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Purpose: Cerebrospinal fluid (CSF) segmentation in computed tomography (CT) is a key step in
computer-aided detection (CAD) of acute ischemic stroke. Because of image noise, low contrast
and intensity inhomogeneity, CSF segmentation has been a challenging task. A region-based active
contour model, which is insensitive to contour initialization and robust to intensity inhomogeneity,
was developed for segmenting CSF in brain CT images.
Methods: The energy function of the region-based active contour model is composed of a range do-
main kernel function, a space domain kernel function, and an edge indicator function. By minimizing
the energy function, the region of edge elements of the target could be automatically identified in
images with less dependence on initial contours. The energy function was optimized by means of the
deepest descent method with a level set framework. An overlap rate between segmentation results
and the reference standard was used to assess the segmentation accuracy. The authors evaluated the
performance of the proposed method on both synthetic data and real brain CT images. They also
compared the performance level of our method to those of region-scalable fitting (RSF) and global
convex segment (GCS) models.
Results: For the experiment of CSF segmentation in 67 brain CT images, their method achieved an
average overlap rate of 66% compared to the average overlap rates of 16% and 46% from the RSF
model and the GCS model, respectively.
Conclusions: Their region-based active contour model has the ability to achieve accurate segmen-
tation results in images with high noise level and intensity inhomogeneity. Therefore, their method
has great potential in the segmentation of medical images and would be useful for developing CAD
schemes for acute ischemic stroke in brain CT images. © 2013 American Association of Physicists in
Medicine. [http://dx.doi.org/10.1118/1.4774359]
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I. INTRODUCTION

Computed tomography (CT) is the most commonly used
imaging modality for assessing patients with suspected acute
ischemic stroke, since it is widely available, fast, and less ex-
pensive than MRI. Recently, different research groups1–3 have
developed CAD schemes for enhancing and detecting patho-
logical areas in brain CT to improve radiologists’ detection
accuracy, in which brain CT image segmentation plays a crit-
ical role. However, because of image noise, low contrast, and
intensity inhomogeneity, brain CT image segmentation is also
a challenging task.

Several state-of-the-art algorithms have been developed for
segmentation of brain MR images.4–11 However, these meth-
ods are not suitable for the segmentation of brain CT images,
because brain CT images generally have lower tissue contrast
and higher noise level than MRI. In fact, only limited liter-
ature about the segmentation of brain CT images has been
published.12–17 Wei et al.12 developed an Otsu thresholding
based method to segment brain. Although this method has
been tested on hundreds of images, a quantitative evaluation
is needed. Lee et al.13 proposed an automatic segmentation
method based on k-means and expectation maximization clus-
tering. However, this method is very sensitive to the setting of
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the initial parameters. Chen et al.14 presented a segmentation
scheme based on the Gaussian mixture model. Because the
intensity histogram of the brain region inside the skull is as-
sumed to be unimodal, this method may incorrectly converge
to spurious values. Gupta et al.15 developed a method for
the segmentation of cerebrospinal fluid (CSF), white matter
and gray matter on CT images using adaptive thresholding as
well as connectivity and domain knowledge. This algorithm,
however, can only perform well when contrast between the
CSF and brain parenchyma is high. Most recently, two meth-
ods based on the use of the template/model of the ventricular
system from MRI have been reported.16, 17 Chen et al.16 pro-
posed a method to identify the ventricular system by combin-
ing low-level segmentation and high-level template matching.
Similarly, Liu et al.17 developed an automated model-guided
method for ventricular segmentation. The results of these
two approaches, however, are highly dependent on the qual-
ity of the registration step. To our knowledge, active contour
model has not been employed for segmentation of brain in
CT images.

Active contour models based approaches have been widely
used for medical image segmentation.5, 18–27 Existing ac-
tive contours models can be classified into two categories:
edge-based models18–21 and region-based models.22–27 The
geodesic active contour model21 (GAC) is a typical edge-
based model. It utilizes image gradient information to guide
evolving curve, and can detect a specific target from a com-
plex background. However, the GAC requires that the initial
contour is close to the desired boundary,28 since the effect
of edge detector is limited only to the vicinity of the bound-
ary. On the other hand, active contour model without edge
(CV) model25 is a representative region-based active con-
tour model. It obtains object boundary by means of detect-
ing regions with homogeneous intensity distribution. The CV
model generally has better performance than the GAC model
in the segmentation of images with noise and weak object
boundary. However, because the CV model is based on the as-
sumption of intensity homogeneity, it cannot be used for the
segmentation of images with strong intensity inhomogeneity.

In order to address the common issue of intensity inhomo-
geneity in the medical image segmentation, Li et al.27 pro-
posed a region-based level set method, called region-scalable
fitting (RSF) model. Due to its capability of using intensity
information in local regions at a controllable scale, the RSF
model obtained good performance for images with intensity
inhomogeneity. This model, however, also requires a good
initial guess for the segmentation. This problem is attributed
to the non-convexity of the energy of the RSF model. Bres-
son et al.26 proposed a globally convex segmentation (GCS)
model to achieve the global minimum of energy with less de-
pendence on initialization. This model, however, does not in-
corporate spatial correlation information. Thus, its segmenta-
tion performance for image with intensity inhomogeneity is
limited.

In this study, we proposed a novel region-based active con-
tour model, which is insensitive to the initial contour and
can obtain good segmentation results in images with inten-
sity inhomogeneity and noise. Our main contribution in this

study was to embed for the first time a range domain kernel
function29 into the framework of the region-based active con-
tour model. The range weighted function composed by the
range domain kernel function can automatically detect object
boundary regions, and then assigns large weights to pixels in
the detected boundary regions; therefore, it can attract the ac-
tive contour toward the boundary and make the active contour
model insensitive to the initial contour. A space domain Gaus-
sian kernel function was introduced to overcome the difficulty
caused by the intensity inhomogeneity. In addition, we added
an edge indicator function into the total variation to improve
segmentation results. This method is used for the segmenta-
tion of CSF, a critical step in computerized detection of is-
chemic stroke in brain CT.

II. METHOD

II.A. The proposed segmentation model

We assumed that I is a two-dimensional (2D) image de-
fined on domain �, which is a bounded open subset of R2

and u is a closed contour, which partitions � into two regions:
foreground �1 and background �2. We then defined a circu-
lar neighborhood Ox centered at each pixel x with radius ρ in
�. Thus, Ox was divided into two partitions, {Ox ∩ �i}i=1,2.
We used fi(x) to approximate the mean intensity of pixels in
Ox ∩ �i. When the weighed mean square error between fi(x)
and the intensities of pixels within corresponding partition
were minimized, the contour u was considered optimal.

To obtain the entire object boundary, we introduced the
following energy function in the image domain �:

E(u, f1(x), f2(x)) :

=
∫

�

[
λ1α

−1
1 (x)

∫
�1

Ks(x − y) (2 − Kr (I (x) − I (y))) |I (y)

−f1(x)|2dy + λ2α
−1
2 (x)

∫
�2

Ks(x − y)(2 − Kr (I (x)

−I (y)))|I (y) − f2(x)|2dy

]
dx, (1)

αi (x) =
∫

�i

Ks(x − y) (2 − Kr (I (x) − I (y))) dy, (2)

where λ1 and λ2 are positive constants; Ks is the space domain
function; and Kr is the range domain function, which is first
introduced into the active contour model; αi(x) is a normal-
ization factor for each pixel. The first term in Eq. (1) is the
weighted mean square error between f1(x) and I(y), the inten-
sity of pixels in partition Ox ∩ �1; the second term in Eq. (1)
is the weighted mean square error between f2(x) and I(y), the
intensity of pixels in partition Ox ∩ �2.

Space domain function Ks(x − y) measures the compact-
ness between the center x and all the pixels in a specific parti-
tion of a neighborhood. It is defined by

Ks (x − y) =
{

exp
(−ds/2σ 2

s

)
, for |x − y| ≤ ρ

0, otherwise
, (3)
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where ds = ‖x − y‖ denotes the Euclidean distance between
pixel x, the center of Ox, and y, a neighboring pixel. σ s is
the standard deviation of the space Gaussian function and ρ is
the truncated radius of the space Gaussian function. The space
domain function Ks(x − y) was employed as a weighing factor
for a pixel y.

Range domain function Kr(x − y), which is originally de-
fined in bilateral filter,29 measures the intensity similarity be-
tween the center pixel x and its neighboring pixel y. It is de-
fined by

Kr (x − y) =
{

exp
(−dr/2σ 2

r

)
, for |x − y| ≤ ρ

0, otherwise
, (4)

where dr = |I(x) − I(y)| is the intensity difference between
the pixels x and y. σ r is the standard deviation of the range
Gaussian function, and ρ is the truncated radius of the range
Gaussian function and has the same value as ρ in Eq. (3).
In bilateral filter, the range domain kernel function tends to
preserve the edges in the bilateral filter smoothing method.
In our study, the range domain kernel function was embed-
ded into the region-based active contour model. It assigns
large weights to pixels near edges of large contrast and makes
these edge pixels more important than the pixels far away
from the edges. Therefore, the proposed model will be at-
tracted by the edge pixels and tends to be insensitive to the
initial contour.

Range weighted function 2 − Kr has a range of [1, 2] and is
inversely correlated to the intensity similarity between x, the
center of Ox, and y, its neighboring pixel. If x and y are near
the boundary u but on the different sides of u, the value of 2
− Kr is close to 2, which substantially magnifies the energy
of this model. Thus, this range function plays a very impor-
tant role in overcoming the local minimum energy. If the two
pixels are on the same side of u, the value of 2 − Kr is close
to 1, and has little influence on the energy model.

As described above, f1(x) and f2(x) are the estimated aver-
age intensities of the neighborhood of a pixel x in �1 and �2,
respectively. Because of the inherent characteristics of kernel
function Ks(x − y)(2 − Kr(I(x) − I(y))), the estimate of f1(x)
and f2(x) are mainly dependent on the pixels that are spatially
close to x or the pixels whose intensities are very different
from that of x.

II.B. Level set formulation

In level set methods,30 we used the zero level set of a Lip-
schitz function φ: � → R to denote the contour u ⊂ �, i.e., u
= {(x ∈ �: φ(x) = 0)}. The foreground and background were
denoted by �1 = {x ∈ �: φ(x) < 0} and �2 = {x ∈ �: φ(x)
> 0}, respectively.

With the Heaviside function H, we defined the foreground
�1 and the background �2 by H(φ) and 1 − H(φ), respec-
tively. The entire energy function was defined by

� (φ, f1, f2) =
∫

�

[
λ1α

−1
1 (x)

∫
Ks(x − y)(2 − Kr (I (x)

−I (y)))|I (y) − f1(x)|2M1(φ(x))dy

+λ2α
−1
2 (x)

∫
Ks(x − y)(2 − Kr (I (x)

−I (y)))|I (y) − f2(x)|2M2(φ(x))dy
]
dx

+μ

∫
�

1

2
(|∇φ (x) − 1|)2 dx

+υ

∫
�

g(x)|∇φ(x)|dx, (5)

where M1(φ(x)) = H(φ(x)), M2(φ(x)) = 1 − H(φ(x)), and
υ > 0. The first term is derived from Eq. (1). The sec-
ond term μ

∫
�

1
2 (|∇φ (x) − 1|)2 dx is a distance regularizing

term,31 which is used to ensure accurate computation and sta-
ble level set evolution. The third term υ

∫
�

g(x) |∇φ(x)| dx is
a weighted total variational formula. The normalization term
was defined by

αi(x) =
∫

�

Ks(x − y)(2 − Kr (I (x)−I (y)))Mi(φ(x))dy.

(6)

In order to obtain better segmentation results, we add an
edge indicator function g(x) proposed by Caselles et al.21 to
the arc length term

∫
�

|∇φ(x)| dx which is commonly used in
variational level set methods for the regularization of the zero
level contour. The edge indicator function g(x) is defined as
follows:

g(x) = 1

1+|∇(Gσ (x) ∗ I (x))|2 ,

where Gσ ∗ I denotes the convolutions of image I and a Gaus-
sian kernel G with a standard deviation σ . The function g(x) is
used to retain the geometric properties of the original features
such as corners.

II.C. Gradient descent flow

The energy function [Eq. (5)] was minimized by a standard
gradient descent algorithm. With a fixed level set function φ,
when the value of energy function is known, we can obtain
f1(x) and f2(x) by

fi(x) =
∫

Ks(x−y)(2−Kr (I (x)−I (y)))I (y)Mi(φ(x))dy∫
Ks(x − y)(2 − Kr (I (x) − I (y)))Mi(φ(x))dy

,

i = 1, 2. (7)

For fixed f1(x) and f2(x), we minimized the functional �(φ, f1,
f2) by
∂φ(x)

∂t
= − δ(φ(x))

(
λ1α

−1
1 F (x)1 − λ2α

−1
2 F2(x)

)
+υδ(φ (x))div(

g(x)∇φ (x)

|∇φ (x)| )+μ

(
∇2φ−div

( ∇φ

|∇φ|
))

,

(8)

where δ is the Dirac delta function that is the derivative of
Heaviside function H, and Fi(x) is defined below

Fi(x) =
∫

Ks(y−x)(2−Kr (I (y)−I (x)))|I (x)−fi(y)|2dy,

i = 1, 2. (9)
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Equation (8) is the level set evolution equation, and
−δ(φ (x))(λ1α

−1
1 F (x)1 − λ2α

−1
2 F2 (x)) is the image force,

which drives the contour toward optimal boundaries.

II.D. Implementation of model

We use central finite difference method to discretize all
the partial derivatives in Eq. (8). The temporal derivative is
discretized with a forward difference method. An iteration
scheme is obtained by discretizing Eq. (8). Below is the sum-
mary of the procedure:

(1) Initialize the level set function φ using the method in-
troduced in Ref. 27.

(2) Compute local fitting value f1(x) and f2(x) using
Eq. (7).

(3) Evolve the level set function according to Eq. (8).
(4) Check whether the evolution of the level set function

has converged. If not, return to step 2.

II.E. Evaluation of the segmentation method

We used overlap as a performance metric to assess the seg-
mentation accuracy. The overlap rate is defined as the ratio of
the intersection and the union between computerized segmen-
tation results and reference standard

Overlap =
∣∣Sseg ∩ Struth

∣∣∣∣Sseg ∪ Struth

∣∣ , (10)

where Sseg represents the region segmented by the algorithm,
Struth represents the reference standard, and | · | means the area
of a region. The value of the overlap rate ranges from 0, no
overlap between the two regions, to 1, a perfect overlap.

III. EXPERIMENTS AND RESULTS

To demonstrate the advantages of the proposed method,
we evaluated it on biomedical image datasets, syn-
thetic image dataset, and real brain CT images. The
results from two closely related segmentation methods,
the RSF model and the GCS model, were provided for
comparison. We obtained the source code of RSF model
and GCS model from http://www.engr.uconn.edu/~cmli/
and http://www.cs.cityu.edu.hk/~xbresson/ucla/code.html,
respectively.

Unless otherwise specified, we used the following empir-
ical parameters for our active contour model in the experi-
ments: υ = 0.001 × 255 × 255, time step �t = 0.1, μ = 1,
λ1 = 1, λ2 = 1.2, standard deviation of the range domain
Gaussian function σ r = 0.1, standard deviation of the space
domain Gaussian function σ s = 3, and the truncated radius
ρ = 7.

III.A. Qualitative evaluation on biomedical datasets

Figure 1 shows the segmentation results in a digital sub-
traction vessel image, electronic microscope chromosomal
image, and brain MR image. The first column shows the orig-

inal images with initial contours and the next three columns
show the results of the RSF model, the GCS model, and our
method. In this study, we used the scale parameter σ = 10
for the RSF model as it was recommended in the source code,
and empirically used μ = 1000 and λ = 7000 for the GCS
model.

Figure 1(a) shows segmentation results of the digital sub-
station vessel image. It is apparent that the RSF model did not
segment the vessel correctly because of the local minimum.
In contrast, the GCS model and our method obtained good
segmentation results with comparable accuracy.

Figure 1(b) shows segmentation results of the electron mi-
croscope chromosomal image with intensity inhomogeneity
around the chromosomes. Although the RSF model has the
ability to overcome intensity inhomogeneity, it could not seg-
ment chromosomes accurately, because it needs appropriate
initial contours for a large number of objects in one image.
We tested different initial contours for RSF. However, none
of them could lead to acceptable results. Despite the fact that
the GCS model is not dependent on the initial contours, it
could not segment the chromosomes correctly, because of se-
vere intensity inhomogeneity. On the other hand, our method
correctly segmented the image with relatively high accuracy.

Figure 1(c) shows a comparison of the segmentation for
a brain MR image. Both the RSF model and GCS model
obtained acceptable segmentation results. The two methods,
however, missed some gray matter regions near the skull,
while our method segmented the gray matter accurately as
shown in Fig. 1(d), which is the enlarged view of the middle
left portion of (c).

III.B. Quantitative evaluation on synthetic
image dataset

To quantitatively evaluate the proposed method, we ap-
plied the proposed method to a synthetic image dataset with
different intensity inhomogeneity and noise levels. We also
investigated the impact of the initial contour on the segmen-
tation results on this dataset. Results from the RSF model and
the GCS model were also provided for comparison.

We randomly generated 20 images with 7 circular objects
for these experiments. The boundaries of these objects were
known and used as the reference standards. These images
were 8 bit grayscale images. The intensity contrast between
the object and the background was 140. We added intensity
inhomogeneity to the images by performing a linear intensity
transformation along horizontal direction. The degree of the
intensity inhomogeneity was defined as the intensity differ-
ence between the leftmost pixel and the rightmost pixel along
horizontal direction in the image. Meanwhile, Gaussian noise
with a mean of zero and different variances was added to the
images. Please note that the pixel values of images were nor-
malized to a range between 0 and 1 before adding the noise.
We calculated the average overlap rates of the 20 simulated
images.

We used the exhaustive searching method to determine the
optimal parameter settings for the RSF and GCS models in
all three experiments. For the RSF model, we searched the
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FIG. 1. Segmentation results on (a) digital subtraction vessel image using RSF model (second column), GCS model (third column), and our method (fourth
column), (b) electronic microscope chromosomal image, and (c) brain MR image. (d) shows the enlarged view of the middle left portion of (c). The white curves
indicate the outlines of the segmented regions, and the white arrows represent the locations where the three segmentation methods provided markedly different
results.
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FIG. 2. The segmentation results of RSF model [(a)–(c)] and our method
[(d)–(f)] for a synthetic image with three different initial contours. The white
dashed lines and solid lines represent the initial contours and the final con-
tours, respectively.

optimal value of σ in a relatively large range from 3 to 15
with an increment of 1. The range of values for λ1 and λ2

was 1, 1.2, 2, 3, and the range of values for υ was 0.001
× 255 × 255, 0.002 × 255 × 255, and 0.003 × 255 × 255.
The optimal parameters searched from the above values for
the RSF were: σ = 15, λ1 = 1, λ2 = 2, υ = 0.001 × 255
× 255. For the RSF model, μ and �t were considered to
be less important than the above four parameters and were
assigned the RSF’s default values of 1 and 0.1, respectively.
Similarly, we determined the parameters μ and λ for the GCS
model, which were 10 and 120, respectively.

III.B.1. Effect of initial contours

Because GCS model has the global convergence ability
and is not dependent on initial contours, it was not included
in this experiment. We applied our model and the RSF model
to the testing images with 20 different initial contours. The
testing images contained Gaussian noise with a variance of
σ 2 = 0.005. Intensity inhomogeneity was not applied to these
images. Figure 2 shows the segmentation results of an image
with three different initial contours (green dashed contours)
and their corresponding results (red solid contours) using RSF
model and our model. It is apparent that the RSF model did
not segment the objects accurately with the first two initial
contours [Figs. 2(a) and 2(b)] due to the local minimum, while
it successfully segmented the image with the third initial con-
tour [Fig. 2(c)] Our model obtained good segmentation re-
sults with all the three different initial contours. The overlap
rates of these two models with 20 different initial contours
are shown in Fig. 3. The overlap rates of RSF model were
distributed in a wide range between 10% and 100%. Thus,
the RSF model is very sensitive to the initial contours. On
the other hand, our model achieved consistently higher over-
lap rates (close to 99%) for all the initial contours. This result
demonstrated that the proposed model is a reliable segmenta-
tion method with less dependence on the initial contours.

FIG. 3. Comparison of the RSF model and our model in terms of overlap
rates for 20 different initializations.

III.B.2. Effect of intensity inhomogeneity

Twenty-one synthetic images with different intensity in-
homogeneity degrees from 0 to 120 and the Gaussian noise
variance of 0.005 were created for testing the effect of inten-
sity inhomogeneity. The initial contour for RSF model and
our model were shown in Figs. 2(c) and 2(f). Figure 4 shows
the segmentation results from the RSF model [Fig. 4(a)], the
GCS model [Fig. 4(b)], and our model [Fig. 4(c)] on a sam-
ple image with an intensity inhomogeneity degree of 120. It
is apparent that neither the RSF model nor the GCS model
segmented the image successfully, while our model achieved
accurate segmentation result. Figure 5 shows the overlap rates
of the three models for the 21 images. The GCS model ob-
tained high overlap rate when the intensity inhomogeneity
degree was lower than 110. As the intensity inhomogeneity
degree increased, the overlap rate of both the RSF model and
the GCS model decreased considerably, whereas our model
consistently achieved very high overlap rate (>98%).

III.B.3. Effect of noise

Twenty-one synthetic images with intensity inhomogene-
ity degree of 20 and different Gaussian noise variances be-
tween 0 and 0.01 were created for testing the effect of im-
age noise. The initial contour for RSF model and our model
were shown in Fig. 2. Figure 6 shows the segmentation

FIG. 4. Segmentation results from (a) RSF model, (b) GCS model, and
(c) our model on a synthetic image with an intensity inhomogeneity degree
of 120.

Medical Physics, Vol. 40, No. 2, February 2013
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FIG. 5. Comparison of the RSF model, the GCS model, and our model in
terms of overlap rates for images with different intensity inhomogeneity de-
grees.

results from the RSF model [Fig. 6(a)], the GCS model
[Fig. 6(b)], and our model [Fig. 6(c)] on a sample image with
an image noise variance of 0.01. As shown in Fig. 6(a), the
RSF model did not obtain an acceptable segmentation result,
while the GSC model and our model achieved good segmen-
tation results with comparable accuracy. Figure 7 shows the
overlap rates of three models for the 21 images with dif-
ferent Gaussian noise. As the Gaussian noise increased, the
overlap rate of the RSF model decreased, and maintained be-
tween 65% and 85%. When the noise was low, the overlap
rate of the GCS model was slightly higher than that of our
model, whereas when the noise was high, the overlap rate of
our model was slightly higher than that of the GCS model,
nevertheless, both models achieved the overlap rate of greater
than 97%.

III.C. Application to CT brain image segmentation

The main application of this study was the CSF seg-
mentation in brain CT images, which is a critical step in
the computer-aided detection of ischemic stroke in brain CT
images.

The IRB of this study has been obtained at Duke Uni-
versity. We applied our model to the CT images and quan-
titatively evaluated the accuracy of segmentation results. The
ranges for scale parameter σ , weighting factors λ1, λ2, and

FIG. 6. Segmentation results from (a) RSF model, (b) GCS model, and
(c) our model on a synthetic image with noise variance of 0.01.

FIG. 7. Comparison of the RSF model, the GCS model and our model in
terms of overlap rate for images with different image noise degrees.

υ were the same as those in Sec. III.B. We used the exhaus-
tive searching method to obtain the optimal parameters for
the RSF model: σ = 7, λ1 = 1.2, λ2 = 1, υ = 0.001 × 255
× 255. The μ and �t were assigned the default value of 1
and 0.1, respectively. Similarly, we determined the optimal
parameters μ and λ for the GCS model, which were 10 and
110, respectively.

Our dataset consists of 160 slices from 5 CT scans. The
data used in this study were collected from the Duke Univer-
sity Medical Center. The CT slices of all subjects were ac-
quired by use of 16-row (Light Speed 16, GE Medical Sys-
tem) CT scanners with an x-ray tube voltage of 120 KVp and
a radiographic exposure of 120 mAs. The slice thickness is
5 mm. Each slice has a matrix size of 512 × 512 pixels and the
pixel size is 0.4269 mm with a 16-bit gray level in Hounsfield
unit (HU).

A reference standard of CSF was established to assess the
accuracy of the segmentation result. A medical physicist (XQ,
4 years of experience) manually delineated the CSF bound-
aries for all the slices on a LCD screen. The delineated CSF
was then confirmed or revised by an experienced medical
physicist (QL, 15 years of experience).

Some preprocessing was carried out prior to this experi-
ment. First, we manually extracted 67 slices from the 5 scans
for this experiment. These selected slices contained the main
part of the brain. We then automatically segmented the skull
by use of a fixed CT value threshold of 56. The region inside
the skull was defined as brain region and the region outside
the skull was defined as background. Finally, the images were
filtered by a median filter.

Figure 8 shows segmentation results obtained from the
RSF model [Fig. 8(d)], the GCS model [Fig. 8(e)], and our
model [Fig. 8(f)] on a sample CT slice. For the result of
RSF model, many gray matter regions were incorrectly seg-
mented as CSF. Although the segmentation result of the GCS
model was comparable to that of our model, it missed some
CSF regions close to the skull. Figure 9 shows the segmenta-
tion result of a CT scan obtained by our method. Our model
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FIG. 8. Comparison of our model with the RSF model and the GCS model
on a CT brain image. The three rows show the initial contours, the final con-
tours, and the binary segment results. Column 1: RSF model, column 2: GCS
model, column 3: our model. The results of the RSF model and the GCS
model are their best results by use of many different combinations of param-
eters.

segmented the CSF regions with high contrast and success-
fully excluded the calcification regions in the ventricle; it also
correctly segmented low contrast CSF regions close to the
skull by overcoming the intensity inhomogeneity caused by
the cupping artifact.

The overall overlap rates of the segmentation results ob-
tained from the three models for all 67 slices were shown in
Fig. 10. The overlap rates of our model were considerably
higher than those of the RSF model for all slices and higher
than GCS model in most of the slices, especially when the
ventricle regions were absent in the slices. The red solid curve
of case 4 in Fig. 10 presented the overlap rates of segmenta-
tion results shown in Fig. 9.

Table I shows the mean, standard deviation, and the range
of overlap rates for the RSF model, the GCS model, and
our model. The mean overlap rates for the three models
were 16.24%, 46.16%, and 66.47%. By use of two-tailed t-
tests for the paired data, we found that our model achieved
significantly better performance level than the RSF model
(p < 0.001) and the GCS model (p < 0.001).

FIG. 9. The results of our model for a CT scan. The final results were pre-
sented by the white solid curves.

FIG. 10. Comparison of overlap rates for the CSF segmentation in all slices
in the five CT scans by the RSF model, the GCS model and our model.
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TABLE I. The mean, standard deviation, and range of the overlap rate for
CSF segmentation in brain CT images by the RSF model, the GCS model
and our model.

Mean SD Min Max

RSF 0.1624a 0.0183 0.0157 0.5438
GCS 0.4616b 0.0721 0.0225 0.8379
Our model 0.6647a,b 0.0171 0.3409 0.8674

ap < 0.001.
bp < 0.001.

IV. DISCUSSION

Segmentation methods based on conventional active con-
tour models are usually sensitive to the initial contour, in-
tensity inhomogeneity, and image noise. In this study, we
proposed a novel region-based active contour model that
can overcome these challenges. The major advantage of our
method is its insensitivity to the contour initialization as a re-
sult of magnification of the energy in the boundary regions of
objects.

An additional strength of our method is that it is robust
to image noise and intensity inhomogeneity and can obtain
better results than the RSF model and GCS model. As the
intensity inhomogeneity degree increased, the segmentation
accuracy of RSF model declined gradually, while our method
was able to successfully segment objects with high accuracy.
The GCS model is evolved from the CV model and can obtain
global optimal segmentation results. For images with noise
or mild intensity inhomogeneity, both of the GCS model and
our method achieved good segmentation results, whereas for
the images with severe intensity inhomogeneity, our method
achieved considerably better results than the GCS model.

We further investigated the level of contrast-to-noise ratio
at which the proposed method can achieve good segmentation
performance. The contrast-to-noise ratio (CNR) is defined as
the ratio of the intensity contrast between the foreground and
the background and the standard deviation of the image noise.
Figure 11 shows the segmentation accuracy, in terms of over-

FIG. 11. The segmentation accuracy of the proposed method for different
contrast-to-noise ratios in terms of overlap rates.

lap rate, of the simulated images in Fig. 2 with different CNRs
ranging from 1 to 6. As expected, the overlap rate of proposed
method was improved as the CNR increased. When the CNR
was greater than 1.6, the proposed method achieved accept-
able segmentation results with overlap rates greater than 0.6;
when the CNR further increased to 2.0 or above, the proposed
method achieved good segmentation results with overlap rates
greater than 0.8.

As a limitation, our method could not well segment the
small objects with low contrast. The reason of this issue is
that the range domain function assigns very small weights
to pixels near edges of low contrast. For instance, some tiny
vessels with very low contrast in Fig. 1(a) were not correctly
segmented by our method. However, as shown in Figs. 1(c)
and 10 the overall segmentation obtained from our method
is still much better than that from the conventional RSF and
GCS models. Therefore, our method has great potential in the
segmentation of complex medical images with acceptable ac-
curacy. In the future, we may incorporate an additional region
growing-based refinement step for picking up the weak edges
that are missed by the proposed method.

For the segmentation of CSF, our method missed some
CSF regions near the skull boundary because of strong im-
age noise and relatively low contrast of CSF. In particular,
some CSF regions may even have higher intensity (brighter)
than that of the white matter due to the cupping artifact. How-
ever, because our method obtained an average overlap rate of
66% for the segmentation of the entire brain CT dataset and
segmented the main parts of CSF very well, our method is a
reliable segmentation tool for the brain CT images.

V. CONCLUSION

Accurate segmentation of CSF is not only clinically im-
portant, but also technically challenging. In this study, we
developed a novel region-based active contour model. This
method is robust to intensity inhomogeneity and image noise,
as well as insensitive to the initial contours. The experimen-
tal results have demonstrated that the proposed method could
obtain segmentation results with high accuracy compared to
the conventional RSF and GCS models. Overall, this method
provided an automated CSF segmentation tool for the brain
CT studies of acute ischemic stroke and would be useful for
the development of CAD schemes for acute ischemic stroke.
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