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Purpose: Positron emission tomography (PET) is a nuclear medical imaging technology that pro-
duces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in
various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an
essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET
images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a
result, it will inevitably increase the patient’s exposure to radiation. One solution to solve this problem
is predicting standard-dose PET images using low-dose PET images. As yet, no previous studies with
this approach have been reported. Accordingly, in this paper, the authors propose a regression forest
based framework for predicting a standard-dose brain [18F]FDG PET image by using a low-dose brain
[18F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image.
Methods: The authors employ a regression forest for predicting the standard-dose brain [18F]FDG
PET image by low-dose brain [18F]FDG PET and MRI images. Specifically, the proposed method
consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray
matter, and white matter) in the MRI image, the authors extract features for each patch in the brain
image from both low-dose PET and MRI images to build tissue-specific models that can be used to
initially predict standard-dose brain [18F]FDG PET images. Second, an iterative refinement strategy,
via estimating the predicted image difference, is used to further improve the prediction accuracy.
Results: The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI,
low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed
algorithm gives promising results with well-estimated standard-dose brain [18F]FDG PET image and
substantially enhanced image quality of low-dose brain [18F]FDG PET image.
Conclusions: In this paper, the authors propose a framework to generate standard-dose brain
[18F]FDG PET image using low-dose brain [18F]FDG PET and MRI images. Both the visual and
quantitative results indicate that the standard-dose brain [18F]FDG PET can be well-predicted using
MRI and low-dose brain [18F]FDG PET. C 2015 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4928400]

Key words: positron emission tomography (PET), [18F]FDG, brain [18F]FDG PET prediction,
regression forest

5301 Med. Phys. 42 (9), September 2015 0094-2405/2015/42(9)/5301/9/$30.00 © 2015 Am. Assoc. Phys. Med. 5301

http://dx.doi.org/10.1118/1.4928400
http://dx.doi.org/10.1118/1.4928400
http://dx.doi.org/10.1118/1.4928400
http://dx.doi.org/10.1118/1.4928400
http://dx.doi.org/10.1118/1.4928400
http://dx.doi.org/10.1118/1.4928400
http://dx.doi.org/10.1118/1.4928400
http://dx.doi.org/10.1118/1.4928400
http://dx.doi.org/10.1118/1.4928400
http://dx.doi.org/10.1118/1.4928400
http://crossmark.crossref.org/dialog/?doi=10.1118/1.4928400&domain=pdf&date_stamp=2015-08-18


5302 Kang et al.: Prediction of standard-dose brain PET image 5302

1. INTRODUCTION

Positron emission tomography (PET) is a molecular imaging
technique that produces 3D images reflecting tissue metabolic
activity in the human body. Ever since the PET imaging
scanner was built in the early 1970s,1,2 it has been widely
used in diagnosing a variety of cancers3,4 and cardiovascular
diseases.5,6 Moreover, PET has also been widely used for
clinically diagnosing brain diseases/disorders.7–11

High-quality PET images play a crucial role in diagnosing
brain diseases/disorders and are preferred in clinical practice
for better diagnosis and assessment. Noise in PET images
is mainly caused by the finite number of detected photons.
Factors limiting photon counts include the amount of injected
tracer, scan duration, and so on.4 Therefore, the total
radioactivity injection is important to PET image acquisition,
as higher radioactivity (and therefore higher radiation dose
for the patient) will generate more detected events and thus
obtain images with much higher quality as shown in Fig. 1.
However, due to concerns about internal radiation exposure,
it would be desirable to reduce the injected radioactivity, but
image quality would be compromised as a result. Clearly,
as shown in Fig. 1, the quality of a low-dose brain [18F]
FDG PET image is inferior to that of a standard-dose brain
[18F]FDG PET image. The quality of the low-dose PET
image will be further decreased due to various unknown
factors during the process of acquisition. Consequently,
it will affect the accurate diagnosis of diseases/disorders.
In practice, in order to obtain a high-quality brain PET
image, a standard-dose radionuclide (tracer) needs to be
injected into the living body. As a result, it will inevitably
increase a patient’s exposure to radiation. Similar to computed
tomography (CT) imaging, the total exposure dose to a
patient should be considered,12 particularly when repetitive
examinations are required for therapeutic monitoring.
Therefore, reducing radiation exposure is very important
for patients, especially children and younger patients.13

    

F. 1. An example of low-dose brain [18F]FDG PET and its corresponding standard-dose brain [18F]FDG PET.

Although many methods have been proposed to improve
PET image quality, in the literature, most of them are mainly
designed to overcome the limitation of PET imaging rather
than to reduce dosage, such as partial volume correction,14,15

motion correction,16,17 and attenuation correction.18–20 To the
best of our knowledge, no previous studies have been reported
to predict a standard-dose PET image using a low-dose PET
image or the combination of low-dose PET and magnetic
resonance imaging (MRI) images.

In the process of acquiring PET images, image recon-
struction will benefit from the use of anatomical information
obtained from other imaging modalities, such as MRI.21

Recently, the combined PET/MRI imaging system has been
developed as an alternative to PET/CT, which has matured
into an important diagnostic tool.13 The major advantage of
this dual-modality imaging system over the stand-alone PET
is that, in a PET/MRI imaging system, the excellent soft-tissue
contrast of MRI complements the molecular information of
PET. Therefore, the combined PET/MRI system provides
benefits for predicting standard-dose brain [18F]FDG PET
images using low-dose brain [18F] FDG PET and MRI
images.

Random forest, an ensemble method,22 has been proven
to be one of the most powerful tools in the machine
learning community, and has recently gained significantly
more popularity for both classification and regression
problems, such as remote sensing image classification,23,24

medical image segmentation,25–27 human diseases/disorders
diagnosis,28–30 facial analysis,31 and so on. Note that, when
applied to the nonlinear regression task, random forest is often
called a regression forest (RF).

Accordingly, in this paper, we propose a regression forest-
based framework to predict a standard-dose brain [18F]FDG
PET image by using both low-dose brain [18F]FDG PET
and MRI images. Our method consists of two major steps:
(1) predicting an initial standard-dose brain [18F]FDG PET
image by brain-tissue-specific regression forest models with
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image appearance features extracted from both low-dose
brain [18F]FDG PET and MRI images and (2) incrementally
refining the predicted results by iteratively estimating the
image difference between the current prediction and the
target standard-dose brain [18F]FDG PET (ground truth).
By incrementally adding the estimated image difference onto
the previously predicted standard-dose brain [18F]FDG PET,
our proposed method is able to gradually improve the quality
of predicted standard-dose brain [18F]FDG PET.

2. METHODS
2.A. Datasets and preprocessing

2.A.1. Data description

This study has been approved by the UNC Institutional
Review Board. Written informed consent forms were also
obtained from all participating patients. The dataset we
used consists of 11 subjects. All data were acquired on a
Siemens Biograph mMR MR-PET system. Seven subjects
were observed to have normal FDG uptake where one subject
had a regional uptake deficit in the left frontal lobe, and
other three subjects were observed to have mild cognitive
impairment (MCI). Subjects were administered an average
of 203 MBq (range: 191–229 MBq) of [18F]FDG. The first
brain PET scan (the “standard-dose” scan) was performed
for a full 12 min with 60 min of injection, according to
standard protocols. Immediately after, a second PET dataset
was acquired in list-mode for 12 min, which was broken
up into separate 3-min sets (the “low-dose” scans). We use
the terms standard-dose and low-dose to refer to standard
activity administered (averaging 203 MBq and effective dose
of 3.86 mSv32) and low activity administered (approximately
51 MBq and effective dose of 0.97 mSv) since effective doses
can generally be considered proportional to administered
activity.32 The standard-dose activity level is at the low end of
the range (185–740 MBq) for FDG brain PET recommended
by the Society of Nuclear Medicine and Molecular Imaging
(SNMMI);32 thus, the low-dose activity level is significantly
lower than the recommended range.

For all subjects, the low-dose PET image sets are
completely separate acquisitions from the standard-dose PET
image sets. Otherwise, if only the first standard-dose scan
was performed, the low-dose PET sets would have to be
acquired by breaking up the first scanned standard-dose PET
into four 3-min subsets. In this way, the low-dose PET sets
and the standard-dose PET sets would actually come from the
same set of data, despite difference in dosage. Note that, we
used reduced acquisition time at standard-dose as a surrogate
for standard acquisition time at reduced dose. Additionally,
in our study, because the low-dose datasets were always
acquired after the standard-dose ones, some additional uptake
in the brain occurred and so the observed count levels in the
low-dose sets were 27%–30% those of the standard-dose sets,
not the 25% that the change in acquisition time would imply.

PET reconstructions were performed on an offline version
of the vendor’s PET-MRI clinical reconstruction software
and by using the ordered subsets expectation maximization

(OSEM) algorithm.33 Corrections for patient attenuation,
scatter, and scanner uniformity were included using the
vendor’s standard procedures. Also, a T1-weighted MPRAGE
MRI sequence was scanned.

2.A.2. Preprocessing

In our study, we used four images for each subject: MRI,
two low-dose PETs (the first 3-min set, low-dose PET 1; and
the second 3-min set, low-dose PET 2) and one standard-
dose PET. Each image has the size of 128× 128× 128,
and the voxel size of 2.09× 2.09× 2.03 mm3. The MRI
data used in our study are not simultaneously scanned with
PET data. All images were preprocessed with the following
steps. (1) Image alignment: four images of each subject
were aligned onto a common space by the algorithm.34 (2)
Skull stripping: nonbrain tissue parts were removed from the
aligned images.35 (3) Intensity normalization: each modality
image was normalized via histogram matching. (4) Tissue
segmentation: white matter (WM), gray matter (GM), and
cerebrospinal fluid (CSF) were segmented from skull-stripped
MRI brain image by the algorithm.36

2.B. Overview

The main goal of this work is to estimate the intensity
value of each voxel v ∈R3 in a standard-dose brain [18F]FDG
PET for a new subject. In particular, the random forest22 is
employed to estimate the standard-dose brain PET image by
voxelwise prediction. Figure 2 shows the overview of our
proposed algorithm that consists of training and application
stages, where L-PETs stands for the low-dose PETs (low-dose
PET 1 and 2), and S-PET stands for the standard-dose PET.

Assume we have a set of “pairs” of T1-weighted MRI
image, low-dose PETs (low-dose PET 1 and low-dose PET
2), and standard-dose PET (ground truth) training images. We
further suppose that the training data have been preprocessed
with the procedures described in Sec. 2.A.2. In the training
stage, we first extract appearance features (which will be
detailed in Sec. 2.D) from each pair of MRI and low-dose
PET images, and then use the extracted features as input
[while using the corresponding standard-dose PET image
(ground truth) as response] to train an initial regression
forest (Model1 in Fig. 2). We then use the constructed forest
(Model1) to predict the standard-dose PET image for each
pair of MRI and low-dose PET images in the training
set. Next, in the process of training the later regression
forests/models Modelm(m = 2,. . .,M), we first compute the
image difference between the “ground truth” and the standard-
dose PET predicted using the Modelm−1 in the training set,
and then take the image difference as regression response
and the features extracted from the MRI and low-dose PET
images as input to train the Modelm(m = 2,. . .,M). In the
testing stage, we extract features from the new MRI and
low-dose PET images and simultaneously feed them into the
trained Modelm(m = 1,2,. . .,M) in order to produce the initial
prediction result and the difference maps, respectively. Then,
we add up the prediction results (initial prediction result and
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F. 2. Schematic illustration of our proposed standard-dose brain [18F]FDG PET prediction framework, which includes a training stage (a) and an application
stage (b). In the training stage (a), M models are sequentially trained by regression forest. In the application stage (b), the constructed M models were
simultaneously applied to the new images (low-dose PET and MRI) to produce the final prediction result by adding up the initial prediction result and the
predicted difference maps.

difference maps) to obtain the final predicted standard-dose
brain PET image.

2.C. Multisource integrated tissue-specific prediction
with incremental refinement

As shown in Fig. 2, our proposed algorithm involves two
major steps: the initial standard-dose PET prediction using
Model1 and the incremental refinement using Modelm(m
= 2,. . .,M).

2.C.1. Initial prediction of standard-dose PET
by multisource integrated tissue-specific
regression forests

Due to the large number of voxels in a human brain
image, it is intractable to learn a global regression model
for predicting a standard-dose PET image over the entire
brain. Many studies37,38 have shown that learning multiple
local models would help improve the prediction performance,
compared to a single global model. Therefore, in this paper,
we learn one regression forest for each brain tissue, i.e., WM,
GM, and CSF.

Suppose that the training data have been preprocessed
with the procedures described in Sec. 2.A.2. To train the
regression forest for each tissue type, we first randomly
sample a set of training samples/points {(fi,yi)|i = 1,. . .,N}
within this tissue region for each training subject. Specifically,
for the ith sample/point at position v ∈ R3, we extract the
patch-based features fi (i = 1,. . .,N) (which will be detailed in
Sec. 2.D) centered at position v from both MRI and low-dose
PET images (low-dose PET 1 and low-dose PET 2) for
serving as the input. The voxel intensity yi(i = 1,. . .,N) of the
corresponding standard-dose PET image at position v is taken
as the regression target/response.

Next, each binary decision tree in a regression forest
is trained independently by splitting the training voxels at

each split node based on their features and then passing
the voxels to either the left or right child node for further
splitting. Specifically, for each voxel point ν, a binary decision
is performed: g(f | j,θ)= π j(f) ≤ θ, where π j(f) indicates the
response of the jth feature in the input feature vector f, and θ
is a threshold. According to the result of the decision function,
the training voxel ν will be dispatched to either its left or right
child node. The purpose of training is to learn the optimal
combination of j and θ for each split node by maximizing the
average variance decrease in each dimension of the regression
response after splitting. Finally, the optimal combination of j
and θ is stored at the node for testing. The training of a binary
decision tree starts with finding the optimal combination at
the root node, and recursively proceeds to child nodes until
either the maximum tree depth is reached or the number
of training samples is too small to split. Finally, the leaf
node stores the average regression target/response of training
samples falling into this node. The final prediction of a random
forest is the average over the predictions of all its individual
trees.

2.C.2. Incremental refinement by estimating
image difference

The initially predicted standard-dose PET image using
regression forest in the first step should appear to be very
similar to the target standard-dose PET image (ground truth).
However, due to the existence of fundamental differences
among the MRI, the low-dose PET, and the target standard-
dose PET, especially the difference between the MRI and the
target standard-dose PET, it is difficult to capture the true
relationship between the MRI and the target standard-dose
PET and also between the low-dose PETs and the target
standard-dose PET. Therefore, the inevitable discrepancies
between the predicted standard-dose PET and the ground
truth may still exist after the initial predicting.
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To solve the above problem, motivated by the success of
ensemble models,39–43 we propose an incremental refinement
scheme to iteratively improve the quality of the predicted
standard-dose PET image. To accomplish this, we learn a
sequence of tissue-specific regression forests for gradually
minimizing the image difference between the predicted and
the target standard-dose PET images during the training stage.
In particular, the tissue-specific regression forests at iteration
m aim to estimate the image difference between the predicted
standard-dose PET image by the previous m−1 iterations
and the target standard-dose PET image. Specifically, similar
to training tissue-specific regression forests (as described in
Sec. 2.C.1) for predicting initial standard-dose PET image,
we will first randomly sample a set of training samples/points�(fi,ydiff

i )|i = 1,. . .,N
	

within each tissue region for each
training subject, where fi (i = 1,. . .,N) is the features extracted
from MRI and low-dose PETs, and the ydiff

i (i = 1,. . .,N) is the
regression target/response which is the real difference between
the ground truth and the standard-dose PET image predicted
in the previous step. Next, the training of each decision tree in
the regression forest is similar to the training procedure of the
first iteration described in Sec. 2.C.1. The only difference is
that during forest training of the refinement step, the response
is not the voxel intensity yi(i = 1,. . .,N) of the ground truth,
but the real difference ydiff

i (i = 1,. . .,N) computed between the
ground truth and the previous predicted standard-dose PET
image. In this way, we can learn a sequence of tissue-specific
regression forests during the training stage, which will be
in charge of estimating the image differences within their
respective tissue region.

F. 3. 3D Haar-like feature templates. Orange and green blocks indicate
positive and negative blocks in Haar-like features.

During testing/application stage, given a new subject with
MRI and low-dose PET images, the learned tissue-specific
regression forests [Modelm(m= 1,2,. . .,M) as shown in Fig. 2]
can be applied simultaneously to obtain a final predicted
standard-dose PET image. Specifically, in the first iteration,
only the technique described in Sec. 2.C.1 is adopted to
predict an initial standard-dose PET image. Starting from

F. 4. Influence of parameter values on prediction performance.
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the second iteration, the procedures of prediction work as
follows: (1) for each voxel in the new subject, extract the
patch-based appearance features fnew from both low-dose
PET and MRI images; (2) based on the segmented tissue
labels, simultaneously apply the corresponding constructed
tissue-specific regression forests [Modelm(m = 2,. . .,M)] on
fnew to get the difference estimations; (3) add all the estimated
image differences onto the initially predicted standard-dose
PET to obtain the final prediction.

2.D. Appearance features

The appearance features capture the local information
around each voxel in the image. Haar features44 have been
found effective in a wide range of applications and can
be calculated efficiently at different scales by using integral
images. In this paper, the appearance features we used include
voxel intensities and 3D Haar-like features45 as shown in
Fig. 3. For each training voxel, we compute the 3D Haar-

    
 

    
 

F. 5. Prediction results on two different subjects using our proposed method (RF).
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like features at specific locations in a detection window by
summing up the voxel intensities within green and orange
cuboids, respectively, and then computing the difference
between them. Finally, all these calculated features, together
with voxel intensities, are concatenated to form a feature
representation for the voxel.

3. EXPERIMENTS AND RESULTS

In this section, we will evaluate the performance of
our proposed approach using a dataset consisting of 11
subjects. Leave-one-out cross-validation (LOOCV), which
has been adopted in numerous papers,46–48 will be used for
evaluating the performance of our approach. The dataset and
preprocessing steps were described in detail in Sec. 2.A. The
selection of parameter values is based on the cross-validation
mentioned in Sec. 3.B.

3.A. Quantitative metrics for validating
the predicted results

In order to quantitatively validate the performance of our
proposed approach, we employ the commonly used metric,
i.e., the mean standardized uptake value [SUV(mean)] within
the region of interests (ROIs), to evaluate brain [18F]FDG
PET activity. The SUV was calculated by normalizing the
radioactive concentration to the injected dose corrected for
patient weight,49

SUV= activity concentration/[injected dose/patient weight].
(1)

In our study, we selected eight ROIs and then computed
the mean and standard deviation of SUVs in each region
for each subject, and compared those values between the
predicted standard-dose PET and the ground truth. The better
prediction result is indicated by the smaller mean SUV
difference [SUV(mean)_Diff] between the prediction result
and the ground truth. The selected ROIs are the left frontal,
right frontal, left parietal, right parietal, left temporal, right
temporal, left occipital, and right occipital, respectively.

3.B. Influence of the parameters

In our proposed method, the parameter settings (i.e., the
number of trees, maximal depth of trees, minimal number
of samples at leaf node, and patch size) were determined
via leave-one-out cross-validation on all training data. In the
process of optimizing parameters, other parameters were set
to their fixed values while optimizing a certain parameter. For
instance, as shown in Fig. 4(a), we first study the influence
of the number of trees on the prediction performance. We
set the maximal depth of trees to 15, the minimal number
of samples at leaf node to 5, and the patch size to 9×9×9,
respectively. As shown in Fig. 4(a), we can see that “15” (15
trees) generate the best performance [i.e., with the smallest
SUV(mean)_Diff] in our study.

The techniques for optimizing other parameters are similar
to those for optimizing the number of trees. Figure 4(b) shows

the influence of the maximal tree depth on prediction results.
In our study, we note that the performance is significantly
improved from depth of 5 to 15, slightly improved from depth
of 15 to 25, and stably kept while the depth of trees is beyond
20. Figure 4(c) shows the influence of the minimal number of
samples at the leaf node. We can see that the best performance
is obtained when the minimal number of samples at leaf node
equals to 2. Figure 4(d) shows the influence of patch size on
the prediction performance. As we observed, increasing the
patch size gradually improves the prediction performance. In
addition, we also note that the prediction performance will
not be significantly improved, when the patch size is beyond
11×11×11. Hence, in this paper, we select the patch size
as 11×11×11, which is suitable for estimating reasonable
predictions.

Finally, in this paper, we choose the following parameters
in all experiments—the number of trees: 15; the depth of
trees: 20; the minimal number of samples at leaf node: 2; the
patch size: 11×11×11.

3.C. Predicted results with visual
and statistical analysis

In this subsection, we will visually and statistically
demonstrate the prediction results using our proposed method,
i.e., multisource (low-dose PET 1, low-dose PET 2, and MRI)
integrated, tissue-specific, two-step (initial prediction and
incremental refinement) models.

Figure 5 shows the qualitative prediction results on two
different subjects using our proposed method. Here, for
simplicity, we denote our proposed method as RF.

From Fig. 5, we can see that, compared to two low-dose
PETs, the image qualities of the predicted standard-dose brain
[18F]FDG PETs were substantially improved. Additionally,
we also note that, both for the subject with normal uptake and
for the subject with MCI, the predicted standard-dose PET
images look very similar in appearance with the corresponding
ground truth (i.e., the original standard-dose brain PET). All
these indicate that our proposed method achieves desirable
predictions.

In order to quantitatively compare the brain [18F]FDG
PET activity between the predicted standard-dose PET and
the ground truth, Table I tabulates the results in terms of
SUV(mean) and its corresponding standard deviation within
the selected ROIs.

T I. Mean SUV within each of the eight ROIs.

Prediction result Ground truth SUV difference

ROI 1 5.72 ± 1.51 5.74 ± 1.67 0.02
ROI 2 5.80 ± 1.53 5.81 ± 1.77 0.01
ROI 3 5.91 ± 1.73 5.96 ± 1.89 0.04
ROI 4 5.90 ± 1.78 5.94 ± 1.99 0.04
ROI 5 6.31 ± 2.01 6.35 ± 2.17 0.03
ROI 6 6.23 ± 2.01 6.26 ± 2.20 0.02
ROI 7 6.84 ± 2.03 6.87 ± 2.17 0.03
ROI 8 6.99 ± 2.06 7.04 ± 2.22 0.05

Average 6.21 ± 1.83 6.25 ± 2.01 0.03
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T II. CV within each of the eight ROIs.

Low-dose
PET 1

Low-dose
PET 2

Prediction
result

Ground
truth

ROI 1 0.47 0.48 0.43 0.38
ROI 2 0.43 0.44 0.39 0.35
ROI 3 0.44 0.45 0.40 0.35
ROI 4 0.42 0.43 0.38 0.34
ROI 5 0.34 0.34 0.29 0.28
ROI 6 0.33 0.33 0.28 0.27
ROI 7 0.32 0.31 0.25 0.27
ROI 8 0.29 0.29 0.22 0.25

Average 0.38 0.38 0.33 0.31

Note that the value for each ROI in Table I is calculated
by averaging the values within the same ROIs from the 11
subjects.

From Table I, we can see that the predicted standard-dose
PETs are close to the corresponding ground truths in terms
of SUV(mean). It is clear that our method gives an unbiased
estimate of the standard-dose image.

Moreover, in order to demonstrate the quality improvement
of predicted standard-dose brain [18F]FDG PET image over
the original low-dose brain [18F]FDG PET image, Table II
tabulates a statistical comparison in terms of the coefficient
of variation (CV, a kind of a noise-to-signal ratio) within ROI
among the original low-dose PET 1 and low-dose PET 2,
the prediction result, and the ground-truth, respectively. The
CV is defined as CV= standard deviation/mean. The smaller
value of CV means the better performance.

From Table II, it can be seen that the CV is higher
for the low-dose PET images, but the CV of the predicted
standard-dose PET images is close to that of the ground truth
images. Hence, compared with the image quality of low-dose
brain [18F]FDG PETs, the quality of predicted standard-dose
brain [18F]FDG PET using our proposed method is much
better. Furthermore, based on the results listed in Table II,
we performed the null hypothesis tests to demonstrate the
statistical significance of the improvement. The calculated
P-value between the low-dose PET 1 and the predicted
standard-dose PET, the low-dose PET 2 and the predicted
standard-dose PET, is well below 0.05.

Note that the value for each ROI in Table II is calculated
by averaging the values within the same ROIs from the 11
subjects.

4. DISCUSSION AND CONCLUSION

In this paper, we propose a regression forest-based frame-
work for generating standard-dose brain [18F]FDG PET im-
ages. Different from traditional techniques for acquiring the
standard-dose brain [18F]FDG PET, the proposed method uti-
lizes low-dose brain [18F]FDG PETs, combined with MRI
image, to predict standard-dose brain [18F]FDG PET, thus
relatively reducing the radionuclide dose. Specifically, tissue-
specific models are built to separately predict standard-dose

brain [18F]FDG PET in each brain tissue. In addition, an incre-
mental refinement strategy is also employed for estimating the
image difference. Experimental results show that our proposed
method substantially improved the quality of low-dose brain
[18F]FDG PETs and is able to achieve very promising predic-
tions for standard-dose brain [18F]FDG PET. To the best of our
knowledge, this is the first time, in the literature, showing that
the standard-dose brain [18F]FDG PET can be well-predicted
using MRI and low-dose brain [18F]FDG PET.

Although our proposed method demonstrates good perfor-
mance from cross-validations, several limitations should be
indicated for the present study. First, we currently perform
only a voxelwise prediction for estimating standard-dose brain
[18F]FDG PET, i.e., each voxel’s intensity in standard-dose
brain [18F]FDG PET is predicted independently. Thus, the
proposed method may overlook the intrinsic relationship
between the central voxel and its neighboring voxels in a
patch. In our future work, we plan to extend our work in a
patchwise fashion. Second, we use a dataset consisting of 11
subjects to evaluate the performance of our proposed method.
The number of subjects is limited, but we are currently
collecting more subjects, which will be used to further test the
generality of our proposed method. Also, while our population
included one case of abnormal uptake and three MCI subjects,
it certainly does not adequately represent the range of possible
uptake states. Third, our current method mainly focuses on the
brain, and only uses [18F]FDG to generate PET images. Future
research will apply the same method to other anatomical
targets as well as to the PET images generated by other kinds
of tracers. In addition, the proposed method will be extended
to brain perfusion studies as well. Finally, we note that all
conclusions in this work are based on quantitative measures.
They indicate that our method reduces noise while imparting
minimal bias on regional SUV estimates. It is not yet known
how the method performs in a clinical task, so no conclusions
can be drawn about the clinical value of the method. Future
plans include a formal expert-observer study to evaluate the
method in a clinical task.
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