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Abstract

The many-body physics of hydrogen bond formation in alpha-helices of globular proteins was

investigated using a simple physics-based model. Specifically, a context-sensitive hydrogen bond

potential, which depends on residue identity and degree of solvent exposure, was used in the

framework of the Associated Memory Hamiltonian codes developed previously but without using

local sequence structure matches (“memories”). Molecular dynamics simulations employing the

energy function using the context-sensitive hydrogen bond potential alone (the “amnesiac” model)

were used to generate low energy structures for three alpha-helical test proteins. The resulting

structures were compared to both the X-ray crystal structures of the test proteins and the results

obtained using the full Associated Memory Hamiltonian previously used. Results show that the

amnesiac Hamiltonian was able to generate structures with reasonably high structural similarity (Q

~ 0.4) to that of the native protein but only with the use of predicted secondary structure

information encoding local steric signals. Low energy structures obtained using the amnesiac

Hamiltonian without any a priori secondary structure information had considerably less similarity

to the native protein structures (Q ~ 0.3). Both sets of results utilizing the amnesiac Hamiltonian

are poorer than when local-sequence structure matches are used.
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1. Introduction

The formation of hydrogen bonds in the backbone has long been recognized as a key aspect

in stabilizing the native structures of globular proteins. This idea was the basis of the early

predictions about protein structure made by Pauling and Kauzmann which pre-dated crystal

structure determination [1] [2]. Hydrogen bonds between polar amine and carboxyl groups

alleviate the desolvation penalty of those groups as they become buried in protein’s native

structure. This, in turn, gives rise to the familiar protein secondary structures, such as alpha-

helices and beta-sheets. Furthermore, formation of the secondary structures in the molten

globular state substantially diminishes the search space for the folded state, accelerating the

folding kinetics [3] [4] [5]. Despite the clear importance of hydrogen bonding in protein

folding thermodynamics and kinetics, and the enormous body of prior work in this area, a

significant number of outstanding questions remain about the precise energetics of hydrogen

bond formation among various pairs of amino-acid residues in the context of the local

environment (e.g., whether there is a high density of neighboring residues or significant

exposure to solvent.) Certain aspects of hydrogen bond energetics, owing to the solvent

involvement should lead to non-trivial cooperative or anti-cooperative effects. One therefore

wonders whether encoding the physics of hydrogen bond formation upon collapse might

actually be sufficient to predict protein structure. In this work, we probe the many-body

physics of hydrogen bond formation in alpha-helices of globular proteins by introducing

corresponding context-sensitive hydrogen bond potentials as additional terms to a protein

structure prediction Hamiltonian already developed in our group and evaluating the

performance of this simple physics model.

Protein structure prediction potentials that incorporate knowledge of local sequence

structure patterns have become remarkably successful over the last decade. There are a

number of features which are common to the potentials used by various groups. In addition

to chain connectivity, usually both local and tertiary interactions enter as distinct terms in

these Hamiltonians. In prior work by Saven and Wolynes, it was shown that local and

tertiary interactions likely contribute nearly equally to the overall specificity of native folds

[6]. There are a number of ways by which local interactions are treated in structure

prediction Hamiltonians. In both fragment assembly-like methods [7] [8] and the Associated

Memory Hamiltonian [9] [10] [11] [12], local structural signals are inferred by finding

distant or close sequence similarity to corresponding local segments of many other proteins

in the structural database. In recent developments of the Associated Memory Hamiltonian,

called the AMH, memory based guidance of local structure formation is supplemented by

direct and water-mediated interactions which are burial-specific [13] [14]. We call this the

AMW model. Interestingly, although no direct hydrogen bonding potential was included in

the alpha-helical AMW prediction code, highly native-like alpha-helices form in successful

prediction runs, driven by the secondary structure bias from the memory proteins [13]. In

this work, conversely we turn off these memories, but instead add direct many-body

hydrogen bonding potential to the resulting memory-less (“amnesiac”) Hamiltonian. We

colloquially use the latter phrase to distinguish and compare the present results with the

alpha-helical AMW results published previously.
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Collapse of a random coil to a molten globule has a number of important consequences for

the thermodynamics and kinetics of protein folding. In particular, local steric constraints and

excluded volume interactions reduce configurational entropy and thus facilitate the

formation of flickering alpha-helical segments which become partially aligned, reminiscent

of a liquid crystal [4]. When local structural signals are added for either helix formation,

helix capping, or a turn formation, via specific local sequence information, the resulting bias

towards native-like secondary structures contributes to the minimal frustration of the folded

conformation and significantly diminishes the entropy of the globule, which allows for more

efficient folding kinetics [6]. As explained in the Methods section, some of these local

signals are included in the alpha-helical hydrogen bonding term of the amnesiac

Hamiltonian, by modulating the specific hydrogen bonding strength depending on the

specific amino-acid residue pair. This approach could also potentially be used to model

some of the helix capping effects involving side chain-backbone hydrogen bonds. On the

other hand, the present hydrogen bonding potential is non pair-wise only insofar as local

polypeptide chain density is concerned, while additional cooperative effects may potentially

also be important. Explicit turn signals, on the other hand, are also completely absent in the

amnesiac Hamiltonian we study here. We address the question of relative importance of

these effects in the present study, by comparing the amnesiac Hamiltonian results with the

AMW calculations.

Another interesting question addressed in the present work is the effect of modulating the

strength of hydrogen bonding based on burial. According to the original Kauzmann

arguments, when amine and carboxyl groups are well solvated, there should be little driving

force for hydrogen bond formation. Upon desolvation in the protein core or partial

desolvation within an alpha-helix, the energetics of hydrogen bond formation becomes

important. Since local polypeptide chain density and hydrogen bond formation become

coupled under this scenario, this is expected to introduce additional cooperativity into the

folding process. In the amnesiac Hamiltonian, the alpha-helical hydrogen bonding term is

modulated by the local surrounding density, so we can independently vary the strengths of

core and surface hydrogen bonds. While we keep the core hydrogen bonding always

stabilizing, we compare the quality of structure prediction runs for various proteins as the

surface hydrogen bonding energies are either energetically favorable, neutral or unfavorable.

In summary, in this work we have developed a many-body alpha-helical hydrogen bonding

potential in the context of a structure prediction potential. We have compared folding runs

and free energy profiles obtained from the amnesiac Hamiltonian with AMW results, where

in the latter protein memories are used to guide local alpha-helical and turn formation

processes. This comparison indicates that the performance of the new amnesiac

Hamiltonian, when combined with secondary structure prediction bias, is although not at par

with AMW, which includes complex sequence-specific local interactions, still rather

predictive of native-like conformations but that hydrogen bonding and water-mediated

interactions alone are insufficient to predict protein structure. These findings are somewhat

unexpected, suggesting that introducing additional physical interactions may allow one to

somewhat simplify current knowledge-based structure prediction Hamiltonians. This may

consequently allow application of this potential to polypeptide chains where truly novel
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structural patterns exist locally, for example to study conformational dynamics of

intrinsically-disordered proteins.

2. Methods

The infrastructure of our structure prediction program is based on the Associative Memory

Hamiltonian with water mediation (AMW) [13]. There are four components in the

Hamiltonian: a backbone term, a water-mediated term for medium/long range interactions

(sequence distance larger than 8) and two hydrogen bonding potential terms.

(1)

In our Hamiltonian, the atoms Cα, Cβ and O are explicitly represented with chain

connectivity. The backbone angles are controlled by a Ramachandran potential and chirality

potential. Excluded volume is treated for the explicitly represented atoms in the system. The

exposure or buriedness of any residue is calibrated based on the residue density surrounding

it, which is calculated on-the-fly. The medium/long range interactions between residues

depend on the residue density surrounding the interaction as well. Here we present the

details of helical hydrogen bond potential and how water mediation is integrated into the

potential.

We focus on implementing the water mediation into the hydrogen bond potential that

controls the formation of helices. As a result, the exposure or degree of burial of the residue

is used to characterize the environment of the forming hydrogen bond as was done earlier in

a study by Takada without water-mediated interactions [15] [16]. The memory term used in

previous studies [13] is replaced by the water-mediated helical potential in our Hamiltonian,

which we denote as the “amnesiac” Hamiltonian.

We use the following hydrogen bonding potential to control helical formation:

(2)

where Ehelical is our helical hydrogen bond potential. And σ(i, i + 4) = Hburial (ρi) ×

Hburial(ρi+4) is the burial profile term of the pairwise interaction. ρ is the local density of

each residue calculated in the water potential.

(3)

The term f(i) describes the probability of finding the corresponding residue type in helices

from the protein database [17]. The hydrogen bond stability is proportional to the sum of

helical propensities of the two interacting residues.

The overall energy scale of helical hydrogen bond potential is denoted by γp, which has been

optimized using training proteins based on minimal frustration principle [18].
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The above potential directs the hydrogen bonding between different pairs of residues when

both are buried. As residues become exposed, the free energy gain due to hydrogen bond

formation will decrease to reflect the fact that water molecules can also participate in

hydrogen bond formation. For γw < 0, this free energy for intra-helical hydrogen bond

formation can become negative (anti-helical), which we dub as the “Kauzmann effect”. The

following potential is given:

(4)

where Vhelical was described by 3.

Seven alpha-helical proteins were used for training the new parameters. In this procedure,

we first simply set γp and γw as 2.5 and −2.5 respectively. Simulations of seven training

proteins were performed to generate ensembles of native-like structures and protein

structures in the molten-globule state using the amnesiac Hamiltonian both with and without

a secondary structure bias. Before the simulations were started, a secondary structure

prediction for each protein was obtained [19]. For simulations employing a secondary

structure bias, the results of the secondary structure predictions were used to bias the

Ramachandran potential in favor of the predicted secondary structure. The cumulant

expansion of free energy with respect to parameter γp and γw was performed. The optimal

value is chosen at the position where the free energy gap between native-like structure

ensemble and molten-globule structure ensemble is maximized. Based on the optimization

result, γp is approximately 2.0 and γw is −1.0. (See Figure 1.)

In the force calculations, the derivative of the potential is calculated for every explicit atom

involved in the potential. The derivative follows the chain rule calculation in the hydrogen

bond potential. The forces are transferred from the implicit nitrogen atom to the explicit

atoms Cα, Cβ and Ox in the planar scaffold of the amino acid. For the Hburial terms, the

forces will be applied to the relevant residues in proximity. Therefore our helical potential is

a non-additive potential, instead of a simple two-body potential.

3. Results and Discussion

Molecular dynamics annealing simulations were performed using the amnesiac Hamiltonian

to generate low energy conformations of target proteins. Three relatively small alpha-helical

test proteins were used to test the performance of the amnesiac Hamiltonian: amino-terminal

domain of phage 434 repressor, uteroglobin, and vitamin D- dependent calcium-binding

protein (PDB accession ID numbers 1R69, 1UTG and 3ICB, respectively). For comparison,

molecular dynamics annealing simulations were performed on all three targets using the

standard AMW Hamiltonian, a knowledge-based potential that has previously been shown

to predict structures with high structural similarity to the native fold [13]. In this case, of

course, no homologs were included in the memory set. To illustrate how the amnesiac

Hamiltonian categorizes buried and exposed hydrogen bonds, Figure 2 shows the native

structure of 1UTG protein with hydrogen bonds colored according to the amnesiac potential.

The exposed and buried hydrogen bonds depicted in Figure 2 as determined by the amnesiac

potential are consistent with our expectations: all exposed hydrogen bonds are limited to
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alpha-helical segments facing out from the protein interior or located near loops, while

buried hydrogen bonds are mostly confined to alpha-helical segments located near the

protein’s interior.

For each target, two separate sets of 14 annealing simulations with the amnesiac model were

performed in which one set uses a secondary structure bias and the other does not. The best

Q score for each run is reported in Figure 3. The Q score is defined as

, Q serves as a quantitative measure for

all pairwise distances within a given structure [20]. For example, a structure with Q=1.0

corresponds to the native structure, while a structure with a Q score < 0.2 bears little

resemblance to the native form. The Z score calculated using the combinatorial extension

(CE) algorithm [21] was used as another similarity measure with which to compare

predicted structures to their crystallographic structures. This score identifies general

topological similarities irrespective of protein sequence. For example, Z scores larger than

4.0 indicate strong similarities between protein structures.

The results in Figure 3 were obtained using values of γp = 2.0 and γw = −1.0 for buried and

exposed hydrogen bonds, respectively. These values should strongly favor the formation of

buried hydrogen bonds and discourage formation of exposed intra-helical hydrogen bonds.

The best Q score obtained for simulations using a secondary structure bias are substantially

improved over simulations carried out without a secondary structure bias. While this is not

surprising, it is interesting to observe the degree of improvement in the prediction. For each

target protein, the best overall Q scores for simulations using a secondary structure bias

approaches 0.4, which is typically characterized by a better than 6 ÅRMSD fit to the native

structure. In contrast, the best overall Q scores found for simulations that do not use a

secondary structure bias don’t exceed 0.35. This trend is mirrored by the Z scores calculated

for each of the structures giving the best Q score. The highest Z score for simulations biased

by their predicted secondary structure was 4.1, while the highest value for the unbiased

simulations was merely 3.1.

The structures obtained from annealing simulations with and without the secondary structure

bias for protein 1UTG are displayed in Figure 4. (Corresponding contact maps can be found

in the Appendix.) The predicted structure obtained for protein 1UTG from simulations using

the secondary structure bias represents the best predicted structure generated by all

simulations employing the amnesiac potential. Comparison with the X-ray crystal structure

shows that structural similarity is very high with some discrepancy between the packing of

one of the helical segments. The best predicted structure obtained for protein 1UTG from

simulations without the secondary structure bias appears quite different from the native

structure due to the lack of secondary structural elements. However, the contact map (see

Appendix) illustrates that reasonable number of native pairwise contacts are present in this

structure, which indicates that the amnesiac potential is able to recapitulate some of the

structural features of the protein even without a secondary structure bias.

Results obtained for proteins 1R69 and 3ICB (Figure 5 and Figure 6) mirror those discussed

for 1UTG above. Again, the best predicted structures for each protein were obtained from

simulations employing the secondary structure bias. A brief visual inspection of the left side
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of Figures 5 and 6 shows that the overall similarity between the predicted structure and that

of the X-ray structure bias was high, with some mis-packing of secondary structure elements

(particularly for protein 3ICB). The best predicted structure for proteins 1R69 and 3ICB for

simulations without a secondary structure bias, shown on the right side of Figures 5 and 6,

exhibit poorly developed secondary structure. The contact map for protein 1R69 (see

Appendix) indicates reasonably large regions where native contacts are maintained, while

the number native contacts shown in the contact map for protein 3ICB is quite low.

Figure 7 shows the best overall Q scores for annealing simulations using the AMW

Hamiltonian with and without a secondary structure bias. In contrast to the results obtained

using the amnesiac Hamiltonian, the addition of a secondary structure bias does not lead to

any substantial improvement in the prediction results. This can be attributed to the fact that

associative memory potential term already biases the secondary structure according to its

alignment with a set of non-homologous memory proteins. The best Q scores measured for

the AMW annealing simulations are considerably better than those achieved with amnesiac

Hamiltonian.

Figure 8 displays the best Q sampled in 10 annealing simulations for protein 1UTG using

varying values of the Pauling-Kauzmann coefficient for exposed hydrogen bonds (γw) to

investigate the effect of favoring or disfavoring exposed hydrogen bonds on structure

prediction. The results for simulations employing a secondary structure bias clearly exhibit a

dependence on the value of this parameter, while simulations without a secondary structure

bias exhibit a weaker dependence. One possible explanation for this trend could be that the

secondary structure bias influences the residue density, which in turn influences the Ehelical,

which depends on local residue density. In both cases, larger positive values of γw appear to

result in predicted structures with higher Q scores and suggests that annealing simulations

using larger positive values of γw would have yielded structures with higher structural

similarity that those reported in Figure 3.

To further understand the role of exposed hydrogen bonds in protein folding, free energy

profiles for 1UTG were calculated as a function of Q score using umbrella sampling along

the reaction coordinate. Umbrella sampling was carried out with the Q score bias potential

Vi(Q) = 5000x(Q − Qi)4, where Qi = 0.15,0.20,0.25,0.30,….,0.95. Free energy plots as a

function of Q score were calculated using the weighted histogram analysis method [22].

Figure 9 shows free energy profiles calculated from simulations using γw values of 3.0, 0.0

and −3.0 and both with and without the secondary structure bias. The trends observed in the

free energy calculations are consistent with the trends observed in the annealing simulation

results. For those simulations using a secondary structure bias, the free energy curve minima

are shifted to larger values of Q compared to that of simulations without the secondary

structure bias. Interestingly, the free energy minima for simulations using γw values of 0.0

and −3.0 both occur at Q ~ 0.30, while for simulations using a γw value of 3.0 the free

energy minimum moves to a noticeably higher Q score (Q> 0.4). In contrast, the free energy

vs. Q plots for corresponding simulations without the secondary structure bias all exhibit

minima at Q ~ 0.23. This low value is also consistent with results observed in the annealing

simulations. The results in Figure 9 suggest that the use of the secondary structure bias

strongly influences the Ehelical term of the amnesiac potential and, in turn, its ability to
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sample structures more similar to the native state. These results also suggest that the role of

intra-helical exposed hydrogen bonds plays an important role in stabilizing the native

protein conformation.

4. Conclusions

We have investigated the ability of a coarse-grained microphysics based model to predict the

structures of globular proteins. The microphysics incorporated in the simplest “amnesiac”

model emphasizes the importance of backbone buried hydrogen bond and sequence

dependent compaction with the inclusion of water-mediated interactions. While this model

captures many of the common themes of protein structures in its predictions, it performs

considerably more poorly than schemes that also incorporate local in sequence interactions,

like the corresponding associative memory Hamiltonian. Surprisingly, adding a rather

simple local secondary structure potential term already improves performance considerably,

although not to the level of the full AMW method or the most powerful hybrid of AMH and

fragment assembly. The amplification of local signals, by a roughly organized collapse,

predicted by Saven and Wolynes’ analytical theory [6] seems to be at the core of this

performance.

The value of the current amnesiac code is that it is applicable to the prediction of alpha-

helical proteins where any local structural signals have a distinct origin from those typically

seen in globular proteins. Examples include “intrinsically-disordered” proteins, which have

become increasingly recognized for their biological significance. It will also be of interest to

use the amnesiac code to examine and predict membrane protein structures, many of which

exhibit only alpha helical structure, where again the main organizing microscopic forces

should be captured by the amnesiac model. Extension of this model to include proteins with

alpha-beta and all-beta secondary structure will require a more complicated potential for

hydrogen-bonding, as discussed in [14], and is a problem for the future. Refinement of the

hydrogen bonding potential in the amnesiac model to allow more extensive hydrogen

bonding will allow us to investigate a broader range of “intrinsically-disordered” proteins, as

well as explore the possibility of whether these proteins adopt fluctuating super-secondary

structures not yet observed.
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Figure 1.
Optimization results of the overall energy scaling parameter for Ehelical
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Figure 2.
Crystal structure of 1UTG protein with buried (red) and exposed (blue) hydrogen bonds

colored according to the amnesiac potential.
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Figure 3.
Best Q sampled in 14 annealing simulations for proteins 1UTG (black squares), 1R69 (red

stars) and 3ICB (blue circles) in descending order for simulations using a secondary

structure bias (left) and simulations without using a secondary structure bias (right).
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Figure 4.
Left: Predicted structure from an annealing simulation using a secondary structure bias for

protein 1UTG with Q=0.468; CE: Z = 4.1 (blue) overlaid onto the X-ray crystal structure of

protein 1UTG (red). Right: Predicted structure from an annealing simulation without using a

secondary structure bias for protein 1UTG with Q=0.305; CE: Z = 3.1 (blue) overlaid onto

the X-ray crystal structure of protein 1UTG (red).
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Figure 5.
Left: Predicted structure from an annealing simulation using a secondary structure bias for

protein 1R69 with Q=0.344; CE: Z = 3.3 (blue) overlaid onto the X-ray crystal structure of

protein 1R69 (red). Right: Predicted structure from an annealing simulation without using a

secondary structure bias for protein 1R69 with Q=0.333;CE: Z = 2.6 (blue) overlaid onto the

X-ray crystal structure of protein 1R69 (red).
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Figure 6.
Left: Predicted structure from an annealing simulation using a secondary structure bias for

protein 3ICB with Q=0.344; CE: Z = 3.5 (blue) overlaid onto the X-ray crystal structure of

protein 3ICB (red). Right: Predicted structure from an annealing simulation without using a

secondary structure bias for protein 3ICB with Q=0.343; CE: Z = 3.1 (blue) overlaid onto

the X-ray crystal structure of protein 3ICB (red).
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Figure 7.
Best Q sampled using AMW Hamiltonian in 14 annealing simulations for proteins 1UTG

(black squares), 1R69 (red stars) and 3ICB (blue circles) in descending order for simulations

using a secondary structure bias (left) and for simulations without using a secondary

structure bias (right).
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Figure 8.
Best Q sampled in 10 annealing simulations for protein 1UTG with varying values of the γw:

0.0 (black squares), 1.0 (red stars), −3.0 (blue circles) and 3.0 (magenta triangles) in

descending order for simulations using a secondary structure bias (left) and simulations

without using a secondary structure bias (right).
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Figure 9.
Comparison of free energy calculations for protein 1UTG using the amnesiac Hamiltonian at

T=0.7 using varying values of γw: −1.0 (black squares), 3.0 (red stars), −3.0 (blue circles)

and the AMW Hamiltonian (pink diamonds) for simulations using a secondary structure bias

(left) and for simulations without using a secondary structure bias (right).
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Figure 10.
Left: Contact map for a predicted structure from an annealing simulation using a secondary

structure bias for protein 1UTG. Right: Contact map for a predicted structure from an

annealing simulation without using a secondary structure bias for protein 1UTG.
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Figure 11.
Left: Contact map for a predicted structure from an annealing simulation using a secondary

structure bias for protein 1R69. Right: Contact map for a predicted structure from an

annealing simulation without using a secondary structure bias for protein 1R69.
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Figure 12.
Left: Contact map for a predicted structure from an annealing simulation using a secondary

structure bias for protein 3ICB. Right: Contact map for a predicted structure from an

annealing simulation without using a secondary structure bias for protein 3ICB.

Oklejas et al. Page 21

Methods. Author manuscript; available in PMC 2014 August 27.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


