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Mammalian SWI/SNF chromatin-remodeling complexes utilize either BRG1 or Brm as alternative 

catalytic subunits to alter the position of nucleosomes and regulate gene expression. Genetic 

studies have demonstrated that SWI/SNF complexes are required during cardiac development and 

also protect against cardiovascular disease and cancer. However, Brm constitutive null mutants do 

not exhibit a cardiomyocyte phenotype and inducible Brg1 conditional mutations in 

cardiomyocyte do not demonstrate differences until stressed with transverse aortic constriction, 

where they exhibit a reduction in cardiac hypertrophy. We recently demonstrated the overlapping 

functions of Brm and Brg1 in vascular endothelial cells and sought here to test if this overlapping 

function occurred in cardiomyocytes. Brg1/Brm double mutants died within 21 days of severe 

cardiac dysfunction associated with glycogen accumulation and mitochondrial defects based on 

histological and ultrastructural analyses. To determine the underlying defects, we performed 

nontargeted metabolomics analysis of cardiac tissue by GC/MS from a line of Brg1/Brm double-

mutant mice, which lack both Brg1 and Brm in cardiomyocytes in an inducible manner, and two 

groups of controls. Metabolites contributing most significantly to the differences between 

Brg1/Brm double-mutant and control-group hearts were then determined using the variable 

importance in projection analysis. Increased cardiac linoleic acid and oleic acid suggest alterations 

in fatty acid utilization or intake are perturbed in Brg1/Brm double mutants. Conversely, decreased 

glucose-6-phosphate, fructose-6-phosphate, and myoinositol suggest that glycolysis and glycogen 

formation are impaired. These novel metabolomics findings provide insight into SWI/SNF-

regulated metabolic pathways and will guide mechanistic studies evaluating the role of SWI/SNF 

complexes in homeostasis and cardiovascular disease prevention.
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1 Introduction

Mammalian SWI/SNF (switching defective/sucrose non-fermenting) complexes are 

comprised of 9–12 subunits including either BRG1 (brahma-related gene 1, also known as 

SMARCA4) or BRM (brahma, also known as SMARCA2) as alternative catalytic subunits 

with DNA-dependent ATPase activity (Wu et al. 2009). These chromatin-remodeling 

complexes are recruited by pioneer transcription factors to the promoters of numerous target 

genes, where they slide or evict nucleosomes in an ATP-dependent manner to either activate 

or suppress RNA Polymerase II occupancy and transcription. In addition to BRG1 or BRM, 

SWI/SNF complexes contain 8–11 additional subunits called BAFs (BRG1/BRM associated 

factors with a number referring to the protein molecular mass) that contribute to chromatin 

remodeling. Due to the combinatorial assembly of different BAFs, there are potentially 

many distinct SWI/SNF complexes that vary in subunit composition and function (Wu et al. 

2009).

SWI/SNF complexes play an important role in cardiovascular development (Bevilacqua et 

al. 2013; Chang and Bruneau 2012). In humans, mutations in several genes encoding 

SWI/SNF subunits including BRG1 and BRM result in congenital syndromes that exhibit 

highly penetrant cardiac defects (Kosho et al. 2013a, b; Ronan et al. 2013; Santen et al. 
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2012; Tsurusaki et al. 2012; Van Houdt et al. 2012). Inmouse models, Baf250a, Baf180, and 

Baf60c constitutive null mutants exhibit a variety of cardiac defects including abnormal 

looping, hypoplastic ventricles, shortened outflow tracts, and septal defects that result in 

embryonic lethality (Lei et al. 2012; Lickert et al. 2004; Wang et al. 2004). Although Brg1 

constitutive nullmutants die prior to organogenesis (Bultman et al. 2000), conditional null 

mutations of Brg1 in the developing endocardium, myocardium, or myocardial progenitor 

cells of the secondary heart field result in a variety of defects including hypoplastic 

ventricles, thin myocardium, shortened outflow tract, lack of septum, and hypotrebeculation 

that also culminate in embryonic lethality (Hang et al. 2010; Stankunas et al. 2008; Takeuchi 

et al. 2011). An essential role for BRG1 in cardiomyocyte development is consistent with it 

physically interacting with the cardiogenic transcription factors TBX5, GATA4, and 

NKX2.5, and the ability of BAF60c, TBX5, and GATA4 to differentiate non-cardiac 

mesoderm into beating cardiomyocytes (Hang et al. 2010; Kadoch et al. 2013; Takeuchi and 

Bruneau 2009). While Brg1 is essential for cardiomyocyte development, it is dispensable for 

cardiomyocyte viability in the adult animal (Hang et al. 2010). However, an inducible 

conditional mutation of Brg1 in adult cardiomyocytes did result in decreased hypertrophy 

following transverse aortic constriction to pressure overload the heart (Hang et al. 2010). In 

contrast, Brm constitutive null mutants are viable and do not exhibit a discernable 

cardiomyocyte phenotype compared to sibling wild-type controls (Han et al. 2011; Reyes et 

al. 1998). The combined role of Brg1 and Brm in the adult cardiomyocyte has not previously 

been described.

The redundancy of Brg1 and Brm in vascular endothelial cells (VECs) within the adult heart 

has recently been reported. Brg1 is required by VECs during embryonic development, 

whereas Brm is dispensable (Curtis et al. 2012; Griffin et al. 2008; Griffin et al. 2011; 

Nelson et al. 2005). Furthermore, the Brg1 mutant phenotype of developing VECs is not 

exacerbated by Brm deficiency (Griffin et al. 2008). However, an inducible conditional 

mutation of Brg1 in VECs from adult mice did not result in an observable phenotype (Willis 

et al. 2012). The lack of an adult phenotype was found to be due to the redundancy of Brg1 

and Brm in the adult VECs within the heart, as double mutants died within 30 days of 

inducing the Brg1 deletion (Willis et al. 2012). Absence of Brg1 and Brm resulted in VEC 

apoptosis, vascular leakage, intra-cardiac dissection, and secondary cardiomyocyte cell 

death due to ischemia (Willis et al. 2012).

Considering that Brg1 and Brm are functionally redundant in adult VECs, we hypothesized 

that they may also have redundant functions in adult cardiomyocytes. To test this 

hypothesis, we analyzed Brg1/Brm double mutants where Brg1 could be mutated 

exclusively in cardiomyocytes in an inducible manner. Indeed, double mutants were not 

viable and their hearts exhibited signs of metabolic dysfunction. Therefore, we sought to 

characterize metabolomic changes in double mutants compared to controls. Recent advances 

in technology have afforded a more comprehensive analysis of a tissue’s metabolome. Both 

targeted and non-targeted mass spectrometry based approaches have become common, with 

non-targeted methods being particularly valuable to explore phenotypes that involve many 

metabolites in a relatively unbiased manner (Bain et al. 2009). Non-targeted technologies 

have been used to characterize genetic diseases that result in altered metabolism of 
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carbohydrates, lipids, and amino acids (Frazier et al. 2006). The present studies demonstrate 

that BRG1 and BRM are required for metabolic homeostasis. Brg1/Brm double-mutant 

hearts exhibited altered metabolism of fatty acids (e.g. increased cardiac oleic and linoleic 

acids), glucose (e.g. decreased glucose-6-P, fructose-6-P, myoinositol), and amino acids. 

Both fatty acid and glucose substrate utilization has been shown to be a critical regulator of 

the heart’s resiliency in the face of cardiac disease, with resulting fatty acid and glucose 

toxicity identified when there is an imbalance matched to the stressor (Carley et al. 2014; 

Doenst et al. 2013; Kolwicz et al. 2013). These studies demonstrate the critical role that 

BRG1 and BRM play in regulating fatty acid and glucose metabolism in the intact adult 

cardiomyocyte, likely by supporting the activity of multiple nuclear receptors implicated in 

regulating fatty acid and glucose utilization in the heart (e.g. PPAR, PGC1α) (Debril et al. 

2004; Gatfield et al. 2009; Li et al. 2008; Wang et al. 1996).

2 Materials and Methods

2.1 Mouse Lines

All mouse experiments were approved by the Institutional Animal Care and Use 

Committees (IACUC) review board at the University of North Carolina at Chapel Hill and 

were performed in accordance with federal guidelines. The αMHC-Cre-ERT mice [also 

known as B6.Cg-Tg(Myh6-cre/Esr1)1JmkJ or αMHC-MerCreMer] were obtained from The 

Jackson Laboratory (#005657, Bar Harbor, ME) and genotyped as previously described 

(Sohal et al. 2001). The Brg1 conditional mutant mouse line and Brm constitutive mutant 

mouse line have been described previously (Bultman et al. 2000; Reyes et al. 1998; Sumi-

Ichinose et al. 1997). Genotyping of the Brg1 floxed and Δfloxed alleles and the Brm 

mutation were genotyped by PCR as previously described (Bultman et al. 2000; Reyes et al. 

1998; Sumi-Ichinose et al. 1997).

2.2 Tamoxifen Induction of Brg1 Mutation

To induce the Brg1 conditional mutation in adult cardiomyocytes, 3–6 month old male and 

female mice were provided rodent chow containing tamoxifen (Sigma-Aldrich #T5648, St. 

Louis, MO) over a 7-day period. The route of delivery and dose were selected to minimize a 

previously described artifact caused by high doses of tamoxifen in the presence of the 

αMHC-Cre-ERT transgene (Koitabashi et al. 2009). Briefly, 500 mg of tamoxifen was 

mixed with 1 kg of ground-up rodent chow and then mixed with water, kneaded into pellets, 

and dried in a hood. Provided to mice ad libitum, the dose was estimated to be 80 mg/kg/

day. After the 7-day treatment period, the tamoxifen-fortified chow was removed and 

replaced with the same chow lacking tamoxifen.

2.3 Echocardiography

Conscious cardiac transthoracic echocardiography was performed on mice at the indicated 

time points using a VisualSonics Vevo 2100 ultrasound biomicroscopy system 

(VisualSonics, Inc., Toronto, Ontario, Canada) as previously described (Files et al. 2012; 

Oakley et al. 2013; Willis et al. 2009a,b). Two-dimensional M-mode echocardiography was 

performed in the parasternal long-axis view at the level of the papillary muscle on loosely 

restrained mice. Anterior and posterior wall thickness was measured as distance from 
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epicardial to endocardial leading edges. Left ventricular internal diameters were also 

measured. Left ventricular systolic function was assessed by ejection fraction (LV EF% = 

[(LV Vol; d-LV Vol; s/LV Vol; d) × 100] and fractional shortening (%FS = [(LVEDD − 

LVESD)/LVEDD] × 100). Investigators were blinded to mouse genotype from collection 

through waveform measurements. Each measurement represents the average of three cardiac 

cycles from each mouse.

2.4 Histopathological and Ultrastructural Analyses

Histology was performed by fixing heart tissues in 4 % paraformaldehyde, embedding in 

paraffin, cutting 5-μm sections, and staining sections with hematoxylin and eosin (H&E) 

according to standard procedures. For transmission electron microscopy (TEM), heart 

tissues were fixed in 2 % paraformaldehyde and 2.5 % glutaraldehyde in 0.15 M sodium 

phosphate buffer (pH 7.4) overnight and then post-fixed with 1 % osmium tetroxide in 0.15 

sodium phosphate buffer. Samples were dehydrated with increasing concentrations of 

ethanol, infiltrated and embedded in Polybed 812 epoxy resin (Polysciences, Warrington, 

PA), and 70-nm ultrathin sections were cut with a diamond knife. Sections were mounted on 

200-mesh copper grids and staining with 4 % aqueous uranyl acetate and Reynold’s lead 

citrate. Sections were observed with a LEO EM910 transmission electron microscope 

operating at 80 kV (LEO Electron Microscopy, Thornwood, NY) and photographed with a 

Gatan-Orius SC1000 CCD Digital Camera and Digital Micrograph 3.11.0 (Gatan, 

Pleasanton, CA).

2.5 RT-qPCR Analysis

RNA from double-mutant and control hearts was prepared using Trizol reagent (Life 

Technologies) and reverse transcribed using random hexamers and SuperScript II RT (Life 

Technologies) according to standard procedures. Pfk-fb1 was amplified using the following 

primers (5′GAGTG CAAGACCACGTTCAA3′ and 5′GGAGCTGATGCTTT GAGACC3′ 

at 300 nM final concentration for each) and Power SYBR Green Master Mix (Life 

Technologies) under the following cycling parameters (95C 45 s, 60C 30 s, 72C 45 s). 

Dissociation curves and agarose gels demonstrated a single PCR product in each case 

without primer dimmers. Gapdh was amplified using a TaqMan assay (Life Technologies) 

and default cycling parameters. Negative control reactions lacking RT yielded little or no 

Pfk or Gapdh signal, and relative expression levels were determined using the ΔΔCt method.

2.6 Metabolomics Determination by GC–MS Instrumentation

Cardiac tissue was flash frozen in a liquid nitrogen cooled biopress, a fraction of it weighed 

(~25–50 mg wet weight), then the finely cut up tissue quickly added to fresh pre-made 

buffer (50 % acetyl-nitrile, 50 % water, 0.3 % formic acid) at a standard concentration of 25 

mg/475 mcl buffer then fully homogenized on ice for 10–25 s and placed on dry ice/stored 

at −80C. The samples were “crash” deprotonized by methanol precipitation and spiked with 

D27-deuterated myristic acid (D27-C14:0) as an internal standard for retention-time locking 

and dried. The trimethylsilyl (TMS)-D27-C14:0 standard retention time (RT) was set at 

~16.727 min. Reactive carbonyls were stabilized at 50 °C with methoxyamine hydrochloride 

in dry pyridine. Metabolites were made volatile with TMS groups using N-methyl-N-

Banerjee et al. Page 5

Metabolomics. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(trimethylsilyl) trifluoroacetamide or MSTFA with catalytic trimethylchlorosilane at 50 °C. 

GC/MS methods generally follow those of Roessner et al. (2000), Fiehn et al. (2008), and 

Kind et al. (2009), and used a 6890 N GC connected to a 5975 Inert single-quadrupole MS 

(Agilent Technologies, Santa Clara, CA). The two wall-coated, open-tubular (WCOT) GC 

columns connected in series are both from J&W/Agilent (part 122–5512), DB5-MS, 15 

meters in length, 0.25 mm in diameter, with an 0.25-μm luminal film. Positive ions 

generated with conventional electron-ionization (EI) at 70 eV are scanned broadly from 600 

to 50 m/z in the detector throughout the 45 min cycle time.

Data were acquired using an MSD ChemStation (Agilent Technologies) by identifying 

metabolites on their mass fragmentation patterns and RT. Rawdata formatted files were 

exported for further analysis in Automatic Mass Spectral Deconvolution and Identification 

Software or AMDIS (freeware developed by Drs. Steve Stein, W. Gary Mallard, and their 

coworkers at National Institute of Standards and Technology or NIST (Mallard and Reed 

1997; Halket et al. 1999; Stein 1999). Deconvoluted spectra are annotated as metabolites, to 

the extent possible, using an orthogonal approach that incorporates both RT from GC and 

the fragmentation pattern observed in EI-MS. Peak annotation is based primarily on our own 

RT-locked spectral library of metabolites. The library is built upon the Fiehn GC/MS 

Metabolomics RTL Library (a gift from Agilent, part number G1676-90000; Kind et al. 

(2009), Golm Metabolome Library (courtesy of Dr. Joachim Kopka and coworkers at the 

Max Planck Institute of Molecular Plant Physiology, Golm, Germany (Kopka 2005) the 

Wiley 9th-NIST 2011 commercial library (Agilent G1730-64000), and other spectral 

libraries. Once annotation was complete, a cross-tabulated spreadsheet was created, listing 

the integrated peak area for each metabolite versus sample identity. This was accomplished 

using a custom Visual Basic program in Microsoft Excel that grouped peaks across samples 

based on identical metabolite annotation and RT proximity. Peak alignment across samples 

was further confirmed using SpectConnect (Styczynski et al. 2007) to assess similarity in 

spectral fragmentation patterns, and by manual curation. The raw, transformed, and sorted 

data used for each of the three comparisons in the metabolomic analyses (next) can be found 

in Supplemental Table 1.

2.7 Metabolomic Analyses

Metaboanalyst (v2.0) run on the statistical package R (v2.14.0) used metabolite peaks areas 

(as representative of concentration) (Xia et al. 2009, 2012). These data were first analyzed 

by an unsupervised principal component analysis (PCA), which identified the presence of 

the Brg1/Brm double mutant as the principal source of variance. To sharpen the separation 

between our three groups, data were next analyzed using a partial least squares discriminant 

analysis (PLS-DA) to further determine which metabolites were responsible for separating 

these two groups. The specific metabolites contributing most significantly to the differences 

identified by PLS-DA between Brg1/Brm double mutant and control group hearts were 

determined using the variable importance in projection (VIP) analysis in the metaboanalyst 

environment. The metabolites that best differentiated the groups were then individually 

tested using the Student’s t test (Microsoft Excel 2011, Seattle, WA). The t test significant 

metabolites were matched to metabolomics pathways using the Pathway Analysis feature in 

Metaboanalyst 2.0. Heat maps of the metabolite data (individual and grouped) were 
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generated using the GENE-E software (http://www.broadinstitute.org/cancer/software/

GENE-E/index.html).

3 Results and Discussion

To determine whether there is functional compensation of Brg1 and Brm in adult 

cardiomyocytes, we generated Brg1 floxed/floxed mice carrying the αMHC-Cre-ERT 

transgene on a Brm-deficient background. To induce the Brg1 conditional mutation in 

cardiomyocytes, these mice were treated with oral tamoxifen by providing it in their chow 

for 7 days (Brg1/Brm double mutant). As a control, the same Brg1floxed/floxed; αMHC-Cre-

ERT+/0; Brm−/− mice did not receive any tamoxifen treatment (Control Group 1). This 

control group addressed the potential for transgene leakiness (i.e., tamoxifen-independent 

induction of the Brg1 mutation). As a second control, Brg1 floxed/floxed mice lacking the 

αMHC-Cre-ERT transgene on a Brm-deficient background (Brg1floxed/floxed; αMHC-Cre-

ERT0/0; Brm−/−) were treated with tamoxifen (Control Group 2). This control group 

addressed the potential for tamoxifen having off-target effects unrelated to the Cre-ERT 

transgene. Rapid onset of cardiac dysfunction (Fig. 1a; Table 1), evidenced by significant 

decreases in Brg1-Brm DM mice ejection fraction % (42.0 vs. 88.6 % in Control Groups 1 & 

2) and factional shortening % (21.3 vs. 57.3 % in Control Groups 1 & 2), led to the rapid 

onset of death (Fig. 1b) in Brg1/Brm double mutants, but not in either control group. 

Kaplan–Meier analysis illustrates the first deaths occurring at day 13, with all other 

Brg1/Brm double mutants dying by day 22 relative to the first day of tamoxifen-fortified 

chow (which was provided on days 1–7). No histological changes were detected in the 

Brg1/Brm double mutant hearts, but increases in LV Mass/BW were identified (6.2 ± 0.3 

mg/g vs. 4.2 ± 0.1 mg/g Brm−/− flx/flx Brg1 Tg+ given 7 days of Tamoxifen at 1 day 

premortem, average day 11.6 ± 1.5 days, N = 27 and 30, respectively, *p<0.05 by Student’s 

t test). The cardiac phenotype of double mutants included changes in mitochondrial 

dynamics and accumulation storage vacuoles based on our analysis of H&E-stained sections 

(Fig. 1c) and TEM (Fig. 1d). Therefore, we considered the possible role of SWI/SNF 

complexes in regulating cardiomyocyte metabolism. To detect proximal events leading to 

heart failure and death, we investigated changes in the metabolomic profiles of Brg1/Brm 

double-mutant mice on day 9, which was 2 days after tamoxifen treatment ended. Day 9 was 

also a point prior to any signs of adverse health and 4 days before any of the mice were 

found to die (Fig. 1b).

Compared to the group 1 sibling-matched controls, quantitative non-targeted metabolomics 

profiling identified distinct differences in the Brm/Brg1 double mutant hearts by PCA and 

PLS-DA analysis (Fig. 2a, b, respectively). In both analyses, the principal component 1 

accounted for 55 % of the differences between the two groups. Further analysis of the top 15 

metabolites using a VIP that differentiated the Brg1/Brm double-mutant hearts from the 

group 1 controls include phosphoric acid, α-monostearin, urea, glutamic acid, and lactic acid 

(Fig. 2c).

Compared to the group 2 sibling-matched controls, metabolomics non-targeted profiling 

identified distinct differences in Brg1/Brm double-mutant mice by PCA and PLS-DA 

analysis (Fig. 2d, e). Between 47.8 and 51.6 % of the differences between these groups 
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accounted for the variability described by principal component 1. Like the analysis of the 

Brg1/Brm double-mutant mice compared to the group 1 controls, the top 15 metabolites 

using a VIP analysis to differentiate Brg1/Brm double-mutant mice from group 2 controls 

included phosphoric acid, glutamic acid, 2-aminoadipic acid, myoinositol, creatinine, and 

taurine (Fig. 2f). Since these two analyses differed in ways that may have been due to the 

presence of tamoxifen treatment, we chose next to combine the two control groups (Groups 

1 and 2) and compared them to the Brg1/Brm double-mutant mice (Fig. 2g, h, i). By PCA 

analysis, principal component 1 accounted for 55.5 % of the variability between the two 

groups and by PLS-DA, principal components 1–3 accounted for 12.4, 39.6, and 20.1 %, 

respectively and separated out the two groups distinctly (Fig. 2h). VIP analysis identified 

creatinine, taurine, 2-aminoadipic acid, glucose-6-phosphate, α-monostearin, and linoleic 

acid as the top significant hits (Fig. 2i). Comparison of the top 15 VIP hits between the three 

analyses performed, creatinine, linoleic acid, and glucose-6-phosphate were consistently 

found and represent differences not dependent upon the types of controls used (Table 2, in 

bold).

The comparisons of Brg1/Brm double-mutant mice to Group 1, Group 2, and Groups 1 & 2 

were performed to demonstrate the need for multiple controls (i.e. how tamoxifen and 

genetic backgrounds influence cardiac metabolites individually). The consistent differences 

Brg1/Brm double-mutant mice have independent of their genotype and strain (Group 1) and 

Tamoxifen (Group 2) was most dependably determined when Groups 1 and 2 were 

combined (Fig. 2g–i). Differences in Groups 1 and Group 2 were identified, as expected due 

to the tamoxifen treatment. For example, differences were detected by PCA, PLS-DA, and t 

test analysis (Supplemental Fig. 1). The differences between Groups 1 and 2 are limited, due 

to the low number (N = 3) of biological replicates run in these subgroups. The comparison 

of Brg1/Brm double-mutant samples to the combined Groups 1 and 2 allowed identification 

of metabolic signatures that are independent of the Brg1/Brm-null phenotype.

The studies presented here have limitations that should be acknowledged. While the GC–MS 

method applied here allows global definitions of metabolism, it is not expected that all of the 

possible metabolites present would be identified. Identification of metabolites is also limited 

to molecules with unambiguous chemical annotation in established metabolite libraries; the 

exploratory nature of non-targeted metabolomics methodologies has the limitation of being 

semi-quantitative based on the their RTs (vs. an internal standard) and mass fragmentation 

patterns. The use of non-targeted metabolomics in the present study was to determine the 

underlying metabolic changes, to allow insight into the systems level changes. However, 

specific mechanisms identified need further validation to make specific conclusions. 

Additionally, a second limitation is the limited number of experimental replicates per group 

(6–8/group, Fig. 2g–i). Previous studies have noted an increasing chance of false-positive 

findings with reduced statistical power when replicates are limited, a common problem also 

associated with high throughput technologies in general; it is also possible that relevant 

markers have been similarly dismissed (Drogan et al. 2014; Floegel et al. 2013). For these 

reasons, the use of an internal control for each chemical class of specific metabolites in 

question should be used to validate these results. Based on this context, we focus our 
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discussion here on the metabolomics signatures and our limited validation of specific 

enzyme effects.

The unsupervised heat maps illustrating the differences in metabolite quantities for each of 

the three individual analyses, identified metabolites that were different from the controls by 

5.3 to 0.35 fold (Fig. 3a, b, c). When individual VIP significant metabolites were identified 

in the three analyses, serine, linoleic acid, oleic acid, and taurine were >2.0 fold and 

fructose-6-phosphate, glucose-6-phosphate, creatinine, myoinositol were decreased <0.8 

fold and compared to controls (Fig. 3d). We next took the VIP significant metabolites that 

were also t test significant in the three comparisons (control groupings) and performed a 

pathway enrichment analysis (Table 3). All three comparisons consistently identified oleic 

acid and linoleic acid as significant, with the combined controls additionally identifying 

fructose-6-phosphate, creatinine, and alanine as significant.

The significant metabolic pathways that were identified included (1) biosynthesis of 

unsaturated fatty acids and (2) linoleic acid metabolism; (Table 3, right column). In the 

context of VIP significant metabolites (Fig. 3d), increased linoleic acid may broadly involve 

arachidonic acid pathways (Fig. 4a). Decreased glucose-6-phophate and fructose-6-

phosphate (<0.5 fold) and downstream myoinositol (decreased <0.8 fold) (Fig. 3d), illustrate 

multiple points in which glucose metabolism is affected in amino sugar and nucleotide sugar 

metabolism (Fig. 4b). Similarly, evidence of alterations in alanine metabolism (increases in 

threonine, alanine, and serine metabolites, Fig. 3d) represents potential increases in the 

ability to create pyruvate through these pathways (Supplemental Fig. 2a). Finally, decreased 

creatinine and increases in urea (Fig. 3d) illustrate where reducing cardiomyocyte Brg1/Brm 

expression affects creatine and creatinine metabolism in vivo (Supplemental Fig. 2b). The 

mechanistic relevance of these findings in this mouse model is not clear, but the importance 

of each of these metabolites in cardiac (patho)physiology may offer insights for future 

investigations.

Both linoleic acid and oleic acid are polyunsaturated fatty acids involved in critical cellular 

processes in the heart. Recent metabolomics studies of angiotensin II (Ang II)-induced 

cardiac hypertrophy in Sprague–Dawley and double transgenic rats harboring human renin 

and angiotensinogen genes challenged with Ang II blockade found that the double 

transgenic rats had the greatest differences in the use of fatty acids, having decreased oleic 

and linoleic acids (Mervaala et al. 2010). Morphological changes suggesting an increase in 

mitochondrial fusion and altered cardiac expression of the redox-sensitive and 

cardioprotective metabolic sensor sirtuin 1 was increased in the double transgenic rats 

(Mervaala et al. 2010). The metabolomics changes and mitochondrial biogenesis induced by 

Ang II was inhibited by valsartan, illustrating the specificity of the Ang II in the regulation 

of mitochondrial biogenesis and alterations in metabolomics (Mervaala et al. 2010).

Increased oleic and linoleic acid in the Brg1/Brm double- mutant hearts may be linked 

directly or indirectly to the role of the SWI/SNF complex in the regulation of fatty acid 

utilization. The SWI/SNF complex has been implicated in regulating fatty acid oxidation by 

its interactions with peroxisome proliferator activated receptors (PPARs). The PPAR nuclear 

receptors, in coordination with RXRα and co-activators such as PGC-1α, act as transcription 
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factors for genes encoding proteins responsible for fatty acid uptake and oxidation. BRG1 

and BRM-catalyzed SWI/SNF complexes functionally interact with a variety of nuclear 

hormone receptors (transcription factors) including the PPAR isoforms (Trotter and Archer 

2007; Viswakarma et al. 2010). For example, BAF180, which binds the PPARγ-RXRα 

complex, contains six bromodomains that bind selectively to acetylated histone tails 

required for targeting the co-regulator complex to chromatin (Lemon et al. 2001). BRG1 and 

BRM themselves have been identified in the PPAR-γ promoter, and the SWI/SNF complex 

itself is critical to the transcriptional regulation of PPAR-γ during the formation of 

preinitiation complexes (Salma et al. 2004). Other BAFs are critical for PPAR activity, with 

BAF60c interacting with the ligand-binding domain of PPAR-γ and BAF60c reported to 

bind the C-terminal PPAR-γ domain in a ligand-dependent manner (Debril et al. 2004). 

BAF60a is a partner of the PPAR co-activator PGC-1α (Li et al. 2008) and is involved in 

regulating lipid metabolism by its crosstalk with PPARβ/δ (Gatfield et al. 2009; Wang et al. 

1996). The changes in fatty acids used as energy substrates, including oleic acid in the 

present study, may reflect alterations in fatty acid utilization in the absence of SWI/SNF 

support of PPAR activity. It is also possible that SWI/SNF alters linoleic acid by its 

alterations in the mitochondria. Specifically, alterations in the physicochemical properties of 

membranes, including cardiolipins, could contribute to the cardiac phenotypes reported here 

(Sparagna and Lesnefsky 2009). Recent studies have identified that linoneic acid preserves 

mitochondrial cardiolipin found in the inner membrane and attenuates mitochondrial 

dysfunction in heart failure (He and Han 2014; Mulligan et al. 2012). In the present study, 

the increases in linoleic acid may reflect this response to protect against heart failure. Direct 

evidence of altered PPAR activity or mitochondrial cardiolipin is beyond the scope of the 

present study but merits consideration in the underlying mechanisms that SWI/SNF plays in 

preserving adult cardiomyocyte function.

Effects on glucose storage as glycogen may also be seen in the Brg1/Brm double-mutant 

hearts. Alterations in cardiac glucose-6-phosphate (G-6-P) and fructose-6-phosphate (F-6-P) 

has been reported in previous metabolomics studies. Specifically, increased levels of G-6-P 

and F-6-P have been seen when phosphofructokinase (PFK) activity was experimentally 

inhibited (McDonald et al. 2014). By mediating the flow of substrate from F-6-P to 

Fructose-1,6 BisP, PFK initiates start of glycolysis and downstream utilization of glucose 

ultimately for generating energy. Mice lacking muscle PFK (PFKM−/−) exhibit cardiac 

hypertrophy with age, impaired oxidative metabolism, muscle fiber necrosis, and impaired 

exercise tolerance (Garcia et al. 2009). Similarly, mutations in muscle PFK are found in 

patients resulting in glycogen storage diseases (Raben and Sherman 1995), characterized by 

muscle weakness, exercise intolerance, and the inability to utilize carbohydrates for energy 

production well (Nakajima et al. 2002). Increases in threonine, serine, and alanine in alanine 

metabolism and decreases in cardiac creatinine (Supplemental Fig. 2a, b, respectively) have 

not previously been reported in metabolomics studies or linked to the SWI/SNF complex 

previously and may represent mechanistic links unique to the cardiomyocyte or the unique 

redundant role of Brg1/Brm in the maintenance of the adult cardiomyocyte in vivo.

Mice lacking liver SNF5/BAF47 die due to post-natal hypoglycemia linked to impaired 

glycogen storage due to transcriptional down regulation of phosphofructose kinase fructose 
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biphosphatase (PFKFB1), illustrating the critical role of the SWI/SNF complex in glucose 

metabolism(Gresh et al. 2005). By specifically inhibiting PFK activity, increases in G-6-P 

and F-6-P levels may have been identified as in the present study, where we impaired the 

SWI/SNF complex (by inducing cardiomyocyte-specific loss of Brg1/Brm). In contrast to 

the liver SNF5/BAF47 study, we did not observe a significant difference in PFKFB1 mRNA 

levels (Supplemental Fig. 3). This finding is not necessarily surprising because the SNF5/

BAF47 and BRG1 subunits are known to regulate different target genes and to have 

different effects in tumor suppression.

4 Concluding Remarks

Previously, the BRG1 and BRM catalytic subunits of SWI/SNF complexes were shown to 

have a functionally redundant role in maintaining the viability in VECs, resulting in primary 

defects in the heart, including cardiac dissection, cardiac necrosis, and death (Willis et al. 

2012). In the present study, we took a non-targeted approach to metabolomically analyze the 

effects of inducing the simultaneous loss of Brg1 and Brm in adult cardiomyocytes at an 

early time point before the lethal effects were seen in vivo. Since the Brg1/Brm double-

mutant model had both a genetic component and a tamoxifen feeding component, two types 

of controls were used and analyzed separately and together to identify significant differences 

in creatinine, linoleic acid, glucose-6-phosphate, oleic acid, and serine (Table 2). The 

increased oleic and linoleic acid in the Brg1/Brm double-mutant hearts may be linked to the 

role of the SWI/SNF complex in the regulation of PPARs, instrumental to the mainly fatty 

acid oxidation the heart uses as a primary energy source (Neubauer 2007). While the link 

between BRG1 and BRM regulation of PPARs is limited, impairment of the SWI/SNF 

complex leads to altered PPAR activity in non-cardiomyocyte cells has been previously 

identified (Debril et al. 2004; Gatfield et al. 2009; Lemon et al. 2001; Salma et al. 2004; 

Wang et al. 1996) and may offer clues to novel ways in which BRG1 and BRM redundantly 

regulate cardiomyocyte fatty acid oxidation for future studies. Similarly, the decreases in 

cardiac G-6-P and F-6-P (Fig. 2) illustrate a dysregulation in downstream glycolysis and 

glycogen formation, and may reflect more complex alterations of enzymes both up and 

downstream (Garcia et al. 2009; Nakajima et al. 2002; Raben and Sherman 1995).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviation

Ang II Angiotensin II

BAFs BRG1- or BRM-associated factors

Brg1 Brahma-related gene 1

Brm Brahma

Flx LoxP-flanked DNA polymerase gene

F-6-P Fructose-6-phosphate

G-6-P Glucose-6-phosphate

α-MHC-Cre-ERT Cre recombinase fused to a mutated ligand-binding domain of 

human estrogen receptor

RXRα Retinoid X receptor alpha

PPAR Peroxisome proliferator activated receptor

PGC-1α PPAR-gamma coactivator 1-alpha

VECs Vascular endothelial cells

VIP Variable importance in projection
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Fig. 1. 
The phenotype of Brg1/Brm double-mutant mice. a Kaplan–Meier survival curve of mice 

following the administration of tamoxifen (+TAM) on days 1 through 7. b Longitudinal 

echo time course of an example control group 2 (Brg1floxed/floxed; αMHC-Cre-ERT0/0(no 

transgene); Brm−/− mice plus tamoxifen treatment) and a Brg1/Brm double mutant 

(Brg1floxed/floxed; αMHC-Cre-ERT+/0; Brm−/− mice plus tamoxifen treatment) illustrating the 

rapid decline in systolic function and dilation upon deletion of Brg1 with tamoxifen 

induction (via chow). c Representative H&E-stained heart sections from control (left) and 

double mutant (right) mice at ×200 magnification. d Representative transmission electron 

micrographs of cardiomyocytes from control (left) and double mutant (right) mice at ×5000 

magnification. Illustrating accumulation of vacuoles in the mitochondria interspersed in the 

sarcomere (white arrows) that were found adjacent to fragmented mitochondria
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Fig. 2. 
The metabolomic profiles of Brg1/Brm double-mutant hearts are significantly different from 

control hearts prepared and analyzed in parallel. Principal components analysis (PCA) 

illustrating the unsupervised relationship between Brg1/Brm double-mutant hearts 

(Brg1floxed/floxed; αMHC-Cre-ERT+/0; Brm−/− mice plus tamoxifen treatment) compared to a 
Control Group 1 (Brg1floxed/floxed; αMHC-Cre-ERT+/0; Brm−/− minus tamoxifen treatment) 

d Control Group 2 (Brg1floxed/floxed; αMHC-Cre-ERT0/0(no transgene); Brm−/− mice plus 

tamoxifen treatment), and g Combined Control Groups 1 & 2 hearts. Partial least squares 

discriminant analysis (PLS-DA) score visualizes supervised (assigned group) clustering of 

Brg1/Brm double-mutant heart metabolomics compared to b Control Group 1 e Control 

Group 2, and h Control Groups 1 & 2. Data points that are closer together indicate higher 

degree of similarity than data points that are further apart. PLS-DA score plots for Brg1/Brm 

double-mutant heart metabolites (red) compared to metabolites identified in control hearts 

(green). Each point represents the combined metabolite profile in an individual mouse. 

Variable importance in projection (VIP) plot of VIP statistical analysis identifying the top 15 

metabolites contributing to the differences between the Brg1/Brm double mutant and c 
Control Group 1 f Control Group 2, and i Control Groups 1 & 2 hearts (relative 

concentration to the right of the figure). N = 8 (Brg1/Brm double-mutant hearts), N = 3 

(Control Group 1), N = 3 (Control Group 2), N = 6 (Control Groups 1 & 2) hearts per group 
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analyzed. Each point represents an individual mouse heart run in parallel with the other 

samples (Color figure online)
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Fig. 3. 
Unsupervised heat maps of all identified metabolites and their associated fold changes in 

Brg1/Brm double-mutant hearts compared to a Control Group 1 (Brg1floxed/floxed; αMHC-

Cre-ERT+/0; Brm−/− minus tamoxifen treatment), b Control Group 2 (Brg1floxed/floxed; 

αMHC-Cre-ERT0/0(no transgene); Brm−/− mice plus tamoxifen treatment), and c Combined 

Groups 1 & 2 controls. d Identification of the VIP significant metabolites (p<0.05). N = 8 

(Brg1/Brm double mutant hearts), N = 3 (Control Group 1), N = 3 (Control Group 2), N = 6 

(Control Groups 1 & 2) hearts per group analyzed
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Fig. 4. 
Metabolic pathways related to cardiac Brg1/Brm double-mutant activity in vivo determined 

by non-targeted metabolomics analysis of ventricular cardiac tissue (see Table 3 for analytic 

details). Metabolites identified by VIP and t test significance are shown in red in the context 

of generalized pathways analysis (identified by metaboanalyst). a Biosynthesis of 

unsaturated fatty acids and fatty acid biosynthesis/linoleic acid metabolism; b Amino sugar 

and nucleotide sugar metabolism (adapted from http://www.genome.jp/kegg-bin/

show_pathway?map00520+C00031) (Color figure online)
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Table 2

VIP significant metabolites in Brm/Brg1 double mutant mice (Flx/Flx, Cre Tg+, +tamoxifen) 12 days after 

feeding initiated (7 days total, Groups 1 and 3 only). Brm/Brg1 double mutant

Control Group 1 (Flx/Flx, No Brg1 Tg, 
Chow+tamoxifen) versus Brm/Brg1 double 
mutant (VIP Rank)

Control Group 2 (Flx/Flx, Brg1 Tg+, Chow 
diet − no tamoxifen) versus Brm/Brg1 
double mutant (VIP Rank)

Control Groups 1 & 2 versus Brm/Brg1 
double mutant (Chow+tamoxifen) (VIP 
Rank)

Phosphoric Acid (1) Phosphoric acid (1) *

Alpha-monostearin (2) * Alpha-monostearin (5)

Urea (3) Urea (11) *

Glutamic acid (4) Glutamic acid (2) *

Lactic acid (5) Lactic acid (7) *

Cholesterol (6) * Cholesterol (12)

Stearic acid (7) * Stearic acid (15)

Creatinine (8) Creatinine (5) Creatinine (1)

Palmitic acid (9) * *

Linoleic acid (10) Linoleic acid (15) Linoleic acid (6)

Glucose-6-phosphate (11) Glucose-6-phosphate (9) Glucose-6-phosphate (4)

Fructose-6-phosphate (12) * Fructose-6-phosphate (9)

Alpha-monopalmitin (13) * Alpha-Monopalmitin (18)

Oleic acid (14) Oleic acid (16) Oleic acid (11)

Serine (15) Serine (14) Serine (7)

* 2-Aminoadipic acid (3) 2-Aminoadipic acid (3)

* Myoinositol (4) Myoinositol (10)

* Taurine (6) Taurine (2)

* Aldohexose (8) Aldohexose (8)

* Malic acid (10) Malic acid (14)

* Glycerol-1-phosphate (12) *

* Alanine (13) Alanine (13)

* * Adenosine (16)

* * Threonine (17)

The ranking (1–15) indicates the ranking given to the metabolites in their respective groups (Control Group 1, Control Group 2, Brg/Brm Double 
mutant Group 3)

Bold present in all three analyses

*
Indicates this metabolite was not found to be a VIP significant metabolite
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Table 3

VIP significant metabolites that were also t test significant (p < 0.05) in the three comparisons made in this 

study, along with the related matched pathways from pathway enrichment analysis

Comparison Metabolite (p value) Pathway (hits) p value

Control 1 versus Brg1/Brm double mutant Oleic acid (0.005) Biosynthesis of unsaturated fatty acids (2) 0.0009

Linoleic acid (0.008) Linoleic acid metabolism (1) 0.0080

Fatty acid biosynthesis (1) 0.0598a

Control 2 versus Brg1/Brm double mutant Alanine (0.005) Biosynthesis of unsaturated fatty acids (2) 0.0049

Oleic acid (0.010) Linoleic acid metabolism (1) 0.0168

Linoleic acid (0.0014) Ascorbate and aldarate metabolism (1) 0.0252

Myoinositol (0.0021) Galactose metabolism (1) 0.0715a

Inositol phosphate metabolism (1) 0.0768a

Fatty acid biosynthesis (1) 0.1161a

Control 1 & 2 versus Brg1/Brm double mutant Oleic acid (0.007) Biosynthesis of unsaturated fatty acids (2) 0.0081

Linoleic acid (0.010) Linoleic acid metabolism (1) 0.0210

Fructose-6-phosphate (0.016) Amino sugar and nucleotide sugar metabolism (1) 0.1241a

Creatinine (0.017) Fatty acid biosynthesis (1) 0.1429a

Alanine (0.033)

VIP significance was based on the analysis of Control group 1 (Flx/Flx, No Brg1 Tg, Chow+tamoxifen, N = 3), Control Group 2 (Flx/Flx, Brg1 Tg
+, Chow diet − no tamoxifen, N = 3), Control Groups 1 & 2 (Flx/Flx, No Brg1 Tg, Chow+tamoxifen AND Flx/Flx, Brg1 Tg+, Chow diet − no 
tamoxifen, N = 6), and Brg1/Brm Double Mutant (Chow+tamoxifen, N = 5) hearts

a
Not significant
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