude of cellular processes involving chaperone activity. Here
we focus on the Hsp70 chaperone machinery, which has been implicated in posttranslational
protein assembly and translocation (22). The Hsp70 machinery typically includes a member
of the 70-kDa Hsp70 family, assisted by a DnaJ-like protein and a nucleotide exchange
factor (NEF). DnaJ-like proteins (referred as “J-proteins” from here on) are 40 kDa
molecular chaperones (Hsp40s) that specifically regulate Hsp70s by direct interaction via
their J-domains (23,24). The cofactors of Hsp70s (J-protein and NEF) are critical for their
function, as they regulate binding of Hsp70 to its substrates. ATPase activity is stimulated
by the J-protein, promoting substrate binding; dissociation of ADP is stimulated by the NEF,
initiating the recycling of Hsp70 due to substrate release. Therefore, the canonical model of
Hsp70 activity is marked by two iterative steps: first, the initial binding of an unfolded
substrate by the J-protein prevents its aggregation and delivers it to Hsp70; second, the
dissociation of the substrate caused by the nucleotide exchange provides an occasion for the
substrate to fold into its native conformation (25,26). These two steps are tightly regulated,
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since overstimulation by the J-protein may prevent substrate binding and excess of NEF
activity may cause premature substrate release. An elaborate scheme of chaperone-assisted
protein folding and degradation is shown in Figure 1.

1.3. Structural classification of J-proteins
The only common feature among all J-proteins is the presence of the J-domain. The J-
domain is typically (but not always) present at the N-terminus of the protein (23). This small
alpha-helical domain presents a highly conserved tripeptide of histidine, proline, and
aspartic acid (HPD motif) that has been shown to interact with Hsp70 (27,28). J-proteins can
be divided into three types based on their structure. Type-1 J-proteins are descendents of E.
coli DnaJ, and feature an N-terminal J-domain followed by a Gly and Phe-rich unstructured
region, four repeats of the CxxCxGxG- type zinc finger motif, and a C-terminal peptide-
binding domain (PBD) (29,30). The C-terminal domain (CTD) comprises two beta barrel
topology domains, CTD I and CTD II. CTD I has a hydrophobic pocket implicated in
substrate binding, along with the zinc finger motifs extruding from the CTD I (30,31). The
extreme C-terminus mediates dimerization of the J-proteins in solution (32). J-proteins
lacking the zinc-finger domains are classified as type-2, while the remaining J-proteins are
designated type-3. However, one must exercise caution while referring to the three types,
since the structural features do not reflect their functional characteristics.

1.4. Substrate recognition by chaperones
J-proteins with a DnaJ-like fold coordinate with other chaperones in order to facilitate
protein folding in the cell (29). However, the J-domain alone has been shown to
substantially substitute for the entire J-protein and recruit the corresponding Hsp70 for
efficient refolding, while in Hsp40s the C-terminal PBD mediates substrate recognition (33).
The sequence and local structure of the substrate plays a critical role in mediating specific
interactions between the chaperone and the peptide. Structural determinants of enzyme-
substrate interactions have been previously systematically analyzed (34). However, not all
residues or groups of residues contribute equally to the binding free energy (ΔGbinding) of
substrate binding. Accurate determination of ΔGbinding is necessary to assess the role of
specific residues in the chaperone-substrate interface. Experimental techniques, including
phage display screens and alanine scanning, have been developed and applied to many
protein-peptide systems. Because the experimental determination of critical residues at the
interface is time consuming and expensive, an effort has been made to achieve accurate,
predictive computational methodologies for alanine scanning mutagenesis, capable of
reproducing the experimental mutagenesis values. In order to apply these generic
computational methods to understanding the peptide-binding characteristics of a chaperone
of interest, it is essential to accurately calculate the binding free energies of the system and
the effects of mutations on the stability of the complex using known three-dimensional
structures. Numerous algorithms with varying complexity have been developed to accurately
estimate the binding energy between macromolecules. These algorithms can be divided into
two broad classes: (1) use of explicit atomistic simulations to estimate free energy changes,
either directly or upon the mutation of certain residues in the interacting molecules, and (2)
empirical functions that use knowledge-based or physical force fields to evaluate binding.
The most rapid methods of estimation of binding energies are the empirical or knowledge-
based scoring approaches, in conjunction with simple physical force fields (35,36). Explicit
simulations are computationally intensive and include both rigorous free energy perturbation
(37), thermodynamic integration (38), and more approximate methods such as molecular
mechanics/Poisson-Boltzmann surface area (MM-PBSA) (38,39). Here, we review one
protocol from each class in detail and present a case study of their application to chaperone-
substrate systems in order to identify critical sites that determine substrate specificity.
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2. Description of Methods
2.1. Computational alanine-scanning

Alanine-scanning mutagenesis is a simple and widely used technique in the determination of
the functional role of specific amino acid side chains in proteins (40). Alanine is the residue
of choice because it is most abundant and is present both in buried and exposed positions as
well as in all secondary structural elements. Because it eliminates the side chain beyond the
β-carbon atom, alanine substitution is helpful to study the role of specific side chains in
imparting substrate specificity. In addition, alanine is chiral and, unlike glycine, sufficiently
structurally rigid not to fundamentally alter the backbone configuration of the protein.
However, alanine-scanning mutagenesis rapidly becomes cumbersome with the increasing
length of the peptide under investigation.

Computational alanine scanning, introduced by Massova and Kollman, is an elegant
alternative for rapidly screening parts of a protein to deduce the role of specific side-chains
in protein-peptide interactions (41). In this approach, independent molecular dynamics (MD)
simulations from separate starting structures, one each of the native and the alanine mutant
structure, are performed. The structure of the alanine mutant is modeled by truncating the
coordinates of the desired residue at the Cβ atom in the crystal structure. Hydrogen atoms of
the methyl group are added depending on the force field used for simulations. MD
simulations of the starting complexes (wildtype and mutant), along with the individual
components (protein and peptide), are then performed, and snapshots of the structure from
simulation trajectories are saved at equally-spaced intervals. The binding free energies
(ΔGbinding) for each complex can then be estimated using the following expression:

where the individual components are obtained from their corresponding simulations. The
difference in free energies (ΔΔG) represents the energetic contribution of the residue to the
protein-peptide interface. The flow of events related to this algorithm is summarized in
Figure 2A. This MD protocol, where simulations are performed for both native and mutant
proteins, is theoretically a representative of any structural rearrangements at the interface
that may occur upon mutation, and hence represents the biological reality of an alanine
mutation. This algorithm can be directly applied to a chaperone-substrate system in order to
identify residues on the substrate peptide that determine the binding specificity of the
substrate to the chaperone. Since the wild type and mutant complexes and their individual
components are simulated independently of one another, this method results in a high
standard deviation in the estimated energy values, which will likely increase with increase in
the size of the protein-peptide complex. Massova and Kollman proposed a variant of the
algorithm outlined above, in which independent simulations are not performed for the wild
type and mutant complexes (41). Instead, the side chain of the desired residue is truncated
up to the Cβ atom in every frame of the simulation trajectory (Fig. 2B). This ‘post-process’
approach is guaranteed to decrease the standard deviation in estimation of binding free
energies at the cost of inaccurate estimation in cases where local backbone rearrangements
upon substrate recognition are expected. A systematic analysis of both approaches in
comparison with experimental results shows that the postprocess approach, although not
suitable for all cases, offers superior accuracy and faster prediction than the traditional MD
approach (42).

Incorporation of implicit solvation in place of explicit water in MD simulations will further
reduce the time taken for such computational alanine scans. Recently, Moreira and
colleagues introduced an improved methodology with reduced computational cost, involving
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molecular dynamics simulations performed in a continuum medium using the Generalized
Born (GB) model. This approach has been used on multiple systems to predict ΔΔGbinding
within 1 kcal/mol of experimentally determined values (43).

2.2. Monte Carlo driven approach for consensus motif determination
Phage display library screening has been shown to be a powerful tool for characterizing
protein-peptide interactions. Using this methodology, large peptide libraries can be rapidly
screened to isolate candidate peptides that are recognized by the protein of interest. One of
the most successful applications of phage display has been the isolation of monoclonal
antibodies using large phage antibody libraries (44). This approach has been applied to
identify candidate peptides that are recognized by the yeast chaperone Ydj1, a representative
member of the type-1 Dna-J like proteins (45). The results from the screen not only
produced a candidate peptide library, but also provided valuable insight into the potential
consensus sequence required for substrate-recognition by Ydj1. One drawback of this
approach is the time taken for the characterization of peptides that are potential binding
partners to a given chaperone. The same library may not be useful for screening with
multiple chaperones of interest. Recently, we have employed computational methods to
identify a consensus peptide-binding motif for Ydj1, and experimentally verified this motif
(31). The trend observed in our computational studies agrees with the phage display
screening conducted by Li and Sha, establishing the potential of predictive computational
algorithms in determining the binding properties of proteins in general, and their specific
application to understanding substrate recognition by chaperones.

The algorithm for determining whether a given peptide is a potential substrate for a
chaperone is based on a Monte Carlo driven iterative search for the best combination of side
chain orientations that energetically favor the configuration of the substrate in the
chaperone-substrate complex. Such an algorithm can also be used to design novel peptides
targeted for recognition by a specific chaperone. In this iterative approach, each position on
the substrate is computationally mutated to all possible amino acids and the energetically
most favorable residue is chosen for each position. This approach allows for screening the
entire sequence space in order to identify potential substrate peptides. At each step, the
stability of the chaperone-substrate complex is estimated after a chosen mutation. Estimation
of the effect of mutation on protein stability is important, considering that mutagenesis is a
central tool in molecular biology. The change in stability of the complex upon mutation
(ΔΔG) can then be computed using

Here, a mutant is defined as a peptide in which one of the positions is mutated to a different
amino acid, while the chaperone remains intact. The change in free energy (ΔΔG) can be
compared across different substrates to arrive at the best-fit peptide for the chaperone. This
process is considerably faster than using the computational alanine scanning approach
described above, because free energy estimation protocols using molecular dynamics
simulation require several hours of computing time, and thus are inefficient when estimating
ΔΔG from multiple mutations (37). In addition, many heuristic force fields currently
available are limited by the dataset on which the parameters are initially trained (46–49). To
avoid these limitations, we have developed a methodology that uses a physical force field
(hence applicability is not limited by a training data set), Medusa, with atomic modeling as
well as fast side chain packing and backbone relaxation algorithms (35,50).
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In Medusa, the protein is modeled using the united atom model, which includes all heavy
atoms as well as polar hydrogen atoms. The free energy of the chaperone-substrate complex
is then expressed as a weighted sum of van der Waals forces, solvation, hydrogen bonding,
and backbone-dependent statistical energies (35), as shown below.

where E is the total energy of the system; Evdw_attr, Evdw_rep are the attractive and repulsive
portions of the van der Waals interaction, respectively; Esolv is the solvation energy; and
Ebb_hb, Esc_hb, and Ebb_sc_hb are the hydrogen bonding energies among backbone atoms,
side chain atoms, and between backbone and side chain atoms, respectively. E, |aa and
E,,aa|rot correspond to the internal energy of an amino acid and its rotamer state given the
backbone dihedrals, ϕ and ψ. Eref is the reference energy for the unfolded state. We use the
weights (W) to estimate the contribution of each term to the total energy. The weighting
parameters were independently trained to recapitulate the native amino acid sequences for
34 proteins using high-resolution X-ray structures (35).

2.3. Protein design with fixed backbone
In order to design the optimal side chain orientations for the residues in the substrate, we fix
the protein’s backbone and use a Monte Carlo-based simulated annealing approach to search
for low-energy structural configurations of the substrate. Using the Metropolis criterion, we
accept or reject a trial mutation - either an amino acid substitution or a side chain rotation -
by computing the energy difference between the original and altered states. Using Monte
Carlo, we accept a change in the state of the system if the change results in decrease of the
total energy of the system. Additionally, we incorporate the Metropolis criterion in making
decisions during the Monte Carlo simulation. The advantage of the Metropolis criterion is
that it allows us to accept changes to the system despite an increase in energy with a given
probability. In doing so, the system can be rescued from being trapped in a local energy
minimum. This methodology improves the sampling efficiency in the overall energy
landscape. During the last step of simulated annealing, we perform a quenching simulation,
in which conjugate-gradient minimization is used to find the lowest energy state in the sub-
rotameric conformation of each trial rotamer. Due to the stochastic nature of the design
algorithm, one needs to perform multiple simulations in order to attain statistical
significance of the outcomes. However, since the simulations are independent of one
another, they can be performed in parallel, thereby decreasing the time taken for free energy
estimation. Using this approach, we can rapidly identify the best-fit amino acid side chains
for each position on a given substrate for the chaperone. Given the promiscuity of substrate
recognition by chaperones, it is critical to evaluate all possible substitutions at all positions
on the substrate before choosing the best-fit substrate for the chaperone. The steps involved
in determining the sequence space that best represents the substrate sequences are outlined
as a flow diagram in Figure 3.
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2.4. Backbone flexibility improves protein stability estimation
The drawback of fixing the protein backbone during redesign is that the methodology does
not accurately estimate the change in free energy upon small side chain to large side chain
substitutions and vice versa, where movement of the backbone is necessary to reach the
energetic minimum. In order to be able to allow small to large as well as large to small side
chain substitutions, we modeled backbone flexibility in our protein redesign algorithm.
Proteins often adapt their structure to changes in the sequence by slightly reorienting the
backbone. We apply the same in our design approach to achieve a realistic estimation of
ΔΔG upon mutation. Backbone relaxation also helps to relieve any nonphysical atomic
interactions in the protein that might bias the van der Waals energy, and hence the total
energy, of the chaperone-substrate complex.

2.5. Eris – An automated tool for estimating stability changes upon mutation
We have developed a web-based tool, Eris (http://eris.dokhlab.org), for automated
estimation of the change in protein stability upon mutation. We benchmarked Eris on 595
mutants with experimentally measured ΔΔG values. We observe that there is significant
correlation (0.75; P = 2 × 10−108) between the Eris-estimated and experimentally determined
ΔΔG values, an overall performance that is comparable with that of other methods (46–48).
However, unlike other methods, Eris accurately predicts the effect of small-to-large side
chain mutations by effectively relaxing the backbone structures and resolving the clashes
introduced by larger side chains. In direct comparison with other methods available on web
servers, we computed stability changes upon small-to-large residue mutations, and we found
that Eris outperforms other methods. Additionally, Eris provides a protein structure pre-
relaxation option, which remarkably improves the prediction accuracy when a high-
resolution protein structure is not available, such as when only a homology model of the
protein exists. Because of its unbiased force field, side-chain packing, and backbone
relaxation algorithms, Eris is applicable to a broad spectrum of mutations evaluated during
protein engineering and design. Additionally, an integral step of Eris is backbone relaxation,
when severe atom clashes or backbone strains are detected during calculation (50,51).

2.6. Ensemble-based profile prediction
In the Monte Carlo based approach outlined above, we fix the backbone of the chaperone
and the substrate throughout the modeling exercise. However, we have also shown that
incorporating backbone flexibility into our design principles improves estimation of the
binding energy of a protein-peptide complex. A more recently reported methodology takes
into account backbone flexibility of both the protein and the peptide, under the assumption
that local conformational changes in the protein and/or peptide might improve the prediction
of binding affinity between the two entities (52). In this methodology, an ensemble of
structurally distinct states is generated, reasoning that proteins are flexible to varying
extents. The ensemble is used to generate a tolerance profile that represents a set of amino
acids that are energetically tolerated at the protein-protein interface. The steps followed in
this algorithm are described in detail below.

(i) Ensemble generation—Small changes in side chain rotamer orientation and/or
hydrogen bonding partners lead to significant side chain motion perpendicular to the chain
direction. As a result, the corresponding residue and its adjacent peptides twist slightly
around the backbone. This phenomenon is termed “backrub” motion in proteins (53).
Backrub is observed in sub-Angstrom resolution crystal structures, where the alternate
conformations of the protein backbone exhibit a highly localized plasticity of small
amplitude coupled to a larger, two-state conformational change of the side chain (53). Smith
and Kortemme take advantage of this minor perturbation in the protein backbone to
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computationally generate an ensemble of structurally distinct states using Monte Carlo
simulations. In these simulations, side chain rotamer moves are performed, retaining the
lowest-scoring structures obtained during the simulation (52). Smith and Kortemme used the
Rosetta protein-modeling suite with backrub and side chain rotamer moves to generate the
structural ensemble of states (54).

(ii) Profile prediction—A tolerance profile for a given set of positions in the protein-
protein interface can be obtained using the genetic algorithm based approach proposed by
Humphris and Kortemme (55). After every generation of sequence propagation using the
genetic algorithm, Monte Carlo-simulated annealing will be used to minimize the energy
function over the entire protein complex. During this process, optimal side chain rotameric
orientations are chosen for the selected sequence from the Dunbrack rotamer library (56).
During the repacking, only the amino acids that are within 4 Å of any other amino acid are
allowed to change their rotamer orientations, while the others are not considered for
redesign. The efficiency of binding (the binding score) between the protein and peptide is
then estimated based on the inter-chain score across the interface. The difference between
the overall complex score and the binding score will be used as an estimate for folding,
assuming that the score for which the sequence remains unchanged is constant. With the
binding score of the native complex as a benchmark, sequences that offer a binding score
within 1% of that of the native complex are considered a part of the tolerance profile. This
procedure is repeated for all the near-native structural states generated using the backrub
algorithm, and the profiles thus obtained are included in the tolerance profile.

The outcomes of this approach are similar to the Monte Carlo based consensus motif
identification algorithm outlined above. The set of sequences generated following this
protocol can be used to rationally design the interface between the chaperone and substrate,
such that a target peptide can be engineered to be a substrate for a specific chaperone.

2.7 Case study: Substrate recognition by the yeast chaperone Ydj1p
Ydj1p (Yeast DnaJ 1) is the yeast homolog of E. Coli DnaJ and a representative member of
the 40 kDa heat shock proteins (Hsp40s). These proteins are essential for normal cell growth
and the survival of yeast from heat stress, and are involved in protein translocation across
the membrane as well as protein folding and degradation (57). Ydj1p has been shown to
influence the assembly-state of endogenous yeast prions, and it influences the aggregation of
fragments of huntingtin in yeast models (58,59). The structure of this protein with a co-
crystallized 7-residue peptide substrate (GWLYEIS) in its C-terminal peptide-binding
domain (PDB: 1NLT) clearly indicates that the substrate binds to the chaperone via beta-
strand extension on the surface of the protein (30). Our goal in this study was to identify
peptides that potentially bind Ydj1 with affinities comparable to the co-crystallized peptide.
We applied the fixed backbone redesign protocol described above in order to identify a
consensus sequence from the computationally designed peptide library, which had
energetically favorable substrates for Ydj1. We systematically mutated each position on the
peptide to all possible amino acids, and estimated the change in stability upon mutation.
This process is analogous to the generation of a random peptide library, often performed in
phage display screening. We then compared the binding affinity of each designed peptide to
that of the peptide co-crystallized with Ydj1 (referred to as wild type peptide). We isolated a
set of ~2500 peptides featuring a binding affinity of >75% of that of the wild type peptide.
We computed the propensity of each amino acid to appear in a given position on the peptide
obtained from the computationally generated peptide library, and arrived at a consensus
sequence (GX[LMQ]{P}X{P}{CIMPVW}, where [XY] denotes either X or Y and {XY}
denotes neither X nor Y) that acts as a sufficient condition for recognition by Ydj1 (31). We
experimentally verified that the computationally generated consensus sequence is in good
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agreement with the trend observed by phage display screening (31,45). We therefore
demonstrated that our peptide redesign methodology could be generally applied to
computationally mimic phage display screening for the identification of potential binding
motifs recognized by chaperones.

We conducted a yeast proteome-wide screen for peptides satisfying the identified consensus
motif. Interestingly, the hits obtained from our proteome screen include proteins that are
either known substrates of Ydj1 (e.g. prions) or other chaperones with which Ydj1 has been
shown to interact (e.g. Hsp70, Hsp90), along with other uncharacterized proteins. These
results indicate that our methodology can be applied to identify potential new candidate
substrates for a given chaperone. We acknowledge that these observations require further
experimental verification to validate our claim.

3. Conclusions
Chaperones are versatile molecules that recognize unfolded and/or misfolded protein
fragments in the cell and target them for refolding or degradation. The role of molecular
chaperones in neurodegenerative disorders has been recognized in various animal models.
The indispensability of chaperones in conformational disorders has made them potential
targets for drug discovery. Recent pharmacological advances in the development of small
molecules, like geldanamycin and its derivatives, that induce the synthesis of multiple
endogenous molecular chaperones have shown promise with their effectiveness in
neurodegenerative disease models. Understanding the basic features of substrate recognition
by molecular chaperones will aid in the design of therapeutics that target aggregates
enriched by specific peptide fragments for chaperone-assisted degradation. Computational
estimation of the binding free energy of peptide-chaperone complexes will be beneficial for
the rapid identification of potential substrates for a given chaperone. Many computational
algorithms have been developed to accurately estimate the binding affinity of protein-protein
interfaces. This report reviews three algorithms that can be directly applied in order to
identify potential substrates to a chaperone. In order to accurately represent the chaperone-
substrate complex, modeling backbone flexibility is a critical consideration, especially when
the chaperone or substrate is likely to undergo conformational change upon recognition. In
conclusion, a computational algorithm must be chosen based on the system under
consideration in order to efficiently design a set of potential substrates.
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Figure 1. Chaperone-assisted protein folding and degradation
Chaperones (red shape) recognize unfolded/misfolded non-native polypeptides or native
proteins in the cell and subject them to refolding or degradation. Once the substrate is
captured, it is transiently released to allow refolding. The capture-release cycles take place
iteratively until the protein is folded to its native state. If the protein could not be refolded, it
is targeted for degradation. The chaperone does not interact with the protein once it is folded
to its native form.
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Figure 2. Flow chart for computational alanine-scanning mutagenesis
(A) Explicit MD simulations of individual components of both the wild type and alanine
mutant are performed. Data is collected at discrete time points for computation of change in
free energy upon mutation. The mutation is considered for further experimental analysis if it
leads to a favorable change in free energy and is discarded otherwise. (B) Alternate flow of
the MD protocol with improved accuracy in computation of free energy differences. Explicit
MD simulations are performed only of the components of the wild type complex and the
alanine mutants are constructed by truncating side chain atoms of the desired residue.
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Figure 3. Flow chart for side chain redesign using Medusa
Every amino acid in the peptide substrate is mutated to all other possible amino acids. This
process is repeated several times for statistical significance. ΔΔGbinding is computed as the
difference in free energies of the mutant and wild type complexes. Mutations that lead to a
drop in ΔΔG to a value less than zero are considered stabilizing.
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