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Purpose: Digital breast tomosynthesis (DBT) is a novel modality with the potential to improve
early detection of breast cancer by providing three-dimensional (3D) imaging with a low radiation
dose. 3D image reconstruction presents some challenges: cone-beam and flat-panel geometry, and
highly incomplete sampling. A promising means to overcome these challenges is statistical iterative
reconstruction (IR), since it provides the flexibility of accurate physics modeling and a general
description of system geometry. The authors’ goal was to develop techniques for applying statistical
IR to tomosynthesis imaging data.
Methods: These techniques include the following: a physics model with a local voxel-pair based prior
with flexible parameters to fine-tune image quality; a precomputed parameter λ in the prior, to remove
data dependence and to achieve a uniform resolution property; an effective ray-driven technique to
compute the forward and backprojection; and an oversampled, ray-driven method to perform high
resolution reconstruction with a practical region-of-interest technique. To assess the performance of
these techniques, the authors acquired phantom data on the stationary DBT prototype system. To solve
the estimation problem, the authors proposed an optimization-transfer based algorithm framework
that potentially allows fewer iterations to achieve an acceptably converged reconstruction.
Results: IR improved the detectability of low-contrast and small microcalcifications, reduced cross-
plane artifacts, improved spatial resolution, and lowered noise in reconstructed images.
Conclusions: Although the computational load remains a significant challenge for practical
development, the superior image quality provided by statistical IR, combined with advanc-
ing computational techniques, may bring benefits to screening, diagnostics, and intraopera-
tive imaging in clinical applications. C 2015 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4928603]

Key words: stationary digital breast tomosynthesis, edge-preserving prior, fast convergence, high
resolution reconstruction, optimization transfer, uniform image quality, maximum a posteriori,
region-of-interest reconstruction, ray-driven, statistical iterative reconstruction

1. INTRODUCTION

Breast cancer is the most common cancer among women.
Around 12% of women will develop invasive breast cancer
over the course of her lifetime in the United States.1 Early
detection is viewed as the best strategy to decrease breast
cancer mortality, by allowing intervention at earlier stages of
cancer progression. Over the last two decades, mammography
has arisen as one of the most important and efficacious tools for
the early detection of breast cancer. However, traditional 2D
mammography has some limitations. For example, the nature
of the 2D mammogram can make it very difficult to distinguish
a cancer from overlying breast tissues. Moreover, it is particu-
larly difficult for radiologists to interpret 2D mammograms of

dense breast tissues. It has been reported that 76% of missed
cancers were in dense breasts.2

Compared with traditional 2D mammography, three-
dimensional (3D) digital breast tomosynthesis (DBT) imag-
ing3–6 has the potential to improve conspicuity of structures
by reducing the visual clutter associated with overlying
anatomy.

Digital tomosynthesis3,4 is a 3D imaging modality. It is
a form of limited-angle tomography that produces sectional
images, which are synthesized from a series of acquired
projections as the x-ray tube moves along a prescribed path.
The typical total angular range of breast tomosynthesis imag-
ing is less than 50◦, and the number of projection images is
limited with a low total radiation dose. Because the sampling
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is highly incomplete, the depth resolution is limited; therefore,
tomosynthesis cannot produce isotropic spatial resolution as
can be achieved with computed tomography (CT). However,
due to the usage of a cone-beam x-ray source and a flat-
panel detector, the resolution of a transversely reconstructed
plane is often superior to that of CT.4 In addition to breast
imaging, tomosynthesis has been applied to a wide variety
of clinical applications over years, including dental imaging,
angiography, and imaging of the chest and bones.

The limitations of current tomosynthesis systems include
both a longer scanning time than a conventional digital x-ray
modality and a relatively low spatial resolution. Both result
from the limitations of current x-ray tube technology, where a
single x-ray tube is mounted on a rotating gantry and moves
along an arc above objects over a certain angular range and
over a relatively long period of time compared to a single-
exposure radiograph. For a continuous tube motion design, the
higher the scanning speed, the larger the distance the x-ray
tube travels during a fixed exposure time and the larger the
x-ray focal spot blurring. The amount of blur which can be
tolerated limits the scanning speed and angular coverage. In
addition, long scan times increase the probability of patient
motion, which can cause image blur.

To conquer the limitations of tomosynthesis, researchers
proposed the concept of stationary digital breast tomosyn-
thesis (s-DBT) using a carbon-nanotube based x-ray source
array.7,8 Instead of mechanically moving a single x-ray tube,
s-DBT applies a stationary x-ray source array, which generates
x-ray beams from different view angles by electronically acti-
vating the individual source prepositioned at the correspond-
ing view angle, thereby eliminating the focal spot motion
blurring. The scanning speed is thus determined only by the
detector readout time and the number of sources, regardless
of the angular coverage spans. More importantly, the spatially
distributed multibeam x-ray sources also potentially enable
improvement of image quality (IQ) by permitting a wide va-
riety of multibeam source distributions.9

Among current reconstruction techniques in tomographic
imaging, both analytical reconstruction and iterative recon-
struction (IR) are being studied and applied. One classical
analytical reconstruction is filtered backprojection (FBP),10

which is based on Fourier slice theorem and guarantees a
precise signal reconstruction at a parallel beam geometry and
a sampling rate satisfying Nyquist–Shannon theorem. How-
ever, FBP will introduce reconstruction errors when applied
to cone-beam geometry and highly incomplete frequency
sampling.11 To reduce the reconstruction error, several revised
versions of FBP, such as FBP with postprocessing and FBP
with modified ramp filters,12,13 were proposed. These revised
versions have been widely used in cone-beam tomographic
imaging system. Most of these methods ignore the large
cone angle effect in Fourier space. IR approaches have the
capability to fully describe the system geometry and physics
model.

One of the IRs in tomographic reconstruction is simulta-
neous algebraic reconstruction technique (SART),14,15 which
applies an ordered subsets (OS) method to solve an un-
weighted least-squares objective function. Application of this

approach may lead to overfitting to noisy data, artifacts from
low-dose measurements, and nonconvergence to the global
optimal.

Another type of IR that has been proposed is statistical
IR (SIR), such as maximum likelihood (ML). Limited-angle
tomographic reconstruction is ill-posed.16 The ML alone rarely
produces a satisfactory solution, with the image reconstructed
from ML being very noisy. One solution is to regularize the
estimator by imposing a prior or regularization term, such as
in maximum a posteriori (MAP) or penalized weighted least
squares (PWLS).17–23 One simple regularization enforces a
roughness quadratic penalty on the solution with an assump-
tion of global smoothness. However, quadratic regulariza-
tion usually causes blurred edges. In many images, small
differences between neighboring pixels are often associated
with noise, while large differences are due to the presence
of edges. This assumption has formed the basis for many
edge-preserving regularization techniques, such as those based
on the Huber function24,25 and the q-generalized Gaussian
Markov random field (q-GGMRF).26 In these functions, the
penalty influence increases less rapidly than the quadratic
function for sufficiently large arguments.

Total variation (TV), as an edge-preserving regularization,
has also received much attention, along with the emerging
application of compressed sensing technique. These methods
allow images to be reconstructed from relatively small amounts
of data.27,28 Moreover, IR allows the flexibility to incorporate
various preacquired knowledge to reduce the uncertainty and
improve the model accuracy. Known component reconstruc-
tion (KCR)29 with known object shape and composition was
developed for cone-beam CT imaging system. This tech-
nique potentially permits a metal artifacts free reconstruction,
which will greatly benefit the diagnostic and intraoperative
imaging in case of metal implants and surgery tools pres-
ent in the display field. Model based iterative reconstruction
(MBIR),26,30 an IR technique recently released in commercial
CT, significantly improves IQ compared with conventional
analytical techniques.

In tomosynthesis, 3D image reconstruction is more chal-
lenging because of the large cone-beam angle, the highly
incomplete and nonsymmetric sampling, and the large re-
constructed volume. ML method6,31 and MAP (Refs. 32–35)
were introduced into tomosynthesis system and compared
with conventional reconstruction approaches. The results in
this paper focus on demonstrating the value of IR in improving
the detectability of low-contrast and small objects, reduc-
ing cross-plane artifacts, improving resolution, and lowering
noise in reconstructed images. In Sec. 2, multiple key tech-
niques in statistical IR are discussed, including prior design,
high resolution reconstruction, and a fast converging algo-
rithm. In Sec. 3, scans used to acquire the phantom data are
covered, along with the reconstruction methods. The parame-
ters controlling the trade-offs of resolution and noise in prior
design are studied as well. The results presented in Sec. 4
demonstrate improvement in the visibility of small micro-
calcifications, low-contrast detectability, and superior trade-
offs between spatial resolution and noise with reduction of
artifacts.
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2. MODELING AND COMPUTATION
2.A. Statistical model for image reconstruction

In a monoenergetic x-ray device, the number of photons
emitted and ultimately detected along a projection follows a
Poisson distribution, which can be described mathematically
as

P(Yi = yi)=
θ
yi
i e−θi

yi!
, (1)

where Yi is a random variable counting the observed photons
on the detector along the ith x-ray; yi is one observation of
Yi; and θi is the expected value of the random variable Yi,
that is related to the line integral projection by Beer’s law
of attenuation.36 In the classical physical model, attenuated
projections can be expressed as

θi = die−⟨µ,li⟩, (2)

where di is the intensity of the incident x-ray and µ is the linear
attenuation coefficient vector to be estimated. Each voxel is
represented by an attenuation coefficient. li denotes the vector
of the system coefficient generated by each voxel and the ith
x-ray. ⟨µ, li⟩ denotes the inner product of the two vectors rep-
resenting forward projection along the ith x-ray. The negative
log-likelihood function of all observed photons on the detector
can be written as18

L(µ)=
M
i

{die−⟨µ,li⟩+ yi⟨µ,li⟩}+c, (3)

where c is a constant and M is the number of x-ray beams. By
minimizing (3), the optimal µ can be estimated.

Because all real tomographic data are noisy and the recon-
struction problem is ill-conditioned, unregularized reconstruc-
tion can suffer from high noise due to “overfitting” noisy
data. To reduce the noise, researchers proposed a Bayesian
inference method33 that includes a prior encouraging data
consistency of each projection. More generally, the prior upon
the spatial similarity and the morphology information was
also studied.24 Most of these priors define a probability den-
sity function for voxel difference from their neighbors. The
constraint is imposed into the solution by adding the negative
log-transformed prior to the negative log-likelihood. Such a
penalized-likelihood (PL) objective function has the following
form:

Ψ(µ)= L(µ)+λR(µ), (4)

where the penalty weight λ affects the appearance of the
reconstructed images by giving control to the strength of the
penalty R(µ), which is the negative log transformation of the
prior Π(µ). One of the most popular is the Gaussian Markov
random field (GMRF) prior, which is generally defined by the
following probability density function:

Π(µ)∼
N
j

Nj
k

exp(ρ(∆ jk)), (5)

where

ρ(∆ jk)=−gjk
∆2

jk

2σ2
µ

, (6)

j ∈ N is the index of voxel; k ∈ Nj denotes the neighborhood
index; and σµ is the standard deviation of the voxel value; and
∆ jk = µ j−µk. The neighborhood mask gjk is typically defined
as

gjk =
1

((x j− xk)2+ (yj− yk)2)1/2 , (7)

when a 3×3 neighborhood clique is applied in the transverse
reconstructed plane, gjk can be simplified to 1.

The quadratic penalty applies a globally smooth effect on
voxels, which often causes edges to be blurred. To improve
edge preservation, the generalized Gaussian MRF (gGMRF)37

was introduced into digital tomosynthesis,38 redefining Eq. (6)
as follows:

ρ(∆ jk)=
(
∆ jk

c

) p
. (8)

The constant c determines the approximate threshold of transi-
tion between low- and high-contrast regions. The exponential
parameter p of the gGMRF allows one to control the de-
gree of edge preservation in the reconstruction. As long as
p > 1, the resulting regularization term is strictly convex.
When p = 2, the regularization term is quadratic, and the
reconstructed images tend to be softer. As p is reduced,
the regularization becomes nonquadratic, and edge sharpness
tends to be preserved. The derivative of the function ρ is
known as the influence function,

ρ′(∆ jk)= p|∆ jk |p−1

cp
sign(∆ jk). (9)

In Fig. 1, we compare the influence function of the qua-
dratic regularization with those with several edge-preserving
gGMRF priors. In the quadratic case (p = 2), the influence
function is linear around the origin, which controls textures in
a uniform manner. Reduced p retains better edge-preserving
characteristics, since the influence function changes more
slowly for larger voxel differences. The value c controls the

F. 1. Influence function of the gGMRF regularization with different param-
eters.
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inflexion point. Higher c pushes the edge-preserving behavior
toward the origin. For example, to maintain similar influence
to the quadratic with cp = 1 for differences of 0.01 which
is considered the upper boundary of noise variation, the cp

values for p= 1.8, p= 1.7, and p= 1.61 are set to 2.5, 3.5, and
5.3, respectively.

2.B. Geometric configuration and forward
and backprojection model

As shown in Fig. 2, a typical DBT system acquires 11 to
25 projections by rotating the x-ray tube around the center of
rotation over an arc of less than 50◦ arc. In a motion synchro-
nized with the position of the tube, the collimator is shifted
during the acquisition, to confine the x-ray illumination area to
the flat-panel detector. This detector, which remains stationary
during the acquisition, is used to record images consisting of
a large array of small pixels. Antiscatter grids are not usually
used.

The x-ray dose for a tomosynthesis exam is comparable to
that for a one-view mammogram. In clinical tomosynthesis
imaging, the breast of the patient is compressed in the same
way as in mammography. The total image acquisition time is
usually about 5 to 8 s.

The major advantage of statistical IRs is that they allow
arbitrary specification of the system coefficient used in the
statistical model described as Eq. (3). Any scanning geometry
that uses only a short arc, including the cone-beam and flat-
panel detector system above, can be accurately modeled by
proper computation of the vector of system coefficients. The
model can be designed to realistically represent the scanner,
although this may come at great computational expense.

At the core of any efficient implementation of IR is the
calculation of system coefficients in the forward and backward
model, which often drives computation time and reconstruc-
tion accuracy. One of the models to calculate the system coef-
ficient matrix is the distance driven approach,39 which accu-
rately takes into account both the detector response and the
voxel size. This method leads to fast implementation without
degrading the frequency response and is considered to be a
state-of-the-art approach. The distance driven technique may
be applied in conjunction with a voxel-based iterative algo-
rithm30 such as iterative coordination descent (ICD), where

F. 2. DBT imaging system: (a) front view; (b) side view.

voxel calculations in each iteration require the related error
sinograms to be updated by all other voxels. The inherent
sequential processing makes the voxel-based algorithm hard to
parallelize. Other algorithms such as in Ref. 40 or OS41 require
a full independent forward and backprojection for each itera-
tion, permitting easier parallelization. The ray-driven method,
being the most favorable system model for this category of
algorithms, is applied in this study. A typical 2D ray-driven
forward model is illustrated in Fig. 3(a), where the image space
is represented by a voxel mesh and the ray is modeled by a line
connecting the source and the center of each detector element.
The expected projection data are formalized as

p1= L1µ1+L2µ2+L3µ3, (10)

where µ j is the linear attenuation coefficient of the jth voxel
along the ray path. An efficient ray-driven method was im-
plemented based on the method proposed in the literature.42

A traversal algorithm along each ray is described by the ray
equation: û+ t v̂ , where û is the start point of the ray and v̂
denotes the ray direction vector. The ray is broken into inter-
vals of t, each of which spans the whole voxel. To determine
t, the ray length crossing the first vertical voxel boundary and
the ray length intersecting the first horizontal voxel boundary
are compared. The minimum of those two will indicate how
much the ray travels within the current voxel. The intersected
length within the current voxel is calculated by subtracting the
last value of t from the current value of t. At the boundary,
the adjacent voxel is identified and processing continues as
before. A forward projection along a ray is defined as the inner
product of intersection length vector and the linear attenuation
coefficient for the corresponding voxel. The backprojection
of a voxel is typically calculated by averaging the “on-path”
projection data as shown in 3(b). Assuming that there are a
total of M rays going through the jth voxel over all projection
views, the backprojection of jth voxel bj is defined as

bj =

M
i=1

li jpi/Li

M
i=1

li j

, (11)

F. 3. Ray-driven model: (a) ray-driven forward model; (b) ray-driven back-
projection model.
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where pi denotes the projection data for the ith detector
element; li j denotes the length of intersection of the ith ray
model and jth voxel; and Li is the path length of the ray within
the entire volume.

2.C. Modified regularization design for predictable
resolution property

The nonlinearity of the impulse response in statistical IR is
often undesirable since it leads to an unpredictable and nonuni-
form resolution. In this section, we present an analytical form
of the impulse response and demonstrate a way to linearize it
to achieve predictable and uniform resolution. We start from
a general quadratic regularization

R(µ)=
N
j=1


k∈Nj

1
2
(µ j− µk)2. (12)

The local impulse response of the reconstruction with a PL
objective function shown as Eq. (4) and a quadratic penalty
was previously derived43 as

L j(µ)≈ [ATD(yi)A+λHR]−1ATD(yi)Ae j, (13)

where j denotes an impulse response at the jth voxel with the
form of

L j(µ)≈ ∂µ(yi)
∂µ j

,

µ(yi) is an estimator of µ on a noiseless measurement {yi}; A
represents the system coefficient matrix; D(yi) is a diagonal
matrix with the entry yi; HR is the Hessian matrix of R(µ);
and e j is the jth unit vector. From Eq. (13), one can see that
the impulse response L j(µ) depends not only on the system
coefficient and the penalty weight λ but also on the datasets
associated with the incident x-ray and the object under scan.
The data-sensitivity leads to a nonuniform impulse response,
including shift-variant resolution and a data-dependent λ ef-
fect on the results. To reduce the data dependence, Fessler
and Rogers proposed a modified penalty function43 for more
uniform resolution. This penalty is written as

Rm(µ)=
N
j=1

κ j

k∈Nj

ω jkκkψ(µ j− µk), (14)

where ω is the weight assigned to ψ. κ j is formalized for
emission tomography as follows:

κ j = s j

 
i=1
g2
i jqi

i=1
g2
i j

. (15)

In x-ray transmission tomography, si, gi j, qi are translated to
si = 1, i ∈ [1,M], gi j = li j, and qi = yi. To reduce the computa-
tional complexity, we propose a simplified version as follows:

Rm(µ)=
N
j=1

κ2
j


k∈Nj

(µ j− µk)2
2

, (16)

where

κ2
j =

M
i=1

l2
i jyi

M
i=1

l2
i j

, (17)

since the condition of κk ≈ κ j is obviously satisfied in the jth
voxel’s neighbors. κ2 is roughly equivalent to a backprojection
upon the data set {yi}.

We substituted Rm of Eq. (16) into Eq. (13). When an
analogous deduction as in Fessler and Rogers43 is applied,
L j(µ) has the following form:

L j(µ)≈ [AT I A+λHR]−1AT I Ae j, (18)

where I is an identity matrix. One can see that as the data
weighting D(yi) is reduced to I, HRm, the Hessian matrix
of Rm(µ), is transformed to HR, the Hessian matrix of R(µ).
That means that the effect of λ on the impulse response from
arbitrary measurements yi with the modified penalty is equiv-
alent to the effect of λ on the impulse response with a uni-
form projection of yi = 1 with a quadratic penalty. In other
words, pre-estimation using the measured data reduces the
data-dependence terms and allows a predictable effect of λ on
the reconstructed results.

Other work44 has shown that κ can also lead to improved
uniformity in nonquadratic regularized reconstructions. Intu-
itively, κ reduces the data dependence in uniform regions. The
edge-preserving effect on an impulse signal will vary as the
difference changes between the signal and its background. As
a result, the spatial resolution achieved by a quadratic regu-
larization with specific λ values permits a baseline selection
for nonquadratic regularized reconstruction allowing a degree
of resolution uniformity while improving the resolution and
noise trade-off over quadratic regularization.

2.D. Region-of-interest (ROI) reconstruction
with super resolution

Statistical IR can recover fine details and small features
more accurately than conventional algorithms. In order to
fully utilize this advantage, a higher spatial resolution param-
eterization, specifically smaller voxels, needs to be applied
to detect small features such as microcalcification. In this
section, we develop high resolution reconstruction with the
ray-driven method on an oversampling detector. As a result,
intersected ray number and voxel number are significantly
increased, such that extra computation is required. ROI recon-
struction is an efficient option to concentrate computations
only on the region that contains the interesting diagnostic
details.

Practically, to increase the spatial resolution, voxels need
to be divided into subvoxels. When the subvoxel dimension
size becomes much smaller than the detector element size,
the original ray-driven model, which represents a ray by a
line connecting the source and the center of the corresponding
detector element, is not accurate enough potentially causing
resolution loss and a chess grid effect.45 Figure 4 demonstrates
the undersampling situation and shows a potential solution

Medical Physics, Vol. 42, No. 9, September 2015
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F. 4. Ray-driven forward model for voxel and subvoxel: (a) ray-driven model for voxel; (b) ray-driven model for subvoxel; (c) oversampled ray-driven model
for subvoxel.

as well. Figure 4(a) presents the forward model of a single
voxel whose size is comparable to the detector element size.
The dotted lines aligned at the two boundaries of the detector
element represent the actual ray coverage. In this case, the
intersection between the voxel and the line that connects the
source and the center of the detector is accurate enough for
forward and backprojection. In Fig. 4(b), one voxel is divided
into four subvoxels in order to quadruple the resolution. Ac-
cording to the ray-driven model, the forward projection p is
written as

p= ls1µ
s
1+ ls2µ

s
2+ ls4µ

s
4, (19)

where lsj denotes the ray intersection with the corresponding
subvoxel j whose attenuation coefficient is µsj. Equation (19)
shows that only subvoxels 1, 2, 4 are taken into account for
the ray attenuation. In fact, all of these subvoxels should
contribute to the ray attenuation according to the coverage of
the dotted line. The ray-driven method with an oversampling
detector46 may solve this problem. Instead of the ray being
modeled as one line, it can be modeled as two lines, each of
which connects the source and quarters of a detector element
as shown in Fig. 4(c). The ray attenuation corresponding to
the detector element d3 is calculated by the forward projection
given by the two lines, which is

p=
1
2
(ls11µ

s
1+ ls13µ

s
3+ ls14µ

s
4)+

1
2
(ls21µ

s
1+ ls22µ

s
2+ ls24µ

s
4), (20)

where lsi j, i ∈ 1, 2, denotes the intersection of each line within
the jth subvoxel. Unlike Eq. (19), this calculation counts the
effect from all subvoxels.

The disadvantage of this oversampling detector based ray-
driven method is that it significantly increases the computa-
tional cost, since more rays are required to be computed and
more voxels are reconstructed. As a result, the high resolution
reconstruction for the whole image volume is not very prac-
tical. Fortunately, the intensive computing is not necessary,
since small features are only located in a small ROI. There has
been much work on reconstruction within a small display field
of view (DFOV) in CT.47,48 A typical approach involves a two-
path reconstruction. The first path involves applying a pilot
reconstruction with full field of view (FFOV) with a coarse
voxel size. The second path involves updating the divided

subvoxels in a smaller DFOV within that pilot reconstruction.
The nonuniformity of voxel size usually leads to the partial
volume problem resulting in data mismatch in the forward
projection. The amount of the mismatch is determined by the
implementation.

Compared to CT, in DBT, the image slice, which is parallel
to the detector plane, is reconstructed transversely. Further-
more, the number of slices is relatively few ranging from 30
to 60 depending on slice thickness, and the angular range
is typically less than 30◦. These specific features allow an
accurate ROI reconstruction without any pilot reconstruction.
The key to this technique is (1) to generate a mask for each
projection and use only the detector elements within the mask
and (2) to estimate the minimum volume that needs to be
updated for the ROI reconstruction. As demonstrated in Fig. 5,
ROI in the plane p is marked by a circle with its center at
e(xe, ye, ze) and a radius of re. A circular mask is projected on
the projection data according to the tube position s(xs,ys,zs),

F. 5. A circular mask, which is formed by projecting the ROI boundary
along the ray beam, indicates the minimum data set required to reconstruct
the voxels in ROI.
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which locates at the center c(xc, yc, zc). The value zc is 0 in the
coordinate system. The center (xc, yc) may be mathematically
written as

xc = xe−
(xs− xe)ze

zs− ze
,

yc = ye−
(ys− ye)ze

zs− ze
, (21)

with radius

rc = re
zs

zs− ze
. (22)

The circular mask in the projection domain indicates the
minimum data set required to reconstruct the ROI. There-
fore, the number of rays required for forward and backprojec-
tion is significantly reduced. In addition, only a small portion
of volume, which covers all the ray paths in every circular
mask, is necessary for iterative updates. Rough computing
requirements given a typical DBT geometric configuration
follow.

Suppose 15 projections of 2048 × 1664 each are taken
and that the bin size is 0.14 mm. To reconstruct 60 slices
of 1 mm thickness, a total of 200 megavoxels need to be
updated in IR iterations, where each voxel is divided into a
0.14 × 0.14 × 1 mm grid. In contrast, consider a 7 × 7 mm
ROI covering a lesion that requires high resolution review. A
high spatial resolution ROI reconstruction with the voxel grid
size of 0.07× 0.07× 1 mm can be performed. By applying
our proposed method, only a 10×10×60 mm volume, which
involves about 0.6 megavoxels, is necessary for an IR update.
Based on our implementation, these computations take only
seconds for all iterations. In addition, since the uniform and
fine voxel size is applied along each ray path, there are less
reconstruction artifacts associated with the partial volume ef-
fect. In this work, we adopt ROI reconstruction to reduce the
computational complexity for high spatial resolution.

2.E. Computation of the solution

Through minimizing the objective function Eq. (4), one can
estimate the optimal µ∗, which is formalized as follows:

u∗= argmin
µ≥0
Ψ(µ). (23)

With the choice of a strictly convex prior potential func-
tion, the cost function defined in Eq. (3) is strictly convex as
well. ICD is an efficient algorithm to solve this problem. By
representing the objective function as the second order Taylor
series expansion,49 the objective function is approximated by
a quadratic form which allows the high dimension optimi-
zation problem to be transferred to a sequential 1D optimal
search. Interleaved nonhomogeneous and homogeneous voxel
selection is used to speed up convergence by focusing the
computation where it is most needed.30

The optimization-transfer (OT) based algorithm20 utilizes
a series of separable surrogate parabolic functions lower
bounded by the objective function. Minimization of Eq. (4)
is transferred to minimization of these surrogate ones. We
summarize the OT method as the following algorithm scheme:

for each iteration t = 1,..., Niter do
Find an surrogate function G(Θ,Φ) satisfying,
(1) G(Θt,Θt)=Ψ(Θt),
(2) Ψ(Θ) ≤G(Θ,Θt),∀Θt ,Θ,
we apply one step of Newton’s method on the surrogate, the
optimal approximation at (t+1)-th iteration is written as

Θ
t+1=Θt−∇2

ΘG(Θt,Θt)−1∇ΘG(Θt,Θt), (24)
end for

where G(Θ,Θt) is a separable surrogate function lower bound-
ed by Ψ(Θ) at Θt. The first Θ represents the linear attenuation
coefficient vector µ. We use Θt+1 to represent the optimal Θ
which leads to the smallest G(Θ,Θt). The “bounded” condi-
tion to form G(Θ,Θt) automatically leads to a monotonic
convergence to the global optimal. ∇ΘG(Θt,Θt) represents
the gradient toward the global optimal in the solution space.
∇2
Θ

G(Θt,Θt)−1, which is the inverse of curvature of the sepa-
rable surrogate function, denotes the search step size along
each dimension. Due to the bounded condition, the curva-
ture of the surrogate cannot be smaller than the curvature of
the objective function, which results in a conservative step
size.

The bounded condition is not necessary for monotonicity.
In fact, a “nonbounded” surrogate with an aggressive step size
is able to produce a monotonic convergence at faster rate.
Some researchers have studied large step sizes. For example,
an enlarged step size with the form of exponential power was
proposed for ML-EM reconstruction.50 The algorithm lacks
monotonicity, hence may have a problem with stability. The
idea of over-relaxed step size was also mentioned in Yu et al.30

for the ICD framework, where a factor of 1 to 2 was used to
scale up the step size. However, a larger step does not mean a
faster convergence and might even lead to divergence.

A method for successively increasing over-relaxation in
an OT based algorithm was proposed.51 Instead of a larger
step size, an optimal step size, which produces the fastest
convergence at each search step, was derived with the form of
a scaled step size ρ∇2

Θ
G(Θt,Θt)−1. An optimal scaling factor

ρ∗ was defined as

ρ∗=
2

2−σmax−σmin
, (25)

where 0 ≤ σmin ≤ σmax ≤ 1 are the smallest and largest eigen-
values of the convergence matrix.51 The convergence rate is
proportional to the largest eigenvalue.51 As iteration proceeds,
the σmax has been demonstrated to change from 0 to 1, which
means that the convergence speed is gradually slowing down
as the estimate at each step is approaching the global optimal.
Therefore, the optimal ρ∗ in Eq. (25) varied from 1 to K, a
value larger than 1. That is, the optimal scaling factor ρ∗, which
produces the optimal step size to achieve the fastest conver-
gence rate at each iteration, is not scaled down gradually, but
needs to be successively increased iteratively, which is funda-
mentally different from other methods50 where an exponential
factor is supposed to be more conservative with increasing
iterations.

The successively increasing over-relaxation OT based algo-
rithm is proposed as follows:
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ρ= 1 and a = δ (δ > 1 can be adjusted in a specific case)
for each iteration t = 1,..., Niter do
Θt+1

T =Θ
t−∇2

Θ
G(Θt,Θt)−1∇ΘG(Θt,Θt)

Θt+1
NEW=Θ

t+ ρ(Θt+1
T −Θ

t)
Calculate Ψ(Θt+1

T ) and Ψ(Θt+1
NEW)

if Ψ(Θt+1
NEW) ≤Ψ(Θt+1

T ) then
ρ∗= a and Θt+1=Θt+1

NEW
else
ρ= 1 and Θt+1=Θt+1

T

end if
end for

ΘNEW is updated by a ρ-scaled difference between ΘT and the
last iteration’s estimate. In image reconstructions, ΘT repre-
sents the linear attenuation vector µ, which can be updated
by using the separable surrogate technique.20 Using this tech-
nique, we derived the iterative estimate of µ with the gGMRF
prior in the following form:

µ
(n+1)
j = µ

(n)
j −

M
i=1

li j(−die−<µ(n),li>+ yi)
M
i=1

(li j
N
j=1

li jdie−<µ(n),li>)

×
+λκ2

j


k∈Nj

p|µ(n)
j
−µ(n)

k
|p−1

cp
sign(∆ jk)

+2p(p−1)λκ2
j


k∈Nj

|µ(n)
j
−µ(n)

k
|p−2

cp

, (26)

where κ is precalculated (before iteration starts) by the back-
projection operation as shown in Eq. (17); λ represents the
penalty weight in the place of Eq. (4); and p and c values
are important parameters to control the trade-offs between the
edge-preserving behavior and noise reduction. By comparing
the objective functions Ψ(ΘT) and Ψ(ΘNEW), the update strat-
egy and ρ are determined. If Ψ(ΘNEW) is less than Ψ(ΘT),
meaning the scaled solution is closer to the optimal in the
solution space, then Θ is updated by ΘNEW and ρ is increased
by a multiplier a. Otherwise, ΘT is used to update Θ, and ρ
is set to 1. For each iteration step, the algorithm always uses
the choice that achieves a faster convergence. For instance, an
acceleration with a factor ϵ is gained in one iteration. After M
iterations, an exponential gain of ϵM is achieved.

Given that a representative OT based method requires full
forward and backprojection for each iteration, our proposed
method requires one extra voxel update. This update is per-
formed concurrently with the original one, with a low compu-
tational cost. In addition, the calculations of Ψ(ΘNEW) and
Ψ(ΘT) can reuse the error sinogram and the update operations.
The efficiency of the proposed algorithm framework has been
demonstrated in our previous work.51

3. METHODS AND MATERIALS
3.A. System description

We acquired data on the stationary DBT prototype sys-
tem7,8 to assess the performance of the proposed method. In

this system, a flat-panel detector is used for image acquisition.
The origin of the 3D coordinate system is located at the center
of the detector. With a 140 µm detector element pitch, the
total projection size is 2048×1661. Multiple x-ray beams are
positioned along a straight line parallel to the detector plane.
The detector is 690 mm from the source, which is designed to
have 15 x-ray beams spanning a distance of 323.8 mm from
end to end. The linear spacing between the x-ray beams varies
to provide a regular 2◦ angular step size.

Breast phantoms were scanned on a stage with a 25.4 mm
air gap. Projections were acquired using 28 kVp, a molyb-
denum filter, a molybdenum target, and 20 mAs per projection.

3.B. Reconstructions for comparison study

In the comparison study, we compared FBP, SART, and
OS MLEM (OS-EM) with the proposed statistical IR. In the
remainder of this paper, we use the acronym SIR-ρ-OT to refer
to the proposed statistical IR, i.e., the successively increasing
over-relaxation ρ-based OT (ρ-OT) algorithm for solving the
estimation problem posed by SIR.

FBP based reconstruction is widely used in current com-
mercial DBT products. Since FBP has a linear response, tun-
ing the filter kernel permits a desired trade-off between reso-
lution and noise. As a standard reference method, we applied
a sampling density based ramp filter52 and a Hanning filter to
remove the ring effects and high frequency noise. The kernel
was applied on each row of projection data in the path direction
of the x-ray tube, and then the 3D volume was reconstructed
by a pixel-driven backprojection.

Unlike the FBP algorithm, which is a one-step operation,
iterative algorithms such as SART and OS-EM perform the
reconstruction in a recursive fashion. During the iterations, a
3D ray-driven method was employed for forward and backpro-
jection. The number of iterations was determined based on a
semiquantitative method.53 According to the method, curves
of objective function versus iterations, noise versus contrast
as iteration proceeds and artifact spread function (ASF)6 were
drawn in a phantom study with the scanner. The number of
iterations was chosen based on those performance curves.

As a reference algorithm, SART is initiated by a backpro-
jection and uses eight iterations, each of which is completed
by going through all projections sequentially. For an OS based
method, there is usually fast convergence at the early iterations
but eventually oscillation around the global optimal solution.
To gain the initial acceleration and avoid the oscillation, we
utilized three iterations with ordered subsets, followed by
eight iterations with full data sets.

Our proposed statistical IR is solved by the successively
increasing over-relaxation OT framework described in Sec. 2
with the iterative solution of Eq. (26). According to experi-
ments in the literature,35 λ = 8 provided the best trade-off in
maintaining resolution and reducing noise among all inves-
tigated λ for the quadratic regularization. Using the edge-
preserving penalty with this same λ, the performance can
be further enhanced to achieve a better resolution with the
same amount of noise reduction. Three iterations with ordered
subsets, each of which consists of an individual projection,
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F. 6. Spatial resolution measured along microcalcification on a focus plane reconstructed by SIR-ρ-OT with selected parameter combinations. (a) PSF curves;
(b) MTF curves.

are used to start the estimation process and subsequently five
iterations with full data sets are performed with the ρ-OT
framework. One trick is utilized in our implementation, where
instead of scaling up step size for all voxels in the same
manner, we only enlarge the step size of those presenting high
frequency features. Therefore, the voxel update in the most
variable regions, such as edges between high and low-contrast
and details within a complex background, contributes more to
the decrease of objective function value, which leads to a faster
convergence in these regions. The details of the update strategy
will be given in another paper.

3.C. Parameter optimization of IR model

The form of the gGMRF prior introduced in Sec. 2 depends
on two parameters: p, which controls the degree of curvature in
the influence function in low- and high-contrast regions, and
c, which determines the threshold between the two types of
regions. To seek the optimal parameter combination, recon-
structions of a homogeneous breast phantom were performed
with multiple parameter choices. They were p = 2, cp = 1;
p = 1.8, cp = 2; p = 1.8, cp = 2.5; p = 1.7, cp = 3.5; and
p= 1.61, cp= 5.3. Point spread function (PSF) and contrast to
noise ratio (CNR) were applied to measure the results of these
parameter combinations. The case in which p= 2, cp= 1 spec-

F. 7. Measurement of PSF and CNR: (a) microcalcification, used to mea-
sure PSF; (b) a mass object and its background, used to calculate CNR.

ifies a quadratic regularization. The reconstruction from the
quadratic parameter combination was chosen as the baseline.

The PSF curves presented in Fig. 6(a) were measured by
forming profiles through the isolated microcalcification shown
in Fig. 7(a). These curves were then fitted into the Gaussian
functions to remove noise. The Fourier transform of the fitted
function is the modulation transfer function (MTF), as shown
in Fig. 6(b). The spatial frequency at 50% MTF peak is used
to describe the in-plane spatial resolution. As discussed in
Sec. 2, a smaller p tends to introduce more edge-preserving
behavior toward the high contrast region. By increasing c, the
inflexion is pulled closer to the origin to improve the low-
contrast detectability. Among all parameter combinations for
SIR-ρ-OT, the parameter set p= 1.61, c= 5.3 presents the best
frequency response which is 18% higher than the baseline. To
investigate the contrast sensitivity, CNR is calculated by sub-
tracting the mean value in the background marked as region 1
[Fig. 7(b)] from the mean value in the mass region marked as
2, and then dividing the standard deviation of the background.

The CNR and half-width of 50% MTF above are summa-
rized in Table I, which shows that, in terms of CNR, all edge-
preserving parameter combinations performed better than the
baseline reconstruction. The case of p = 1.61, cp = 5.3 pro-
duced the second highest CNR and led to the highest resolu-
tion. The parameter combination p= 1.8, cp= 2 produced the
highest CNR but yielded a slightly worse spatial resolution
than the baseline. Based on these observations, p = 1.61, cp

= 5.3 may be a good compromise between contrast sensitivity
and resolution. This is the parameter set that was adopted in
the rest of experiments.

T I. CNR and in-plane MTF for SIR-ρ-OT with selected parameter
combinations.

Parameters CNR HWHM of MTF

p = 2, c = 1 (quadratic) 6.1601 4.0063
p = 1.8, cp = 2 12.4267 3.9041
p = 1.8, cp = 2.5 6.5769 4.1951
p = 1.7, cp = 3.5 7.3294 4.3324
p = 1.61, cp = 5.3 7.5906 4.6825

Medical Physics, Vol. 42, No. 9, September 2015



5386 Xu et al.: IR to improve IQ for DBT 5386

4. EXPERIMENTS AND RESULTS
4.A. Improvement in detectability

In this section, experiments comparing detectability are
conducted with a breast phantom composed of a tissue equiv-
alent, complex, heterogeneous background, containing an
assortment of microcalcifications, fibrils, and masses, where
the grain size of microcalcifications varies from 0.130
to 0.275 mm. All reconstructed results are presented in
comparable display windows. For IR methods, the display
window was set to [0.0490,0.0601]. For FBP, it was set to
[1.3660,1.3714]. The reason for the shifting is that, without
performing data matching, the reconstruction error from FBP
was deteriorated due to the highly incomplete sampling.

Results reconstructed by SIR-ρ-OT with the optimized
parameters were compared against those generated from the
reference methods. A nonprewhitening (matched filter)
observer signal-to-noise ratio (SNR)54 model is adopted to
evaluate the microcalcification visibility. To fully demonstrate
the advantage of SIR-ρ-OT, ROI reconstruction with higher
resolution was deployed as well, where the transverse voxel
size in the ROI was reduced to 0.07 mm, which is half of
the detector element size. The reconstructed results were then
compared to those with the original voxel size.

Figure 8 presents the comparison of microcalcifications
in circular masses reconstructed by the different methods.
Each row represents reconstructions of microcalcifications of

F. 8. Comparison of microcalcification in mass reconstructed by different
methods. (a) FBP, (b) SIR-ρ-OT, (c) OS-EM, (d) SART.

a different size, from 0.165 mm (top) to 0.275 mm (bottom).
In the first row, the six microcalcifications can be seen clearly
when the mass is reconstructed by SIR-ρ-OT in (b) but not
when it is reconstructed by FBP in (a). This difficulty in
detection is caused by insufficient spatial resolution. Although
OS-EM in (c) and SART in (d) produce resolution as high
as the proposed method, the microcalcifications reconstructed
by each of these methods are somewhat hidden in the noisy
background. Similar situations can be observed in the second
and third rows. The microcalcifications in the fourth and fifth
rows are large enough to be detected among all methods.

To validate the microcalcification detectability improve-
ment of our proposed method, we employed the nonprewhiten-
ing (matched filter) observer SNR for a signal-known-exactly/
background-known-exactly (SKE/BKE) task. This model is
given as

SNR=
λ̄+− λ̄−

σ2
++σ

2
−

2

, (27)

where λ̄ denotes the conditional mean of a statistic λ given that
microcalcification is present or absent. Regarding this task,
we use f + to represent a vectorized image patch that includes
a single microcalcification. λ+ is then calculated as the inner
product of f + and a signal-present template w, which is created
by binarizing the mean value of all signal-present f +. In the
same manner, λ− is computed as the inner product of f −which
is a microcalcification free image vector and w. The λ̄ is then
computed by averaging each of the signal responses with the
same template applied. In addition, σ2

+ = w
TK+w, where K+

is the covariance of all applied f +.
We scanned the phantom three times with the same acqui-

sition parameters. Volumes were reconstructed by each ap-
proach. To calculate the SNR for microcalcification of each
size, a 6 by 6 image patch containing the microcalcification
was vectorized. There are six microcalcifications for each size
available in one mass as shown in Fig. 8. Hence, a total of
18 image patches can be used to calculate the λ̄+. λ̄− was
computed by using 180 image patches over multiple recon-
struction slices. Covariance was computed from 800 images
collected from different locations and multiple adjacent recon-
struction slices. In order to obtain a larger number of ROIs,
we assumed that σ+ and σ− are identical. Such assumptions
are valid in the limit of small signals but may be violated for
larger signals. Due to a small number of data sets available
to compute σ+, however, we invoked the assumptions for all
microcalcification sizes to avoid bias in covariance estimation.

T II. Nonprewhitening (matched filter) observer SNR measured on mi-
crocalcifications within mass as shown in Fig. 8.

FBP SIR-ρ-OT OS-EM SART

Row 1 12.2 15.5 13.7 14.3
Row 2 24.4 32.8 25.2 26.9
Row 3 33.0 35.4 32.9 34.4
Row 4 36.3 38.0 36.4 36.1
Row 5 47.5 48.7 44.9 46.2
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F. 9. Comparison of fibrils in mass reconstructed by different methods.
(a) FBP, (b) SIR-ρ-OT, (c) OS-EM, (d) SART.

A comparison of the SNR results of all methods is summa-
rized in Table II. The values in the table align with our obser-
vations. For example, in agreement with our observation that
small microcalcifications in the second rows could be more
easily detected using the SIR-ρ-OT method, the observer SNR
value corresponding to SIR-ρ-OT is obviously higher than that
of its competitors: 34% higher than the SNR value for FBP
and over 20% higher than that for other IR methods. The SNR
values in rows 3, 4, and 5, which represent easier detection
tasks, are only slightly different among all methods.

Figure 9 presents the comparison of fibrils in circular
masses reconstructed by each method. All fibrils in these
results are detectable. Compared with the results of FBP
reconstruction in (a), SIR-ρ-OT produces a much clearer
boundary and enhanced contrast for each mass. The results
of OS-EM in (c) and SART reconstruction in (d) present
relatively high noise which makes the boundaries of fibrils
more obscure.

Figure 10 shows an 8.4×8.4 mm area that includes multiple
microcalcifications embedded in a mass. Compared to FBP

F. 10. Zoomed focus plane with a mass and several granular microcalcifi-
cation. (a) SIR-ρ-OT with low resolution, (b) SIR-ρ-OT with high resolution,
(c) FBP with low resolution.

F. 11. Zoomed focus plane with a circular mass and six tiny microcalcifica-
tion. (a) SIR-ρ-OT with low resolution, (b) SIR-ρ-OT with high resolution,
(c) FBP with low resolution.

reconstruction with low spatial resolution shown in Fig. 10(c),
SIR-ρ-OT reconstruction with low spatial resolution, shown
in Fig. 10(a), significantly reduces the noise in the soft tissue.
The image reconstructed by SIR-ρ-OT with high resolution is
shown in Fig. 10(b). Comparing (b) to (a) and (c), we notice
that the slowly varying area in the image presents a little higher
noise than (a) but still lower than (c). The most significant
difference is the reconstruction of the microcalcifications. (b)
shows the sharpest edge for each microcalcification among all
competitors.

The high spatial resolution reconstruction was also applied
in a ROI with small, barely visible objects. Figure 11 presents
reconstructed images where six smaller microcalcifications of
0.130 mm are located in a circular mass within a 14×14 mm
area. The small objects are highly obscured in the results of
low-resolution IR shown in (a) and low-resolution FBP shown
in (c). The nonvisibility is mainly caused by insufficient spatial
resolution. As shown in (b), SIR-ρ-OT with high resolution led
to better detectability than did the other two methods. In fact,
it led to all of the small objects being visible. The higher noise
in 11(b) could be better suppressed by applying a larger λ.

4.B. Performance for in-plane resolution/noise
trade-offs

For a comparison of in-plane properties at equal resolution
between the reference methods and the proposed method, we
reconstructed the image shown in Fig. 7(a). In-plane MTF

F. 12. In-plane MTF measured along microcalcification on a focus plane
reconstructed by SIR-ρ-OT, FBP, SART, and OS-EM.
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T III. Comparison of in-plane MTF, noise, and CNR for SIR-ρ-OT and
the reference methods.

FBP SIR-ρ-OT SART OSEM

50% MTF 4.134 4.683 4.766 4.766
10% MTF 6.836 7.807 7.988 7.988
Standard
deviation (10−4)

7.747 6.644 18.713 17.532

CNR 2.663 7.590 4.550 4.498

was calculated. The standard deviation of noise was measured
in a homogeneous region shown in Fig. 7(b). The CNR was
evaluated for the regions in Fig. 7(b). Results are presented in
Fig. 12 and Table III.

The measured in-plane MTF for SIR-ρ-OT was compa-
rable to that of the SART and OS-EM images, and better than
that of the FBP image. SIR-ρ-OT presented a 60%–70% noise
reduction compared with SART and OS-EM. Furthermore,
SIR-ρ-OT provided the best CNR performance among all
methods: close to 1.7 times as high as the performance of
SART and OS-EM, and 3 times as high as FBP.

4.C. Reduction of cross-plane artifacts

We calculated ASF6 to evaluate image blur in the Z direc-
tion that is perpendicular to the X–Y detector plane. The image
blur is mainly introduced by the highly undersampled geom-
etry. ASF is defined as the ratio of the CNR values between
the off-plane layer and the in-plane layer. The measurement
was performed on a breast phantom with a homogeneous
background.

Figure 13 shows the ASF curves of the selected mass and
the microcalcification shown in Fig. 7. The layers at negative
distances denote the image slices below the feature layer, and
those at positive distances denote image slices above. The FBP
results produced a slowly decreasing ASF curve, indicating a
strong interplane blurring effect for the mass object. SIR-ρ-
OT, OS-EM, and SART results, on the other hand, produced
ASF curves that dropped quickly as the distance from the
feature increased, indicating that these techniques are superior
in suppressing interplane blurring.

With the microcalcification, all four methods had compa-
rable ASF behaviors at the off-plane close to the in-plane layer.
However, at the off-planes farther away from the in-plane
layer, the curve from the FBP reconstruction tends to decrease
slowly, whereas those from the other three methods decreased
more quickly, indicating that those methods were better at
mitigating the cross-plane artifacts. SIR-ρ-OT showed slightly
fewer cross-plane artifacts than the other IRs.

The difference between the FBP reconstruction curve and
the other curves was greater in the mass ASF plot versus
the microcalcification plot. This behavior was predictable. In
Fourier space, the frequency contents of a large object may
be more varied in magnitude than those of a small object. As
a result, the small object could be restored much more easily
than the larger object, when the same Fourier space sampling
was used.

5. DISCUSSION AND CONCLUSION

We have presented multiple key statistical IR techniques for
DBT image reconstruction. The effects of the penalty weight
λ on the appearance of the reconstructed images were fully
investigated using a quadratic regularization with a precom-
puted parameter κ. κ was also extended to incorporate our
proposed gGMRF prior. This prior provides flexibility in its
parameters necessary to control the behavior both around the
origin and at the tails of the distribution. Our experiments show
that a superior trade-off between resolution and noise could
be achieved by optimizing the parameter combination of p
and c. Based on an efficient ray-driven model, we proposed
an oversampling technique on the detector elements that can
improve the reconstruction accuracy for high spatial resolution
and hence enable improved detectability of microcalcifica-
tions whose grain size is smaller than the detector element size.

According to our phantom studies, in which we used a
nonprewhitening (matched filter) observer metric and visual
comparisons, our proposed statistical IR performed better than
traditional approaches in difficult detection tasks. Compared
to other IR methods such as SART and OS-EM, the proposed
SIR-ρ-OT method provided comparable spatial resolution
with improved CNR performance. These benefits, together

F. 13. Comparison of ASF curves of the selected mass and microcalcification in the results reconstructed by FBP, SIR-ρ-OT, OS-EM, and SART. (a) ASF
curve of mass object; (b) ASF curve of microcalcification object.
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with those described above, potentially improve the ability
to detect small microcalcifications and reveal low-contrast
lesions in clinical applications. In addition, compared to FBP,
all IR methods can effectively reduce interplane blurring and
artifacts with better ASF behavior, and significantly improve
object conspicuity by removing the overlapping structures.

A practical ROI reconstruction with high spatial resolution
was applied to reduce the number of rays and the number
of reconstructed voxels. Based on our preliminary evaluation,
this solution profoundly lowers the computational complexity
and the memory used. However, since IR-based methods still
need multiple iterations to be convergent, convergence rate
remains a challenge for clinical applications. An efficient OT-
based algorithm framework with a successively increasing
over-relaxation was discussed together with the convergence
analysis. This method potentially allows fewer iterations to
achieve decent image quality and acceptable convergence.

Recent progress in hardware and parallel computing allows
the realization of the computationally expensive statistical IR
in clinical applications. Hardware accelerations will enable the
superior image quality provided by the proposed statistical IR.
Future works will be conducted to investigate these hardware
accelerations in order to benefit diagnostics in real clinical
applications.
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