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Purpose: 4D-CT typically delivers more accurate information about anatomical structures in the
lung, over 3D-CT, due to its ability to capture visual information of the lung motion across different
respiratory phases. This helps to better determine the dose during radiation therapy for lung cancer.
However, a critical concern with 4D-CT that substantially compromises this advantage is the low
superior-inferior resolution due to less number of acquired slices, in order to control the CT radiation
dose. To address this limitation, the authors propose an approach to reconstruct missing intermediate
slices, so as to improve the superior-inferior resolution.
Methods: In this method the authors exploit the observation that sampling information across respi-
ratory phases in 4D-CT can be complimentary due to lung motion. The authors’ approach uses this
locally complimentary information across phases in a patch-based sparse-representation framework.
Moreover, unlike some recent approaches that treat local patches independently, the authors’ approach
employs the group-sparsity framework that imposes neighborhood and similarity constraints between
patches. This helps in mitigating the trade-off between noise robustness and structure preservation,
which is an important consideration in resolution enhancement. The authors discuss the regularizing
ability of group-sparsity, which helps in reducing the effect of noise and enables better structural
localization and enhancement.
Results: The authors perform extensive experiments on the publicly available DIR-Lab Lung 4D-
CT dataset [R. Castillo, E. Castillo, R. Guerra, V. Johnson, T. McPhail, A. Garg, and T. Guerrero,
“A framework for evaluation of deformable image registration spatial accuracy using large land-
mark point sets,” Phys. Med. Biol. 54, 1849–1870 (2009)]. First, the authors carry out empirical
parametric analysis of some important parameters in their approach. The authors then demonstrate,
qualitatively as well as quantitatively, the ability of their approach to achieve more accurate and better
localized results over bicubic interpolation as well as a related state-of-the-art approach. The authors
also show results on some datasets with tumor, to further emphasize the clinical importance of their
method.
Conclusions: The authors have proposed to improve the superior-inferior resolution of 4D-CT
by estimating intermediate slices. The authors’ approach exploits neighboring constraints in the
group-sparsity framework, toward the goal of achieving better localization and noise robust-
ness. The authors’ results are encouraging, and positively demonstrate the role of group-sparsity
for 4D-CT resolution enhancement. © 2013 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4829501]
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1. INTRODUCTION

Lung cancer is a growing concern, being the cause for
majority of cancer-related deaths. Radiation therapy is widely
used as an effective treatment for lung cancer, where x-ray
radiation is used to kill the tumor. In this regard, accurate
localization of tumor and other lung structures is important to
plan the therapy so that the radiation more controls the tumor
and less affects the surrounding lung structures. However,
due to the respiratory lung motion, acquiring such accurate
structural information is difficult in traditional free-breathing
3D-CT which captures a single volume over the complete

respiratory cycle, and hence suffers from motion artifacts due
to the moving structures in the lung.

To address this concern, in recent years, 4D-CT imaging
has been developed which acquires a volume for each respira-
tory phase. This provides more accurate estimate of the lung
motion across respiratory phases of the breathing cycle and
much better localization of the moving structures in the lung.
This, in turn, helps in better planning of the radiation dose by
taking the respiratory motion and structural information into
account.

The growing importance of 4D-CT is also supported
by various recent works on 4D-CT reconstruction.1, 2 Such
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approaches consider the sorting and registration of the dif-
ferent slices in volumes corresponding to different respiratory
phases. Moreover, various clinical works have also been re-
ported, which highlights the use of 4D-CT in planning the ra-
diation therapy.3, 4 Thus, the usefulness of 4D-CT is clearly
being appreciated in the medical imaging and radiological
community.

Having stated the importance of 4D-CT, it must be asserted
that there is an important concern that compromises the ad-
vantages of 4D-CT. In order to control the radiation dose dur-
ing acquisition of 4D-CT imagery, usually a reduced num-
ber of slices are acquired. This reduction in the number of
slices adversely affects the superior-inferior resolution. For
instance, in the publicly available dataset,5 the in-plane res-
olution is of the order of 1 mm but the superior-inferior res-
olution is as low as 2.5 mm. Such a low resolution results
in a low image-quality.6 The low-resolution 4D-CT imagery
suffers from false apparent vessel discontinuities, shape dis-
tortions, etc., which introduce errors in the correct localiza-
tion and shape assessment of tumor and vessel structures.
Thus, the reduction in resolution compromises the full po-
tential of 4D-CT for providing accurate motion and localiza-
tion, and the problem of enhancing resolution of 4D-CT is an
important one and needs to be addressed.

Resolution enhancement in 4D-CT implies estimating the
intermediate slices which were not physically acquired. A
common approach to approximate such a reconstruction is
by using off-the-shelf interpolation approaches. Specifically,
classic interpolation methods use a small set of immediately
neighboring slices from the same volume in which the inter-
mediate slices are to be reconstructed. However, as depicted
in Fig. 1 for two example coronal views, such interpolation
schemes also yield the above mentioned errors and artifacts,
(such as inaccurate, jagged, and discontinuous vessels struc-
tures) and clearly do not serve the purpose of enhancing the
resolution.

Indeed, more sophisticated approach for resolution
enhancement, often known as super-resolution (SR) methods,
look for the lost sampling information in different instances of
data.7 In a similar spirit, we exploit the observation that due to
lung motion, slices at the similar positions would often sam-
ple different content of lung in different respiratory phases.

FIG. 1. (a,b) Two examples from the coronal view of 4D-CT where the inter-
mediate axial slices are constructed using conventional bicubic-interpolation.
The image artifacts (zigzags) and the motion artifacts (discontinuous vessels),
due to inaccurately estimated axial slices, are obvious.

Thus, the sampling information can be complementary across
respiratory phases. Hence, information lost in some respira-
tory phase can be found in others, which, in turn, can be used
to estimate the unknown intermediate slices.

Since the lung motion is deformable, such a search for
interphase information would be more useful if made lo-
cally, i.e., one must look for local patches across phases
to reconstruct the intermediate slice in certain phase. More-
over, as there can be numerous possible selections of candi-
date patches that can agree toward the required reconstruc-
tion, it is advisable to select only a few patches that best
agree with some reconstruction criteria (e.g., some similarity
cost). Another important consideration, especially for resolu-
tion enhancement, is that of reducing the effect of noise while
still preserving the high frequency structures;8 a challeng-
ing task as it involves a trade-off as noise is also typically a
high-frequency phenomenon.

From a clinical point-of-view, enhancing the accuracy and
localization of anatomical structures is important for a radi-
ologist to correctly assess the shape and extent of tumor and
nearby anatomical structures. At the same time, it is also cru-
cial that the effect of noise and presence of artifacts is min-
imized in the reconstructed slices. Hence, the practical im-
portance of mitigating the “noise-structure trade-off” can be
clearly appreciated.

These considerations lead us to employ a patch-based
group-sparse representation framework for the task of res-
olution enhancement. More specifically, we reconstruct the
intermediate slices patchwise, where for each patch we re-
construct multiple dictionaries, each containing patches from
local neighborhoods from the observed slices across phases
which potentially contain the required sampling informa-
tion. The construction of these neighborhood dictionaries is
an important step which supports the following process of
group-sparse representation. The sparsity part encourages the
selection of few patches out of the dictionary that best satis-
fies some criterion. The grouping part, which uses the multi-
ple neighborhood dictionaries, constrains the sparsity in such
a manner so as to induce smoothness during selection of
patches that help mitigate the effect of noise.

1.A. Relation to previous work

As mentioned above, the philosophy of using of interphase
information for resolution enhancement, as a result of the
lung-motion, is on similar lines as that in super-resolution ap-
proaches in computer vision,7 which also search for lost sam-
pling information across different sources or instances of data.
Typically, super-resolution methods fall into one of two cate-
gories. The motion-based super-resolution methods use multi-
ple observations with sub-pixel relative motion,7, 9 where the
high-resolution (HR) information is embedded in the obser-
vations due to the subpixel shifts. They then use the regis-
tration information to integrate information from such shifted
images to yield an high-resolution image. On the other hand,
learning-based or example-based super-resolution methods
use a large dictionary typically containing thousands of local
high and low resolution patch pairs from a separate off-line
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high-resolution image dataset.10, 11 The HR patches which are
paired with those LR patches from the dictionary, that match
the local LR patches in the observation, are used to recon-
struct the HR image. Indeed, some of the more successful
learning-based methods also employ a sparse-representation
framework for estimating the HR image.10 Such motion-
based and learning-based frameworks have also been
employed for super-resolution in the medical image domains,
especially for MR images.12, 13

However, looking more closely, the 4D-CT resolution
enhancement problem that we consider is quite distinct from
the above discussed SR approaches in terms of data usage and
availability. This is because, unlike motion-based methods, it
is difficult to rely on accurate registration in 4D-CT because
of the poor superior-inferior resolution.14, 15 Also, unlike the
learning-based approaches, the availability of large off-line
HR datasets for 4D-CT which are used for constructing dictio-
naries is infeasible. Hence, such traditional perspectives may
not be directly applicable for 4D-CT resolution enhancement.
Indeed, our approach can be viewed as the one which integrat-
ing ideas from both domains, i.e., in case of 4D-CT resolution
enhancement the unique sampling information is induced by
motion but is used in a learning-based framework.

Another important difference between the traditional
super-resolution methods and the approach that we propose
in this work is in the manner of incorporating smoothness
constraints. In addition to considering similarity of local in-
formation from different sources with the observations, most
super-resolution approaches follow different regularization
strategies to induce smoothness for noise robustness. Global
regularization frameworks such as Tikhonov prior,16 total
variation,17 Markov random fields,11 etc. are common to both
motion-based and learning-based approaches. On the other
hand, our approach is essentially local, based on a patchwise
reconstruction, and also seeks the advantage of the sparsity
framework, where, however, it is not straightforward to in-
clude smoothness terms among neighboring patches. Hence
to incorporate smoothness, as we will discuss, we harness
the regularizing potential of group-sparsity that constrains
the sparse representation for spatially neighboring and sim-
ilar patches. This also allows to retain the successful sparse-
representation framework while also providing a smoothness
ability.

To our knowledge, an application of group-sparsity toward
inducing smoothness is only reported in Refs. 18 and 19.
The work reported in Refs. 18 and 19 use group-sparsity for
image denoising and super-resolution, respectively. However,
the dictionary consideration for group-sparsity in these works
is very different from ours. Nevertheless, these works also
support the role of group-sparsity for regularization, which
we harness for our case of 4D-CT resolution enhancement.

Indeed, the problem of resolution enhancement for 4D-CT
is itself a very recent exploration with only a couple of re-
ported works.15, 20 Both these approaches also follow a in-
terphase patch-based reconstruction of intermediate slices,
similar to ours. In fact, our approach is closely related to
that in Ref. 15, which is also based on sparse representa-
tion. However, the method in Ref. 15 does not employ any

neighborhood or similarity constraints between neighboring
patches, which essentially renders it devoid of regularization
of smoothness capabilities. Perhaps, this necessitates the use
of relatively large scale of patches for better performance, so
as to resist the effect of noise and other artifacts. However, a
large scale results in over-smoothing, due to greater averaging
of voxels. On the other hand, a smaller scale to improve lo-
calization could result in an error-prone noisy reconstruction.

In this regard, our approach which is established within
a group-sparsity framework involves neighborhood patches
to induce smoothness constraints and better noise robustness.
This enables us to constructively use a smaller patch scale (as
usually advocated in learning-based methods10, 11) that helps
in enhancing local structures without compromising image
quality (e.g., in terms of error metrics). This helps us in miti-
gating the noise-structure trade-off.

Thus, the contributions of this work over the above
discussed related works are that (1) it further advances the
recent and clinically important area of 4D-CT resolution en-
hancement, via an approach that is inspired by traditional
super-resolution methods, but is established within a differ-
ent framework than such methods. (2) It explores the role of
group-sparsity in image reconstruction, which is also little re-
ported, and which could be adapted to other image analysis
areas. (3) Unlike the existing work on 4D-CT resolution en-
hancement, our work exploits neighborhood constraints us-
ing a novel construction of dictionaries, and uses these in the
group-sparse framework for better structural localization.

The paper is organized as follows: In Sec. 2 we provide
a discussion on group-sparsity and an indication of how we
employ it. Section 3 elaborates our overall methodology.
We discuss our experiments and provide qualitative and
quantitative results in Sec. 4 and conclude in Sec. 5.

2. GROUP-SPARSITY FOR REGULARIZATION

Before venturing into the elaboration of our approach, we
first discuss about group-sparsity and its role in regulariza-
tion/smoothness. As, to our knowledge, this is one of the early
works that exploits group-sparsity for incorporating smooth-
ness in image reconstruction,18, 19 the aim of such a discus-
sion is to indicate the rationale behind some important aspects
of our approach such as the use of neighboring patches and
dictionary construction.

The traditional framework of sparse representation treats a
relatively large set of patches (known as dictionary), as a basis
to reconstruct other patches, which presumably lie in the same
space as the dictionary patches. The premise for sparse rep-
resentation is that if the dictionary is representative enough,
then ideally any patch can be expressed as a linear combina-
tion of few of the patches in the dictionary. Hence, the sparse-
representation problem is that of estimating which dictio-
nary patches are used in such a linear combination, and their
corresponding weights.

Formally, a sparse representation problem can be defined
as10

α̂ = arg min
α

||y − Dα||22 + λ||α||1, (1)
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where y denotes a M1-dimensional observation vector, and D
is the M1 × M2 dictionary matrix (columns corresponding to
M2 different atoms). The M2-dimensional coefficient vector
α describes the linear combination of atoms in D that best
matches y. The l1-norm ||α||1 enforces sparsity on the com-
ponents of α, so that only few dictionary atoms are selected.
For patch-based image reconstruction, the output patch is re-
constructed as a linear combination of the dictionary patches
corresponding to non-zero estimated coefficients, where the
coefficients serve as the weights in the linear combination.

While the sparsity constraint is effective for many
problems, in many applications, multiple factors (also re-
ferred to as “tasks”) can be related to the estimation prob-
lem. In such cases, the notion of group-sparsity21 is quite
useful to consider these tasks in a single framework. Thus,
group-sparse representation is essentially an extension to the
sparse representation problem of Eq. (1). More specifically,
the group-sparse problem involving K tasks can be expressed
as

Â = arg min
αl

K∑

l=1

||yl − Dlαl||22 + λ||A||2,1. (2)

Here, yl is the observation and Dl is the dictionary cor-
responding to the lth task. A = [α1, . . . , αl, . . . , αK ] is an
M2 × K matrix whose columns correspond to the coefficient
vectors related to the K different tasks. ||A||2,1 is referred to as
the l2,1-norm over the sparse coefficients and defined as

||A||2,1 =
M2∑

q=1

||aq ||2, (3)

where aq denotes the qth row of A and the l2,1-norm ||A||2,1 is
an l1-norm over the l2-norms of the rows of A.21,22,23

The l2,1-norm ||A||2,1 essentially enforces coefficients
related to different tasks to follow a similar sparsity structure,
i.e., the location of the non-zero elements is same across all
columns of A (although their values may differ). For instance,
as shown in Fig. 2(a), the coefficient vectors for related tasks,
when estimated independently via traditional sparse represen-
tation acting individually on each task, can be quite different
from each other. However, if these tasks are used in a group-
sparse framework, then the estimated coefficient vectors share
common locations of non-zero coefficients [Fig. 2(b)].

The intuitive idea is that, related tasks should share similar
sparsity structure. That is, they should employ correspond-
ingly related dictionary atoms for their description. The no-
tion of relatedness is, however, subjective and would differ
with the problem at hand. Also, the usefulness of constrain-
ing the sparsity structure across dictionaries would also be
realized only if the construction of these dictionaries support
such relatedness.

In this work, we aim to consider group-sparsity in the
context of exploiting its potential for regularization or local
smoothness. We define a neighborhood as a set of overlap-
ping patches around a central patch, and the “task” in our
case involves patches from a particular central position or
its neighboring positions. The multiple dictionaries are con-
structed with patches from selected candidate neighborhoods

(a) (b)

FIG. 2. Depiction of estimated weights across multiple tasks for (a) sparse
representation and (b) group-sparse representation.

from slices across different respiratory phases (elaborated in
Sec. 3). A dictionary corresponding to each observed neigh-
borhood patch contains the corresponding candidate neigh-
borhood patches from the other phases. While constructing
these dictionaries, the selection of candidate neighborhood
patches is also based on some similarity condition (we discuss
these points in more detail in Sec. 3 elaborating our method-
ology). Hence, in our context, relatedness implies spatial
neighborhood and similarity.

When computing a group-sparse representation with dic-
tionaries constructed in such a manner, the selected dictionary
patches (with nonzero coefficients) for reconstructing the
output patch, would be constrained so as to satisfy a greater
closeness with their neighbors. This would, in turn, result in
better smoothness and hence noise robustness. Moreover, the
above mentioned similarity conditions also ensure that the
smoothness does not sacrifice the salient structures. Thus,
group-sparsity plays a regularizing role and helps in mitigat-
ing the noise-structure trade-off. We discuss more details in
subsequent sections where we elaborate our methodology.

3. METHOD

We now formalize our group-sparsity based 4D-CT reso-
lution enhancement approach. Given 4D-CT data I = {Ii(s)|i
= 1, . . . ., P; s = 1, . . . ., S} (with P phases and S slices), we
estimate a slice between Ii(s) and Ii(s + 1) for the ith phase
in a patchwise manner.15 The slices Ii(s) and Ii(s + 1), which
are the upper and lower slices to the slice to be reconstructed.
We use the patches from these slices to form the observation
vectors.

As indicated above, our method involves the central patch
to be reconstructed and its immediate neighbors, where the
dictionaries are constructed for each patch in this group. As
the central patch plays the primary role in reconstruction,
the construction of dictionaries containing the neighboring
patches is based on the dictionary for the central patch. Such a
strategy also has a secondary advantage of reducing the com-
putation since the search for candidate neighborhoods can be
otherwise combinatorial. In addition, we also perform a PCA
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on the dictionary atoms, before computing the group-sparse
representation. This is motivated from the observation that
the top fraction of principal components is typically more ro-
bust to noise,24 which would further help us in mitigating the
noise-structure trade-off.

Our method involves two stages, where the second stage
refines the reconstructed slice [say, IR

i (s + 0.5)] from the first
stage. While the first stage uses Ii(s) and Ii(s + 1) as the ob-
served slices (which are immediately upper and lower to the
slice to be reconstructed), the second stage only uses recon-
structed slice IR(s + 0.5) as the observed slice. For both the
stages, our method consists of (1) dictionary construction for
the central patch, (2) dictionary construction for the neigh-
boring patches, and (3) group-sparse representation. We elab-
orate these parts for both the stages. In what follows, patches
are used as lexicographic vectors and, for ease of notation, we
do not use the subscript denoting the phase in which the slice
is reconstructed.

3.A. Dictionary construction for the central patch

The dictionary construction for the central patch is simi-
lar to that in Ref. 15. We construct a separate dictionary for
each patch yi to be reconstructed. The 2D center patches yU

c

and yL
c in the observed slices (center patches in slice “s” and

“s + 1” in Fig. 3), and their respective x and y gradients
(Fx(yU

c ), Fy(yU
c ), Fx(yL

c ), Fy(yL
c )) are used as observations.

We search for candidate dictionary patches in a 3D region
in all phases other than the current phase, around the same

voxel locations as that of yU
c and yL

c . We select the K best
patches yielding the K lowermost costs defined below. Ob-
serving that yU

c and yL
c may be dissimilar to each other in

many cases (which can result in dictionary patches being bi-
ased toward yU

c or yL
c ), we incorporate a balancing condition

in the overall cost Ed
c as defined below

Ed
c = EU

c + EL
c if 1/ε < EU

c /EL
c < ε,

Ed
c = ∞ otherwise, (4)

where the sub-costs EU
c and EL

c , involving yU
c and yL

c , respec-
tively, are defined as

EU
c = ∥∥yU

c − ypc

∥∥
2 + γ

(∥∥Fx
(
yU

c

) − Fx(ypc
)
∥∥

2

+ ∥∥Fy
(
yU

c

) − Fy(ypc
)
∥∥

2

)
,

EL
c = ∥∥yL

c − ypc

∥∥
2 + γ

(∥∥Fx
(
yL

c

) − Fx(ypc
)
∥∥

2

+ ∥∥Fy
(
yL

c

) − Fy(ypc
)
∥∥

2

)
. (5)

Here, ypc
is a candidate patch from phase p and Fx(ypc

)
and Fy(ypc

) are its gradient features. γ is the weighting of the
gradient feature cost. Thus, only those patches which yield a
low cost and are similar to both yU

c and yL
c are included in the

dictionary.
Note that a similar balancing as in Eq. (4) is used in

Ref. 15. It is incorporated during the sparse learning phase
that is based on a greedy strategy. We follow a nongreedy
optimization for our sparse learning, where such a balancing
term results in nonlinearities. Instead, we incorporate the
balancing during dictionary construction, which reduces the

FIG. 3. Dictionary construction and patch reconstruction: In the above example figure, the patches in phases 2 to P, denote the center and neighboring patch
candidates to be added in their respective dictionaries (also shown in the bottom row). For example, the center patch candidates are added to the first dictionary
in the bottom row and the corresponding top neighbors are added to the last dictionary in the bottom row. The corresponding observed patches are shown in
the observed slices of the reference phase (phase 1, here). The arrows show that the selected center candidate patches with non-zero coefficients are linearly
combined to reconstruct the unknown center patch.
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possibility of imbalanced patches entering the group-sparsity
optimization process.

The second stage also uses similar cost formulations as the
first stage, except that we only use the patches from the recon-
structed slice in the first. The dictionary construction cost for
the central patch, using the patch yR

c in the reconstructed slice,
and its gradients Fx(yR

c ) and Fy(yR
c ), is defined analogous to

Eq. (5) as

Ed
c = ∥∥yR

c − ypc

∥∥
2 + γ

(∥∥Fx
(
yR

c

) − Fx(ypc
)
∥∥

2

+ ∥∥Fy
(
yR

c

) − Fy(ypc
)
∥∥

2

)
. (6)

Note that here we do not require any balancing condition as
we have only one patch as the observation, unlike the two
patches in the first stage.

3.B. Dictionary construction for neighboring patches

Having defined the dictionary (say Dc) for the central
patch, we now define N neighborhood dictionaries D1 to DN

for the N patches neighboring to the central patch. To con-
struct these dictionaries, we use as observations, the patches
yU

1 , . . . , yU
N and yL

1 , . . . , yL
N , which are neighboring to the

central patch yU
c and yL

c , respectively (the top, left, right, and
bottom patches in the observed slices of the reference phase 1
in Fig. 3), and their corresponding gradients.

The construction of neighborhood dictionaries proceeds as
follows: (a) To incorporate neighborhood constraints, patches
in D1, . . . , DN are selected such that their spatial relationship
with those in Dc is consistent with that of yU

1 , . . . , yU
N to yU

c

(and yL
1 , . . . , yL

N to yL
c ). For instance, if yU

1 is left adjacent to
yU

c , then the patches in D1 should also be left adjacent to those
in Dc (as also shown in Fig. 3 and explained in its caption).
This ensures that only neighboring candidate patches from
the other phases would be employed in the reconstruction of
corresponding neighboring output patches. (b) Furthermore,
to induce a constructive smoothness among neighboring
patches, the candidate neighborhoods that should contribute
to the dictionaries should satisfy certain similarity conditions,
so as to avoid the inclusion of unsuitable neighborhood
patches in the dictionaries. Only those neighborhood patches
are selected which satisfy a soft-similarity (as defined below)
with the center patch.

The similarity with the observed patches yU
1 , . . . , yU

N and
yL

1 , . . . , yL
N is defined similarly as that for the center patch

[Eqs. (4) and (5)], except using the observed neighboring
patches yU

n and yL
n (n = 1. . . N), and candidate neighboring

patches ypn
from another phase. This cost is expressed as

Ed
n = EU

n + EL
n if 1/ε < EU

n /EL
n < ε,

Ed
n = ∞ otherwise (7)

where

EU
n = ∥∥yU

n − ypn

∥∥2
2 + γ

(∥∥Fx
(
yU

n

) − Fx(ypn
)
∥∥

2

+ ∥∥Fy
(
yU

n

) − Fy(ypn
)
∥∥

2

)
,

EL
n = ∥∥yL

n − ypn

∥∥2
2 + γ

(∥∥Fx
(
yL

n

) − Fx(ypn
)
∥∥

2

+ ∥∥Fy
(
yL

n

) − Fy(ypn
)
∥∥

2

)
. (8)

The above mentioned soft-similarity condition for the can-
didate patch ypn

to be included in the dictionary Dn is defined
as

ypn
∈ Dn if Ed

n < κEd
c , (9)

where κ sets a threshold on the range of costs for the neighbor-
ing patches. Note that such similarity condition plays a simi-
lar (rather, a softer) role as neighborhood similarity,11 which
typically advocates that neighbors tend to be similar in ap-
pearance. Hence, it is fair to assume that neighboring patches
typically tend to have similar respective costs. Essentially, the
condition in Eq. (9) helps in excluding those dissimilar neigh-
boring patches, which may not be suitable in group-sparse
representation in order to induce a constructive smoothness.

Again, as in the above case, the neighborhood dictionaries
in the second stage are also constructed similarly, except with
yR

1 , . . . , yR
N which are the patches neighboring to yR

c , in the
reconstructed slice from the first stage.

Ed
n = ∥∥yR

n − ypn

∥∥2
2 + γ

(∥∥Fx
(
yR

n

) − Fx(ypn
)
∥∥

2

+ ∥∥Fy
(
yR

n

) − Fy(ypn
)
∥∥

2

)
, (10)

where n = 1. . . N. The soft-similarity condition with respect to
the central patch is also considered similar to Eq. (9), except
with Ed

n and Ed
c as defined in Eqs. (6) and (10).

In addition, in both the stages, for every patch, we keep
the number of atoms in all dictionaries (including Dc) equal.
Hence, if the above condition is not satisfied by all the
neighboring patches, we do not include the corresponding
patch in any dictionary, i.e., the group-structure uses only
those patches which satisfy both spatial and appearance based
similarity.

3.C. Group-sparse coefficient estimation
and patch reconstruction

Having formed the central and neighborhood dictionar-
ies corresponding to a patch to be reconstructed, we solve
for sparse coefficients in the l2,1 group-sparse representation
framework using these dictionaries and corresponding ob-
servation patches (from the observed slices). We then use
these estimated sparse coefficients to reconstruct the patch in
question.

The observation vector ỹk consists of raw in-
tensity as well as gradient features of the ob-
served patch. These are concatenated as ỹk = [(yU

k )T

(γ Fx(yU
k ))T (γ Fy(yU

k ))T (yL
k )T (γ Fx(yL

k ))T (γ Fy(yL
k ))T ]T in

the first stage, and as ỹk = [(yR
k )T (γ Fx(yR

k ))T (γ Fy(yR
k ))T ]T

in the second stage. To maintain dimensional consis-
tency with ỹk , the atoms in the dictionary are defined as
[(ỹpk

)T (ỹpk
)T ]T in the first stage and [(ỹpk

)] in the second,
where ỹpk

= [(ypk
)T (γ Fx(ypk

))T (γ Fy(ypk
))T ]T .

Instead of using the observation vectors and dictionary
directly, we project these onto a PCA-space computed using
the dictionary atoms. While PCA provides dimensionality re-
duction, our primary motivation of using PCA is to achieve
further noise robustness. This is because of the observation
that the top-most principal components are typically resis-
tance to noise, which is a high-frequency phenomenon and
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manifests itself in the lower Eigen-vector space.24 Such dic-
tionaries projected in the PCA-space, would ideally provide
relatively less noisy data to the group-sparse representation
problem. This would in turn help in a more faithful coeffi-
cient computation. As we demonstrate, while group-sparsity
does play a role in mitigating the noise-structure trade-off,
using PCA further supports this objective.

Denoting a neighborhood dictionary Dk (k ∈ {{1, . . . , N},
c}), of size M1 × M2, where M1 is the dimensionality of fea-
ture vectors and M2 is the number of atoms in the dictio-
nary, we compute a M1 × M1 covariance matrix using the
mean-subtracted Dk, and subsequently the M1 eigenvectors.
Of these, we choose a small subset of the eigenvectors cor-
responding to the top-most eigenvalues. Forming a matrix V

with the eigenvectors as its columns, we project the dictionary
Dk and the observation vector ỹk onto this PCA-space,

Dke
= V T Dkμ

,

ỹke
= V T ỹkμ

, (11)

where Dkμ
and ỹkμ

are the mean-subtracted dictionary and ob-
servation vector, respectively. Dke

and ỹke
are the correspond-

ing projected dictionary and observation vector, which have
a much lesser dimensionality depending on the number of
selected eigenvectors. These are chosen so that they contain
around 90% of the energy computed using the eigenvalues.

We employ Dke
and ỹke

for our group-sparse representation
as

Â = arg min
αk

∑

k∈{{1,...,N},c}
||ỹke

− Dke
αk||22 + λ||A||2,1. (12)

The above function is optimized via a convex optimization
approach proposed in Ref. 21. Once the coefficient matrix Â

is computed, the central patch is reconstructed using the origi-
nal (preprojected) central dictionary (since the reconstruction
needs to be in the original space) as

ỹO
c = Dcα̂c, (13)

where ỹO
c is the reconstructed output vector. α̂c is the esti-

mated coefficient vector (normalized to 1) corresponding to
the center patch. The top fraction of ỹO

c (that contains raw in-
tensities) is reshaped and placed into the unknown slice, with
overlapping values properly averaged.

Note that although the reconstruction only uses coeffi-
cients corresponding to the central patch, the group-sparsity
regularization has already acted in estimating these coeffi-
cients. The estimated coefficients are constrained so as to
select those dictionary patches which agree most with their
neighbors and better support controlled smoothness and noise
reduction.

3.D. Concerning the two-stage strategy

The need for the two-stage strategy arises from the fact that
we focus on better structural correctness rather than localiza-
tion in the first stage. In this regard, we employ a larger scale
of patches, inspired by Zhang et al.,15 which yields struc-
turally more correct results. However, this yields a lack in

localization due to smoothing induced by the choice of the
larger scale. To minimize further smoothing due to patch av-
eraging during reconstruction, we keep high sparsity in the
first stage so that only a few patches (∼10–20) take part in the
reconstruction.

The second stage, which operates at a smaller scale,
improves the localization over the reconstruction in the first
stage. The structural correctness is not hampered since at this
stage the reconstructed slice from the first stage serves as the
observation. Here, we also relax the sparsity, so that a good
number of patches are used in the reconstruction, and exploit
group-sparsity in a better way. This indicates that the group-
sparsity method works better given a structurally “good”
estimate from the first stage.

Note that the approach of Zhang et al.15 also uses a
hierarchical method that reduces scale over iterations. How-
ever, in that approach, the outputs at the end of iterations are
averaged in a weighted fashion, with a large weight assigned
to the output at the largest scale (viz. that used in the first
stage). In absence of such an averaging, the effect of noise and
artifacts increases as the scale is reduced. On the other hand,
our second stage operates strictly at a lower scale. This results
in better structural localization, while still maintaining robust-
ness to noise and artifacts due to the use of group-sparsity
regularization, as we would observe in the experimental re-
sults. The pseudo-code of our overall approach is provided in
Algorithm 1.

4. EXPERIMENTAL RESULTS

We now provide some results for our proposed method.
Our experiments involve the publicly available DIR-Lab lung
data,5 containing ten cases, each with ten respiratory phases.
The in-plane resolution for each slice is 1 mm and the
superior-inferior resolution is 2.5 mm. We further subsample
this data by removing alternate slices, so that we can compare
our estimated intermediate slice with the true slice. We pro-
vide qualitative as well as quantitative results. We also com-
pare with bicubic interpolation and the method in Ref. 15. The
comparison with the latter is due to the observation that our
approach can be considered as an extension to that in Ref. 15,
as mentioned earlier.

The quantitative metrics that we compute are root-mean-
square (RMS) and structural similarity (SSIM).25 The latter
gives an indication of structural improvement and localiza-
tion, and agrees with qualitative human perception.25 For sake
of clarity, we state that RMS reduces and SSIM increases with
the improvement in the results. Also, the SSIM metric ranges
between 0 and 1.

The metrics are computed over the lung field mask. An
example is as shown in Fig. 4(c), for the lung image, Fig. 4(b).
Moreover, as our work focuses on resolution enhancement,
we select a range of slices which show good amount of vessel
structures. These slices are typically the 30–40 axial slices
around the interior of the lung. Thus, after subsampling, for
each case (with ten phases), the number of slices range from
130 to 200. Totally, we have over 1700 slices for validation
over all ten cases.
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ALGORITHM I. Proposed approach for reconstructing intermediate axial
slices in 4D-CT.

Given: 4D-CT data I = {Ii(s)|i = 1, . . . ., P; s = 1, . . . ., S}
Output: slice IO

i (s + 0.5)

Stage 1:
for Loop over voxel locations (x, y) in certain steps

Patches yU
c and yL

c at (x, y) in slices Ii(s) and Ii(s + 1).

Select overlapping neighboring patches yU
n and yL

n to the patch at (x, y)
in slices Ii(s) and Ii(s + 1).

Construct Dc with candidate patches ypc across phases selected via
Eqs. (4) and (5).

Construct Dn with patches neighboring to selected ypn if they satisfy
Eq. (9), and remove patches from Dc corresponding to those ypn which
do not satisfy the condition.

Compute a PCA on the dictionaries to yield new projected dictionaries
Dke and observation vectors ỹke

Estimate the group-sparse coefficients with via Eq. (12).

Reconstruct the patch ỹO
c

Add the intensity values from ỹO
c to reconstructed slice IR

i (s + 0.5) at
(x, y) with proper averaging

end for

Proceed to stage 2 with the reconstructed slice IR
i (s + 0.5)

Stage 2:
for Loop over voxel locations (x, y) in certain steps

Patch yR
c at (x, y) in the estimated slice IR

i (s + 0.5) at a smaller scale.

Repeat steps 2 to 6 as in Stage 1, using patch yR
c

Add the intensity values from ỹO
c to reconstructed slice IO

i (s + 0.5) at
(x, y) with proper averaging

end for

Also, the quantitative metrics are computed in regions
around vessel structures. The structures are extracted using
the method in Ref. 26. Moreover, to account for false posi-
tives as well as false negatives in computing the quantitative
metrics, we extract the vessel regions for both the ground-
truth slice and the estimated slice and compute an ORing of
the two. We then dilate this ORed map by a small amount
to consider some pixels around the exact vessel regions. An
example of such a vessel map is shown in Fig. 4(d), com-
puted using the estimated slice and the ground-truth slice in
Figs. 4(a) and 4(b), respectively. We believe that such an error
computation over vessel regions is rather fitting in a work on
super-resolution—an area which primarily focuses on aspects
such as localization and noise robustness.

4.A. Parametric variations

We first show the behavior of our approach with respect
to some important parameters. Some of the parameters in
our method are fixed, inspired by Zhang et al.15 These are
γ = 0.2, ε = 1.1, and the patch size, which is 32 × 32 in the

FIG. 4. (a) Estimated slice, (b) ground-truth slice, (c) lung mask region, and
(d) vessel regions computed using slices shown in (a) and (b).

first stage and 16 × 16 in the second. The value of κ is chosen
so that the number of patches in our dictionary is around 400.
The 3D region to search for 2D patches from other phases is
11 × 11 × 11, and we employ N = 4 neighbors to the center
patch in our group-sparsity formulation. For computing the
sparse coefficients, we use the MALSAR package.27 As sparse
representation is central to our framework, we test the perfor-
mance with respect to the sparsity parameter λ. Moreover, as
mentioned above, since our rationale of using PCA is moti-
vated toward attaining noise resistance, it is also important to
gauge the performance variation with respect to the number
of principal components.

Figure 5 shows the variation of average RMS and SSIM
over all slices with respect to the sparsity parameter λ, for
three examples corresponding to case 1, case 2, and case 5
out of the ten patient cases. The graphs in Fig. 5 is for our
approach when computed with the dictionaries without the
PCA transformation. In this case, λ = 10 000 corresponds to
a sparsity level of about 60% (i.e., about 60% of coefficients
are nonzero). λ = 80 000 corresponds to a sparsity level of
20%–30%. The variation indicates that the overall accuracy is
somewhat less (in terms of RMS and SSIM), when the num-
ber of patches used for reconstruction is large, but improves
with the reduction in the number of patches. This is natu-
ral since a very large number of patches would also include
some outliers and result in oversmoothing. However, it is also
observed that after some point (after λ = 80 000), the per-
formance remains constant or reduces slightly. Although the
sharpness improves, as the number of patches keeps reduc-
ing, some useful interphase structural information is also ex-
cluded at some point. Thus, considering the variation in both
RMS and SSIM in Figs. 5(a) and 5(b), respectively, we infer
that the range for optimal performance could be considered
around λ = 80 000.

In Fig. 6, we show a similar variation with respect to the
sparsity parameter, but this time computed with the dictionary
in the PCA space (which is our complete approach). Here, we
have used the number of eigenvectors to be 200, where the
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FIG. 5. Variation with sparsity parameter λ for the case without PCA. (a) RMS and (b) SSIM.

dimensionality of our complete space is over 700 (which is
the actual dimensionality of the nonprojected features). Note
that in Fig. 6, the value of sparsity parameters is different.
This is because we observe that to achieve the similar sparsity
in the PCA space, the sparsity parameters have a lower value.
Again, we see a similar variation as in Fig. 5, where there is
an improvement followed by saturation/reduction in the per-
formance. However, in general, one can observe an improve-
ment in the PCA-based error metrics than in the previous case
(RMS is lower and SSIM is higher). This further indicates
that the objective of PCA for improvement in noise reduc-
tion, is served. Again, based on the RMS and SSIM graphs,
in this case, we could say that a good range for λ would be
λ = 20 000 to λ = 25 000.

In Fig. 7, we show the performance variation with respect
to the number of principal components at a fixed value of
λ. Given our motivation to employ PCA to exploit its noise
resistance property, we also acknowledge that using fewer
principal components also results in an added risk of com-
promising useful high frequency components. As the number
of principal components increases, the performance can im-
prove due to addition of useful high-frequency components.
However, a further increase after some point can also result in

noisy components affecting the performance negatively. From
the RMS and SSIM variation in Fig. 7, we infer that a good
choice for balance between these trade-offs is using around
200 eigenvectors. Thus, we can still employ a far lesser
dimensionality than that of the complete space, to achieve
a good performance. As we show next our approach also
provides considerable improvements over the state-of-the-art.

4.B. Visual qualitative results and comparisons

Having decided on the parameters as discussed above,
we first demonstrate some qualitative slice reconstructions in
Fig. 8, which shows some example outputs and the corre-
sponding difference maps with the ground-truth slices. The
first to fourth columns (in rows 1, 3, 5), respectively, depict
the slice reconstructions obtained using bicubic interpolation,
the approach in Ref. 15, our output, and ground truth, respec-
tively. The three columns in rows 2, 4, 6 show the difference
maps in the same order.

It can be observed that vessel structures in our outputs are
far better localized and more accurate than those in the in-
terpolated approach and also show an improvement over the
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FIG. 8. Examples for reconstruction of some slices: (a, h, o) Outputs using bicubic interpolation with corresponding difference maps shown in (e, l, s). (b, i, p)
Outputs using the approach in Ref. 15 with corresponding difference maps shown in (f, m, t). (c, j, q) Outputs using the proposed method with corresponding
difference maps shown in (g, n, u). (d, k, r) Ground-truth slices.
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FIG. 9. Close-up views: Each row depicts the close-up views of a region from slices shown in Fig. 8. Columns one to four correspond to the bicubic interpolation,
approach in Ref. 15, proposed approach and ground-truth, respectively.

outputs using the method in Ref. 15. Some of the improve-
ments are marked with red arrows. The overall improvements
can also be made out via the difference maps, where our
approach clearly shows the least differences with the ground-
truth among the three.

To depict the improvements better, we zoom into some
regions of Fig. 8, and show close-up views in Fig. 9. The
rows and columns in Fig. 9 follow the same corresponding
order as in Fig. 8. From these close-up views, one can fur-
ther appreciate the ability of our method in achieving more
plausible and better localized structures. As will be seen from
the quantitative results, in addition to providing such struc-
tural improvements, our approach is also robust to noise and
artifacts, yielding an overall good efficacy.

In addition to demonstrating the visual improvements on
the above examples, we also highlight the improvements for
a clinically more important example, that of involving a tu-
mor. Figure 10 (first, third, and fifth rows) shows examples
on three slices from different phases, where the tumor can
be seen in the upper-left region (marked by a red arrow).
The close-up views focusing on the region around the tu-
mor are shown in second, fourth, and sixth rows. We can see
large errors in the shape of the tumor in the bicubic inter-
polated cases (first column) as compared to the ground-truth
(last column). The approach in Ref. 15 (second column) es-
timates the shape more correctly, but has somewhat blurred
boundaries. Our estimation (third column) does a still better
job and is nearer to the correct shape in the ground-truth. One
can also see some localization improvements in the nearby

structures to the tumor (some of which are also shown by
arrows). Such improvements in defining the tumor and its
nearby structures can help in better planning of the radiation
therapy.

4.C. Quantitative results

Finally, we provide quantitative results averaged over com-
plete sets of data used in our experiments. Tables I and II, re-
spectively, provides casewise RMS errors and SSIM for bicu-
bic interpolation, the results reported in Ref. 15, and with our
approach for the optimum choice of parameters discussed ear-
lier. Observe that our approach shows a clear improvement
with respect to both metrics for all ten cases (note that such
an order of improvement is common in contemporary super-
resolution.10, 28) The RMS results support our claims for over-
all mitigation of the noise-structure trade-off, whereas the
SSIM results emphasize better structure enhancement. Also
note that in most cases using PCA also shows further im-
provement. Indeed, for SSIM, the improvement can be seen
for all cases.

In Fig. 11 we show the percentage of slices across cases,
for which our approach favorably compares with that in
Ref. 15 in terms of RMS and SSIM. Clearly, our approach
better reconstructs a vast majority of slices, which highlights
that the group-sparsity-based smoothing indeed has a con-
structive effect. Overall, the RMS improvement is over 85%
of the slices and the SSIM improvement is over 89% of the
slices.
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FIG. 10. Three examples of axial slice reconstruction involving tumor: (a, i, q) Outputs using bi-cubic interpolation. (b, j, r) Outputs using the approach in
Ref. 15. (c, k, s) Outputs using the proposed method. (d, l, t) Ground-truth slices. Respective zoomed in regions shown in (e, m, u), (f, n, v), (g, o, w), (h, p, x).

TABLE I. Average RMS for ten cases.

Case (No. of slices) RMS: Bicubic RMS: (Ref. 15) RMS: Proposed (w/o PCA) RMS: Proposed (PCA)

Case 1 (170) 28.97 18.56 17.94 17.74
Case 2 (200) 27.83 16.74 16.28 16.17
Case 3 (160) 26.82 15.86 15.11 15.07
Case 4 (170) 26.95 17.10 16.33 16.23
Case 5 (170) 29.00 19.23 18.18 18.24
Case 6 (190) 24.81 17.75 17.25 17.22
Case 7 (180) 28.12 18.94 17.90 17.92
Case 8 (180) 37.38 26.72 24.57 24.53
Case 9 (130) 25.34 16.63 16.01 16.10
Case 10 (190) 37.10 25.40 23.68 23.61

Average (total: 1740) 29.23 19.29 18.33 18.28
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TABLE II. Average SSIM for ten cases.

Case (No. of slices) SSIM: Bicubic SSIM: (Ref. 15) SSIM: Proposed (w/o PCA) SSIM: Proposed (PCA)

Case 1 (170) 0.5492 0.7069 0.7130 0.7237
Case 2 (200) 0.5777 0.7445 0.7515 0.7555
Case 3 (160) 0.5895 0.7589 0.7740 0.7762
Case 4 (170) 0.5869 0.7372 0.7552 0.7587
Case 5 (170) 0.5671 0.7184 0.7327 0.7365
Case 6 (190) 0.5151 0.6255 0.6425 0.6428
Case 7 (180) 0.5181 0.6622 0.6862 0.6875
Case 8 (180) 0.4913 0.6137 0.6471 0.6518
Case 9 (130) 0.5558 0.6980 0.7124 0.7136
Case 10 (190) 0.4820 0.6148 0.6469 0.6518

Average (total: 1740) 0.5433 0.6860 0.7062 0.7098

5. DISCUSSION AND CONCLUSION

In this work, we proposed a novel approach for enhancing
the superior-inferior resolution of 4D-CT, by reconstructing
missing intermediate slices in a certain phase by exploiting
local complimentary sampling information available in the
observed slices of other phases, due to lung-motion.

Our work built upon a recent sparse-representation-based
work in Ref. 15. We looked to mitigate the trade-off in
resolution enhancement between achieving good localiza-
tion/sharpness of anatomical features as well as good accu-
racy which is affected by noise/artifacts. Toward this end, we
proposed a novel group-sparsity based method to incorpo-
rate constraints from similar overlapping patches, which are
neighboring to the patch to be reconstructed.

We discussed the regularizing role of group-sparsity which
provides constructive smoothness constraints. This allowed a
smaller scale of patches (than that in the state-of-the-art15)
in our patch reconstruction process, and helped in improv-
ing the localization without compromising on accuracy. We
demonstrated that such an application of group-sparsity al-
lows for better structure preservation and noise resistance.
Moreover, we further strengthened noise robustness using the
PCA-based transformation of features, which, in principle,
embeds the less noisy data variation in the top few princi-
pal components, which are used to compute the features in a
reduced dimensional space.

We demonstrated, both qualitatively and quantitatively,
that the above ideas when formulated in our proposed ap-
proach indeed serve our objective of achieving a good

localization-accuracy balance. We further conducted an em-
pirical parametric analysis to compute our best results. How-
ever, one can also observe that our approach is not too sen-
sitive with respect to the parameter variation. The curves in
Figs. 5–7 have a small slope, which means that the perfor-
mance of our approach is relatively stable over a range of pa-
rameter variation. Such a stability with respect to parameters
is an important quality for an estimation method.

As mentioned earlier, we believe that this work plays an
important role in advancing the relatively young area 4D-CT
resolution enhancement. The importance of our work from a
clinical perspective can be appreciated, as the improvement
in localization and accuracy of anatomical structures in 4D-
CT can facilitate better delineation or segmentation. In fact,
we also demonstrated the efficacy of our approach on tumor
data, where the tumor and its neighboring structures are much
better defined using our method, which is a clear indication of
its positive implications in radiation therapy.

Also, our work is one of the few to highlight the reg-
ularizing role of group-sparsity for image reconstruction.
While, group-sparse representation has been popular in the
classification and machine learning arena,29 its exploration
for image estimation has been limited. Hence, from the tech-
nical point of view, our work could also encourage further
research of group-sparsity and other related frameworks for
regularization and image estimation.

Thus, our work serves a dual purpose of further contribut-
ing to the area of resolution enhancement of lung 4D-CT, and
of demonstrating the potential of group-sparse representation
for image reconstruction.

FIG. 11. Percentage of slices on which our approach performs favorably over (Ref. 15) for (a) RMS (b) SSIM.
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In future, it would be interesting to explore the role of
dictionary learning, and also other multi-task learning frame-
works for the task of 4D-CT resolution enhancement. We will
also explore the utilization of image registration technique,
as we have used in various applications,30–36 to help estimate
the corresponding patches for resolution enhancement.
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