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Purpose: The segmentation of prostate in CT images is of essential importance to external beam
radiotherapy, which is one of the major treatments for prostate cancer nowadays. During the radio-
therapy, the prostate is radiated by high-energy x rays from different directions. In order to maximize
the dose to the cancer and minimize the dose to the surrounding healthy tissues (e.g., bladder and
rectum), the prostate in the new treatment image needs to be accurately localized. Therefore, the ef-
fectiveness and efficiency of external beam radiotherapy highly depend on the accurate localization
of the prostate. However, due to the low contrast of the prostate with its surrounding tissues (e.g.,
bladder), the unpredicted prostate motion, and the large appearance variations across different treat-
ment days, it is challenging to segment the prostate in CT images. In this paper, the authors present a
novel classification based segmentation method to address these problems.
Methods: To segment the prostate, the proposed method first uses sparse representation based classi-
fication (SRC) to enhance the prostate in CT images by pixel-wise classification, in order to overcome
the limitation of poor contrast of the prostate images. Then, based on the classification results, pre-
vious segmented prostates of the same patient are used as patient-specific atlases to align onto the
current treatment image and the majority voting strategy is finally adopted to segment the prostate. In
order to address the limitations of the traditional SRC in pixel-wise classification, especially for the
purpose of segmentation, the authors extend SRC from the following four aspects: (1) A discrimi-
nant subdictionary learning method is proposed to learn a discriminant and compact representation of
training samples for each class so that the discriminant power of SRC can be increased and also SRC
can be applied to the large-scale pixel-wise classification. (2) The L1 regularized sparse coding is re-
placed by the elastic net in order to obtain a smooth and clear prostate boundary in the classification
result. (3) Residue-based linear regression is incorporated to improve the classification performance
and to extend SRC from hard classification to soft classification. (4) Iterative SRC is proposed by
using context information to iteratively refine the classification results.
Results: The proposed method has been comprehensively evaluated on a dataset consisting of 330
CT images from 24 patients. The effectiveness of the extended SRC has been validated by comparing
it with the traditional SRC based on the proposed four extensions. The experimental results show
that our extended SRC can obtain not only more accurate classification results but also smoother and
clearer prostate boundary than the traditional SRC. Besides, the comparison with other five state-of-
the-art prostate segmentation methods indicates that our method can achieve better performance than
other methods under comparison.
Conclusions: The authors have proposed a novel prostate segmentation method based on the
sparse representation based classification, which can achieve considerably accurate segmentation
results in CT prostate segmentation. © 2012 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4754304]
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I. INTRODUCTION

Prostate cancer is the second leading cause of cancer death in
American men. According to Cancer Facts & Figures,1 about
one man in six will be diagnosed with prostate cancer dur-
ing his lifetime and about one sixth of them will eventually
die of prostate cancer. Needle biopsy of the prostate follow-

ing an elevated prostate specific antigen (PSA) levels or an
abnormal digital rectal examination (DRE) is now a standard
way for diagnosis of prostate cancer.2, 3 When the prostate
cancer is diagnosed in its early stage, it is usually curable4

and the treatment is even effective at the later stages. Cur-
rently, external beam radiotherapy is one of the major clinical
treatments for prostate cancer. During the radiotherapy, the
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prostate is radiated by high-energy x rays from different di-
rections. In order to maximize the harm to the tumor and min-
imize the harm to the surrounding healthy tissues (e.g., blad-
der and rectum), the prostate needs to be accurately localized.
Therefore, the effectiveness and efficiency of external beam
radiation therapy highly depend on the accurate localization
of the prostate.

The external beam radiation therapy basically has two
stages, namely, the planning stage and the treatment stage.
In the planning stage, a CT image named planning image is
scanned from the patient. The prostate in the planning image
is then manually delineated by the physician and a dose plan
which encodes the intensities and shape of radiation beams
to be delivered is carefully designed on the planning image
space. In the treatment stage, dose is delivered in daily frac-
tions over a period of 2–10 weeks. At each treatment day, a
CT image named treatment image is acquired and the prostate
region in this image needs to be identified so that the dose plan
made in the planning image can be transformed to the current
treatment image. Traditionally, the prostate is manually delin-
eated by the physician. However, this process is laborious and
time-consuming, which calls for automatic or semi-automatic
prostate segmentation methods to save physician’s time and
efforts.

However, it is challenging to segment the prostate from
CT images for three main reasons. First, the prostate is of
low contrast with its surrounding tissues, as illustrated in
Figs. 1(a) and 1(b). There is little intensity difference between
the prostate and its surrounding tissues. Therefore, it is diffi-
cult for the intensity-based method (e.g., snake) to accurately

(b)(a)

(d)(c)

FIG. 1. (a) A typical slice of prostate CT image. (b) The same slice as (a)
with prostate contour manually delineated. (c) and (d) The corresponding CT
slices of different treatment images of the same patient with bowel filling and
bowel gas, respectively.

localize the prostate boundary. Second, due to the uncertainty
of bowel gas and filling, the image appearance can be dra-
matically different even for the same patient during different
treatment fractions. Figures 1(c) and 1(d) show the two cor-
responding slices of different treatment images of the same
patient, from which we can see the dramatic variations of
both intensity and shape of the rectum. This causes distinct
appearance in the two treatment images of the same patient.
Therefore, it is not easy to segment the prostate by directly
registering the previous segmented images of the same pa-
tient to the current treatment image. Third, besides the dra-
matic appearance variations, the unpredicted bowel gas and
filling also contribute to the considerably large motion of the
prostate relative to the nearby organs at different treatment
days, which makes difficult to obtain a good initialization in
practice.

To address the above challenges, recently many novel
prostate segmentation methods have been proposed. The
most popular category of prostate segmentation methods is
deformable-model based method.5–9 Pizer5 proposed a me-
dial shape model called "m-rep" to simultaneously segment
bladder, prostate, and rectum from CT images. Feng et al.8

proposed to combine the gradient profile features and prob-
ability distribution function features to guide the model de-
formation in prostate segmentation. Chen et al.9 incorporated
the anatomical constraints in the model deformation to seg-
ment the prostate and rectum. Although deformable-model
based methods have demonstrated its effectiveness in prostate
segmentation by considering both statistically learned shape
prior and image appearance, their good performances depend
on the good initialization of the deformable model, without
which the deformable-model based methods may get stuck in
the local minima. However, since the motion of the prostate
is unpredictable, it is difficult to have a good initialization of
the deformable model in practice.

Another category of methods in prostate segmentation is
registration-based method.10–12 Davis et al.10 combined large
deformation image registration with a bowel gas segmentation
and deflation algorithm to automatically localize the prostate
by registering the treatment image to the planning image.
Liao and Shen12 presented a way to learn an evaluation func-
tion which is used to guide the deformable CT prostate reg-
istration. Compared with deformable-model based methods,
registration-based methods are more robust to the prostate
motion. However, its segmentation accuracy is limited by the
inconsistent image appearance caused by the uncertainty of
bowel gas and filling.

Besides, Li et al.13 formulated the prostate segmentation
as a classification problem and proposed to learn the image
context information to assist the pixel-wise prostate classifi-
cation. Haas et al.14 used 2D flood fill with the predefined
shape guidance to segment the prostate. Ghosh et al.15 pro-
posed a genetic algorithm which uses prior knowledge in the
form of texture and shape for prostate segmentation.

On the other hand, sparse representation as an emerg-
ing technique has become the focus of much recent research
in machine learning,16, 17 signal processing,18 and computer
vision.19, 20 It has been successfully applied in many fields
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such as compressive sensing21 and face recognition,22 and
has achieved considerable improvements over previous meth-
ods in those fields. However, few works have been done to
adapt it to solve the segmentation problems. In this paper,
we propose to first use sparse representation based classifi-
cation (SRC) to enhance the prostate in CT images by pixel-
wise classification in order to overcome the limitation of poor
contrast of the prostate images. Then based on the classifica-
tion results, previous segmented prostates of the same patient
are used as patient-specific26 atlases to segment the prostate
in a multi-atlas-based segmentation scheme. Due to the fact
that the prostate shape changes slightly under radiotherapy,
rigid transformation is used to align segmented prostates to
the current image space based on the classification results,
and finally majority voting strategy is adopted to fuse the la-
bels from different aligned atlases. Since the proposed multi-
atlas-based segmentation is guided by the classification, the
segmentation accuracy highly depends on the classification
performance. However, the traditional SRC suffers two main
limitations when applied to the pixel-wise classification. First,
the traditional SRC cannot be directly adapted to the large-
scale problem where the size of training samples is huge. Sec-
ond, when training samples of different classes are highly cor-
related, the classification performance of the traditional SRC
is limited. In order to overcome these limitations, especially
for the purpose of segmentation, we extend SRC from the fol-
lowing four aspects: (1) a discriminant subdictionary learn-
ing method is proposed to learn a discriminant and compact
representation of training samples for each class in order to
increase the discriminant power of SRC and adapt SRC to
large-scale pixel-wise classification. (2) The L1 regularized
sparse coding is replaced by the elastic net23 in order to obtain
a smooth and clear prostate boundary in the classification re-
sult. (3) Residue-based linear regression is incorporated to im-
prove the classification performance and to extend SRC from
hard classification to soft classification. (4) Iterative SRC is
proposed by using context information to iteratively refine the
classification results.

The remainder of the paper is organized as follows. In
Sec. II, we briefly review the sparse representation and SRC,
as well as address the limitations of SRC when it is applied to
pixel-wise classification. Section III introduces the extended
SRC that overcomes these limitations. Section IV explains
how the extended SRC can be used to guide the multi-atlas-
based prostate segmentation. Section V evaluates the contri-
butions of the extended SRC and presents our segmentation
results. Finally, we conclude and discuss possible directions
of the future research in Sec. VI.

II. SPARSE REPRESENTATION AND SRC

Sparse representation models data with linear combina-
tions of a few elements from a learned dictionary. Like the
traditional data representation methods (e.g., wavelet and
Fourier transform), sparse representation method has a set
of basis elements, which column-wisely form a dictionary.
These basis elements do not need to be orthogonal or pre-
defined, which is a main difference from the traditional data

representation methods. Therefore, the dictionary for sparse
representation is usually learned through a process called dic-
tionary learning so that the learned dictionary can be well tai-
lored with respect to a specific task (e.g., reconstruction and
classification). Given a learned dictionary D ∈ Rp×N , which
has N basis elements of p dimensions, the goal of sparse rep-
resentation is to select a few basis elements to best represent
the input signal x ∈ Rp. Mathematically, it can be formulated
as the following sparse coding problem:

α� = argmin
α

‖x − Dα‖2
2 + λ ‖α‖1 , (1)

where α� ∈ RN is called sparse representation or sparse code
of x with respect to the dictionary D, ‖α‖1 is the L1 norm
of α, and λ is a parameter that controls the sparsity of α� or
the number of nonzero entries in α�. The larger the λ is, the
sparser the α� is and the fewer nonzero entries the α� has.

Based on the sparse representation, SRC (Ref. 22) was re-
cently proposed and has achieved the state-of-the-art results in
face recognition. In SRC, to classify a new sample, all train-
ing samples from different classes are used to represent it in
a competitive manner, and the class label is determined by
choosing the class that best reconstructs it. Specifically, the
training samples belonging to the same class are first column-
wisely grouped into subdictionaries, which are further com-
bined to form a global dictionary D ∈ Rp×N :

D = [D1, . . . , Di , . . . , DK ] , (2)

= [d1,1, d1,2, . . . , di,j , . . . , dK,NK
], (3)

where Di is the subdictionary of class i, di,j is the jth training
sample of class i, K is the total number of classes, NK is the
total number of training samples in class K, and N is the to-
tal number of training samples equal to

∑K
i=1 Ni . To classify

a new sample x ∈ Rp, its sparse code α� ∈ RN is first com-
puted with respect to the global dictionary D according to
Eq. (1). Then the residue with respect to each class is
calculated:

r i = x − Diα
�
i , i ∈ {1, . . . , K} , (4)

where r i ∈ Rp is the residue with respect to class i, and α�
i

carries entries of α� corresponding to the indices of columns
in D belonging to Di . Finally, the signal x is classified to the
class with the minimum L2 residue norm.

As we can see, the global dictionary D consists of sub-
dictionaries of different classes, which are simply ensembles
of training samples. Although it is effective in face recogni-
tion, it has two main limitations when applied to pixel-wise
classification. First, medical images are usually 3D volumes
that consist of millions of voxels. Considering that the train-
ing samples are usually drawn from several medical images
and each training sample is represented by a feature vector,
the size of training samples can be very large, which makes
it impossible to use all of them to form the global dictionary.
Second, sparse code is not stable.24 When the dictionary con-
tains strongly correlated elements, sparse representation tends
to arbitrarily pick any of these elements to represent the given
sample. In such cases, the performance of SRC will be lim-
ited. While it is not a problem in face recognition since faces
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of different persons are assumed to be different, which indi-
cates that the strongly correlated elements only exist within
classes but not between classes, it is not the case in pixel-wise
classification. In medical image segmentation, each pixel usu-
ally has to be classified into one of two classes, i.e., object or
background. In order to accurately localize the boundary of
object of interest, a common strategy is to draw more object
and background training samples around the object boundary
in the training stage. These object and background samples
can be very similar and strongly correlated mainly for two
reasons. First, they are spatially close and sometimes just next
to each other. Second, in medical images, the object bound-
ary is vague and not distinctive. For voxels near the boundary,
usually no effective features can be used to discriminate them
as object or background. As a result, the global dictionary in
SRC will include strongly correlated elements from different
classes, which can inevitably limit the performance of SRC.

III. EXTENDED SRC

In order to overcome the limitations of SRC in pixel-wise
classification for the purpose of image segmentation, we pro-
pose to extend SRC from the following four aspects: (1) in-
stead of grouping all training samples into subdictionaries,
a discriminant subdictionary learning method is proposed to
learn a discriminant and compact representation of training
samples for each class. (2) The traditional L1 regularized
sparse coding is replaced by the elastic net to stabilize the
sparse code and to provide a smooth and clear boundary in
the classification result. (3) Linear regression is incorporated
to predict the class probability based on the representation
residues in order to increase the classification performance
and extend SRC from hard classification to soft classifica-

tion. (4) Iterative SRC is further proposed to iteratively refine
the classification results based on the context information ex-
tracted from the previous classification results. The flow chart
of our extended SRC is shown in Fig. 2.

III.A. Discriminant subdictionary learning

In pixel-wise classification, it is common for different
classes to have similar training samples. In such case, the
performance of SRC is limited. Discriminant subdictionary
learning aims to learn discriminant subdictionaries so that el-
ements in different subdictionaries are as distinct as possible.
In this paper, we propose to combine feature selection with
dictionary learning method as a way to learn discriminant sub-
dictionaries. First, feature selection technique is used to select
discriminant features so that, after feature selection, training
samples of different classes are as distinct as possible. Then
dictionary learning method is adopted to learn a compact rep-
resentation of these discriminant training samples in order to
make the size of subdictionary practically feasible. Consider-
ing the application of our method to prostate segmentation,
here we illustrate the idea only in binary classification. How-
ever, the proposed discriminant subdictionary learning can be
readily extended to the case of multiclass classification when
combined with multiclass feature selection techniques.25

In the context of prostate segmentation, each voxel needs
to be classified to either prostate or background. Consider that
each training sample is represented by a feature vector, which
can be intensity or image features, the objective of feature
selection is to select features discriminant between prostate
and background class, so that the selected discriminant
features can be used to readily distinguish prostate voxels
from background voxels. In this paper, feature ranking, based

FIG. 2. The flow chart of the extended SRC.
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on Fisher separation criterion (FSC),27 is adopted to select
those discriminant features. Specifically, for each feature f in
the feature vector, its FSC score is first computed as below:

FSC = |μ1 − μ2|√
v1 + v2

, (5)

where μ1 and μ2 are the sample mean of feature f in prostate
and background classes, respectively, and v1 and v2 are the
sample variance of feature f in prostate and background
classes, respectively. Features with high FSC scores are
considered discriminant and thus selected while features
with low FSC scores are discarded in the final feature-based
representation.

After feature selection, due to the large size of training
samples in pixel-wise classification, it is practically infeasible
to directly use them to form subdictionaries. For storage and
computational efficiency, it is necessary to adopt a dictionary
learning method to learn a compact representation of those
discriminant training samples. Nowadays, many dictionary
learning methods18, 28, 29 have been proposed. However, most
of them are reconstruction-oriented, which unfortunately do
not consider discriminability in the dictionary optimization.
As a result, elements in different independently learned
subdictionaries can be similar and highly correlated. In
this paper, we use K-means clustering to learn a compact
representation of discriminant training samples for each class.
Different from reconstruction-oriented dictionary learning
methods, K-means does not learn a subdictionary to best
represent the given training samples. Instead, it clusters the
discriminant training samples and selects their cluster cen-
troids as dictionary elements to form subdictionaries, which
can better preserve the discriminant characteristics of training
samples, compared to those learned by reconstruction-
oriented methods, and thus can lead to better classification
performance.

Once subdictionaries of different classes are learned, their
columns are first normalized to the unit norm and then put
together to form the global dictionary according to Eq. (2) for
the later classification.

III.B. Elastic net

In abdominal CT images, the prostate is of extremely low
contrast and its boundary is indistinct. As far as we know,
no effective features have been identified to accurately local-
ize the prostate boundary. Therefore, even after feature selec-
tion, prostate and background training samples drawn near the
prostate boundary can still be quite similar, which inevitably
introduces highly correlated elements between subdictionar-
ies. As stated previously, these highly correlated elements can
cause sparse coding instable, especially when samples to clas-
sify are similar to those highly correlated elements. Specifi-
cally, during sparse coding, when several highly correlated el-
ements are available, only one of them tends to be selected in
the final sparse representation. Due to the existence of noise,
this selection is quite sensitive, which means that samples
with similar features can have distinct sparse codes and thus
be classified into different classes due to the small noises. As

(b)(a)

FIG. 3. (a) Zigzag prostate boundary caused by the L1 regularized sparse
coding and (b) smooth prostate boundary by adopting the elastic net in SRC.

a result, the classification of prostate boundary voxels in the
new treatment image is instable because their feature vectors
are considered similar to the highly correlated elements be-
tween two subdictionaries. Figure 3(a) gives a typical classi-
fication result of our extended SRC using the L1-regularized
sparse coding. As we can see, the prostate boundary is zigzag
and unclear, which justifies our statement.

To address this problem, we replace the traditional L1-
regularized sparse coding with the elastic net,23 which com-
promises between sparsity and stability. Instead of only using
the L1 constraint to regularize the least square problem, the
elastic net balances between L1 constraint and L2 constraint:

α� = argmin
α

‖x − Dα‖2
2 + λ1 ‖α‖1 + λ2

2
‖α‖2

2 . (6)

As we know that the solution of the L2-regularized least
square problem is stable. Thus, adding L2 regularization helps
stabilize the sparse code. Besides, the elastic net encourages
a grouping effect,23 where strongly correlated elements tend
to be selected together during the sparse coding, which can
reduce the classification error caused by the instability of the
L1-regularized sparse coding when the across-subdictionary
correlations are less than within-subdictionary correlations.
Therefore, we propose to use the elastic net to replace the
traditional L1-regularized sparse coding in pixel-wise classi-
fication where there exist highly correlated elements in sub-
dictionaries of different classes. Practically, we found that
boundary-smoothing effects can be achieved by stabilizing
the sparse code. Figure 3 visually compares the classification
results of the L1 regularized sparse coding and the elastic net.

III.C. Residue-based linear regression

In the traditional SRC, residue norms with respect to each
class are compared and the new sample is classified to the
class with the minimum residue norm. In such cases, residues
of different features are equally treated. While it is reasonable
when features are of the same type and importance, it is not
desirable in other cases. Usually each voxel is represented by
the combination of different types of features, thus the dis-
criminabilities of individual features are different and their
contributions to classification are also different. Therefore,
equally weighting them in determining the class label limits
the classification performance. Besides, the traditional SRC
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is a hard classification method, which only assigns a class la-
bel to the new sample. In contrast, soft classification provides
more quantitative information, especially in the decision mar-
gin where the class membership is unclear. Based on these
observations, we propose to learn a linear regression model
to predict the class probability based on the residues, which
extends SRC from hard classification to soft classification.

Specifically, in the training stage, discriminant subdic-
tionary learning is first applied to select the p̂ topmost dis-
criminant features from a set of N training samples repre-
sented by their original p-dimensional feature vectors, and
to learn two discriminant subdictionaries. These learned sub-
dictionaries are further combined into a global dictionary
D̂ ∈ Rp̂×M , where p̂ (<p) is the number of selected discrim-
inant features and M (<N) is the size of dictionary D̂. Then,
for each sample represented by its selected discriminant fea-
tures, its sparse code with respect to D̂ can be computed us-
ing Eq. (6), and its object (prostate) residue r i

obj ∈ Rp̂ and
background residues r i

bk ∈ Rp̂ can be calculated by follow-
ing Eq. (4), respectively. Finally, these object and background
residues can be used together with their class labels to learn a
linear regression model by solving the regularized least square
problem in Eq. (7). Since nondiscriminant features have al-
ready been filtered out during the discriminant subdictionary
learning procedure, all the retained features are considered as
discriminant and can have contribution in prediction of class
probability. Therefore, in our linear regression model, we do
not perform any feature selection and simply use L2 con-
straint as a regularization term:

min
m

N∑
i

∥∥li − mT r i

∥∥2

2 + γ ‖m‖2
2 , (7)

where li ∈ {−1, 1} is the class label of the ith training sample,
r i = [r i

obj
T
, r i

bk

T
]T is the combined residue of the ith training

sample, m ∈ R2p̂ is the linear coefficient vector of the linear
regression model, and γ is the weight for regularization. γ can
be set to 0 when the number of training samples is sufficiently
large. To classify a new signal, its combined residue rnew is
first computed by following the same pipeline in the training
stage. Then, the class probability is estimated by a truncated
linear mapping:

P (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, mT rnew ≤ −1,

1, mT rnew ≥ 1,

mT rnew + 1

2
, otherwise.

(8)

By incorporating the residue-based linear regression into
SRC, full residual information is used, instead of just using
their norm. Besides, individual features are weighted by their
contributions in predicting the class probability. Compared
with the traditional SRC, we found the classification perfor-
mance can be increased by using residue-based linear regres-
sion, which will be shown in Sec. V.

III.D. Iterative SRC

Segmentation by classification is often criticized by not
considering the spatial regularization because each pixel is
independently classified. Due to the classification error, there
can be isolated object pixels in the background or vice versa.
Recently Tu proposed the autocontext model,30 which uses
context information to iteratively refine the classification re-
sults. Specifically, at each classification iteration, previous
classification results at context locations are extracted as con-
text features to assist the classification in the current iteration.
So, for each pixel, it can be represented by a feature vector
that contains both its original features and the context fea-
tures, which are updated iteratively. As the classification iter-
ates, these context features become more discriminative and
thus more helpful in the classification. As a result, the classi-
fication probability map becomes clearer and clearer. Inspired
by this idea, we incorporate the context information into SRC
and propose the iterative SRC. In this paper, for a pixel (xpt,
ypt), its context positions are defined as follows:{

xu,v = xpt + sgn
(
Ru cos

(
π
4 v

)) × ⌊∣∣Rucos
(

π
4 v

)∣∣⌋
yu,v = ypt + sgn

(
Ru sin

(
π
4 v

)) × ⌊∣∣Rusin
(

π
4 v

)∣∣⌋ , (9)

where (u, v) are two polar coordinates indexing the context
locations, Ru is the radius indexed by u, sgn is the sign func-
tion, | · | gives the absolute value, and � · � gives the floor of a
real number. In this paper, we set Ru ∈ {4, 5, 6, 8, 10, 12, 14,
16, 20, 25} and v ∈ {0, 1, 2, 3, 4, 5, 6, 7}. Figure 4(d) gives
an illustration of context locations of the center pixel in the
image.

In the iterative SRC, initially we start with a uniform prob-
ability map since no classification has been performed. Due
to lack of discriminability, these context features are filtered
out by discriminant subdictionary learning, which means in
the first classification iteration the context features are not
involved. In the later classification iterations, the context
features are iteratively updated and encode more and more ac-
curate class probability information about its surrounding pix-
els, which can be considered as effective high-level features.
As a result, more context features are identified as the top-
most discriminant features in the discriminant subdictionary
learning and thus selected to guide the refinement of the clas-
sification results. Figure 4 shows a typical classification prob-
ability map at different iterations, which clearly justifies the
effectiveness of the iterative SRC. More results will be pre-
sented in Sec. V.

IV. PROSTATE SEGMENTATION VIA
EXTENDED SRC

In this section, we describe how the extended SRC can be
applied to guide the multi-atlas-based prostate segmentation.
The main motivation of using SRC is that we believe patches
repeat not only spatially but also longitudinally. Therefore,
in prostate segmentation, patches in the new treatment im-
age likely have appeared in the previous treatment images or
the planning image. If we build two discriminant patch-based
subdictionaries for prostate and background using previous
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(a) (b) (c) (d) 

FIG. 4. (a)–(c) The classification results in the first, second, and third iteration, respectively. Points in (d) show the context locations of the center pixel in the
image.

images, for a patch in the new treatment image, it tends to
draw more supports from the respective subdictionary in the
sparse representation. Based on the representation residues
corresponding to each class, we can estimate class probability
of the voxel associated with this patch.

Our proposed method requires two treatment images
to be manually segmented in order to fully capture the
patient-specific appearance variations. In the later treatment
days, physicians only need to manually identify the middle
slices along two coordinate directions in order to initialize
the method. Compared with the fact that currently physicians
have to manually segment up to 40 treatment images for each
patient, the effort to initialize our method is minor.

The whole section is divided into four subsections. In the
Subsection IV.A, we briefly introduce the types of features
used in our method. Subsection IV.B presents the preprocess-
ing steps before prostate segmentation. Subsection IV.C ex-
plains the training stage of our method, which learns two sets
of location-adaptive classifiers along two coordinate direc-
tions. The testing stage is described in the Subsection IV.D
where we show how these learned location-adaptive classi-
fiers can be applied to guide the prostate segmentation in
the current treatment image. Figure 5 illustrates the overall
pipeline of our prostate segmentation method.

IV.A. Types of features

In this paper, two types of appearance features are used,
which are nine-dimensional histogram of oriented gradients
(HOG) features31 and 23 normalized Haar features. Each
voxel is represented by the combination of local appearance
features and context features. The local appearance features
consist of nine-dimensional HOG features and 23 normalized
Haar features computed in a 21 × 21 local window. Different
from the autocontext model, the context features used in this
paper are not the only class probabilities extracted at context
locations from previous classification results. At each context
location, the same types of appearance features are also ex-
tracted in order to fully capture the context appearance infor-
mation surrounding the pixel under study.

IV.B. Preprocessing

In the preprocessing stage, all treatment images are rigidly
aligned onto the planning image space based on the pelvic
bones, which are segmented by simple thresholding. This
alignment process is performed by the FLIRT toolkit.32 Based
on the manually delineated prostate in the planning image, we
compute the centroid of the prostate and define a 128 × 128

FIG. 5. The flow chart of our prostate segmentation method using the extended SRC.
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× 30 ROI centered at the centroid, which is used to crop all
images in order to reduce the computational burden.

IV.C. Training stage

In the training stage, prostate and background training
samples are first randomly drawn from the previous images
of the same patient. Specifically, 3/5 prostate training sam-
ples and 1/2 background training samples are drawn near
the prostate boundary in order for the learned classifiers to
accurately localize the prostate boundary. The rest prostate
training samples are taken from the prostate interior, and the
rest background training samples are taken from pelvic bone,
bowel gas, and other background regions. In order to utilize
3D image information and increase the robustness of classi-
fication, two sets of location-adaptive classifiers are learned
along the anterior–posterior (y) direction and the superior–
inferior (z) direction, respectively, because slices along these
two directions contain richer context information (e.g., pelvic
bone) than those along the lateral (x) direction. Initially, two
manually segmented treatment images as well as the plan-
ning image of the same patient are used in the training. As
the number of segmented treatment images increases, only
the latest five treatment images are used as the training im-
ages, which accounts for the tissue appearance change under
radiation treatment.

During the training, in each direction, every three slices
are grouped into sections. Based on the segmented prostate
of the training images, we can know the section-to-section
correspondence between training images. For each set of cor-
responding sections, a location-adaptive classifier is learned
according to the extended SRC using the prostate and back-
ground training samples drawn from those sections. Here a
location-adaptive classifier consists of a sequence of subclas-
sifiers. Each subclassifier is a collection of a feature selection
matrix obtained from discriminant subdictionary learning, a
global dictionary formed by two discriminant subdictionaries,
and a residue-based linear regression model. Each one is re-
sponsible for one classification iteration and takes the classifi-
cation results of the previous subclassifier as input. Therefore,
for each direction, we can learn a set of location-adaptive clas-
sifiers, which takes the variability of different prostate regions
into account. In total, two sets of location-adaptive classifiers
are learned during the training stage.

IV.D. Testing stage

In the testing stage, the physician first needs to manu-
ally identify the middle slices along two coordinate directions
so that rough correspondences between the location-adaptive
classifiers and slices can be established. Then, based on the
established rough correspondences, each slice is pixel-wisely
classified by its corresponding classifier. Finally, the classifi-
cation results of all slices along one direction are stacked to
form a 3D prostate probability map. Since the classification is
performed in both anterior–posterior (y) and superior–inferior
(z) directions, two prostate probability maps can be obtained,
which are further averaged to produce a fused prostate proba-
bility map. Once we have a fused prostate probability map, all

previous segmented prostate images of the same patient can
be aligned onto this map and then majority voting strategy can
be adopted to obtain the final prostate segmentation result in
the current treatment image.

V. EXPERIMENTAL RESULTS

In this section, several experiments have been conducted
to evaluate the contributions of different components of our
method. Our dataset consists of 24 patients with total 330 CT
images. Each patient has more than nine daily CT scans. The
image size of axial slices is 512 × 512 with voxel size 1 mm
× 1 mm. The interslice distance is 3 mm. The manual seg-
mentation results provided by an experienced clinical expert
are available for each CT image to serve as the ground truth.
Five quantitative measures are used to evaluate the perfor-
mance of our method and compare with other state-of-the-art
prostate segmentation methods.

Dice similarity coefficient (DSC) (Ref. 33) is a compre-
hensive set similarity measure that is widely used to evalu-
ate the performance of segmentation methods. It is defined as
(2 × |Vs ∩ Vg|)/(|Vs | + |Vg|), where Vs and Vg are the sets of
object (prostate) voxels automatically segmented by the seg-
mentation method and manually segmented by clinical expert,
respectively, and | · | returns the cardinality of a set. It should
be noted that the DSCs in all of our experiments are calculated
based on the whole 3D prostate volume, instead of a particular
slice.

Centroid distance (CD) measures the distance between the
centroid of the automatic segmentation result and that of the
ground truth. The centroid is defined as the mean position
of all object (prostate) voxels. The differences along the lat-
eral (x) direction, the anterior–posterior (y) direction, and the
superior–inferior (z) direction are measured independently.

Average surface distance (ASD) is calculated as the aver-
age distance between the surface of the automatic segmented
prostate and that of the ground truth along 360 × 180 rays
evenly distributed in a sphere originated from the centroid of
the ground truth.

True positive rate (TP) is the percentage of the ground truth
that overlaps with the automatic segmentation result.

False positive rate (FP) is the percentage of the automatic
segmentation result that lies outside the ground truth.

V.A. Parameters

To determine the values of λ1 and λ2 in the elastic net, we
tested several combinations with λ1 ∈ {0.01, 0.05, 0.1, 0.2}
and λ2 ∈ {0.01, 0.05, 0.1, 0.2}. We found that, as long as the
ratio λ1/λ2 is fixed, the classification results are not sensitive
to any particular combination of λ1 and λ2. Thus, λ1 and λ2

are both set to be 0.1 in our experiments.
The number of features selected in the discriminant sub-

dictionary learning is 200, based on the feature dimension
analysis as shown in Fig. 6. The dictionary size for each
subdictionary is 800, which is the number of clusters used
in the K-means clustering.

The parameter γ in Eq. (7) is set to be 0. Because the num-
ber of training samples used is often over 10 000, which is
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FIG. 6. The performance versus feature dimension plot. DSCs are calculated
by binarizing the classification results using 0.5 threshold.

sufficient to prevent the overfitting problem. Besides, in
prostate segmentation, totally three classification iterations
are used to iteratively refine the classification results.

V.B. Importance of using our classification method in
prostate segmentation and its sensitivity to the middle
slice identification

Before we start to evaluate our proposed extended SRC, we
first studied the importance of using our classification method
in prostate segmentation and also its sensitivity to the middle
slice identification. To evaluate the importance of using our
classification method in prostate segmentation, we compared
it with a simple translation-based method, which translates
the patient-specific atlases to match the two manually identi-
fied middle slices and adopts the majority voting strategy to
do the label fusion. The mean DSC obtained by the simple
translation-based method is 0.685 ± 0.204, which is signifi-
cantly ( p < 0.0001) worse than our method that can obtain
0.913 ± 0.045 mean DSC in our dataset. Besides, the simple
translation-based method heavily relies on the accuracies of
two identified middle slices. In practice, physicians may intro-
duce errors in identifying the middle slices, which may affect
the segmentation performance. But, as we will show below,
our method is quite robust to the middle slice identification.

To test the sensitivity of our method to the manually iden-
tified middle slices, we run our method using different middle
slice positions. Specifically, the middle slices along y direc-
tion and z direction both vary within six slices from the true
middle slices identified by the ground truth. In total, 169 (13
× 13) combinations of different middle slice positions have
been tested. The experiment is performed using the 12 CT
images of patient 1, and the mean DSCs of different middle
slice configurations are shown in Fig. 7. It should be noted
that the slice thickness along the superior–inferior (z) direc-
tion is 3 mm and the number of total slices in patient 1 along
z direction is 17. From Fig. 7, we can see that our method can
achieve above 0.90 mean DSC as long as the error of middle
slice identification is within two slices (6 mm) in z direction.

FIG. 7. The mean DSCs of patient 1 using different middle slice
configurations.

Even in the extreme case where the error of the middle slice
identification in z direction is 18 mm, equal to the six-slice
thickness, our method can still achieve over 0.90 mean DSC
as long as the error in the other direction is not large. This
is because we use the classification fusion strategy to guide
the segmentation, which can incorporate the complementary
information from both directions. That is, in case that the clas-
sification fails in one direction, the classification in the other
direction can assist and help improve the classification qual-
ity. Therefore, our method is quite robust to the middle slice
identification.

V.C. Role of K-means clustering in discriminant
subdictionary learning

To justify our statement that K-means performs better than
reconstruction-oriented dictionary learning methods in dis-
criminant subdictionary learning, we compared it with the K-
SVD algorithm,18 which is a popular reconstruction-oriented
dictionary learning method that has been successfully applied
in many fields.34, 35 It learns a dictionary to best represent a
set of training samples by minimizing the following energy
function:

min
D,A

‖X − D A‖2
F , subject to ∀i, ‖αi‖0 ≤ T0, (10)

where D is the dictionary to learn, X is the training sample
matrix where the ith column corresponds to the ith training
sample, A is the sparse code matrix where the ith column αi

denotes the sparse code of the ith training sample, ‖·‖2
F is

the Frobenius norm of the matrix, ‖ · ‖0 is the informal L0
norm which counts the number of nonzero entries, and T0 is
the sparsity which restricts the maximum number of nonzero
entries in the sparse code.

In this experiment, K-SVD and K-means are separately
used as the dictionary learning method in our discriminant
subdictionary learning. Their classification results along the
superior–inferior (z) direction are compared based on DSC,
to see which performs better in the terms of discriminant
subdictionary learning. The experiment was conducted
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FIG. 8. The mean DSCs of 24 patients obtained using K-means and K-SVD,
respectively.

on 330 images of all 24 patients. Except the discriminant
subdictionary learning, all other parts are the same with the
traditional SRC so that the influence from other contributions
of our method can be excluded. Specifically, in our method,
both the elastic net and residue-based linear regression
are not included to replace the corresponding parts in the
traditional SRC. Besides, the classification only takes one
iteration so that the context information does not affect
the comparison. To maximize the performance of K-SVD,
orthogonal matching pursuit (OMP) algorithm is adopted to
solve the sparse coding problem in SRC since it is internally
used by K-SVD as the sparse coding solver. The sparsity
of OMP (the maximum number of nonzero entries allowed)
is chosen to be 20, which is empirically proven to be suffi-
ciently good, considering both classification performance and
computational efficiency. The overall mean DSC obtained
by K-SVD and K-means are 0.825 ± 0.050 and 0.850
± 0.057, respectively. The mean DSCs of all 24 patients us-
ing K-SVD and K-means are shown in Fig. 8. As mentioned
previously, K-means can preserve the discriminability of the
training samples during the dictionary learning process, while
K-SVD cannot. This renders the classification performance
using K-means in the discriminant subdictionary learning is
significantly (p < 0.0001) better than that using K-SVD.

V.D. Elastic net versus L1 regularized sparse coding

In this subsection, we justify our statement that the elastic
net outperforms the traditional L1 regularized sparse coding
when subdictionaries of different classes contain highly
correlated elements. Figure 13(a) shows a typical dictionary
element correlation matrix between prostate and background
subdictionaries learned in the first iteration. The entry in the
ith row and the jth column corresponds to the correlation
between the ith column in background subdictionary and
the jth column in prostate subdictionary, which is calculated
as their dot product. It can be clearly seen that even after
discriminant dictionary learning, there are still many highly
correlated elements between two subdictionaries. As ex-
plained previously, in such case, the performance of SRC is

FIG. 9. The DSCs of final classification results of patient 1 using the elastic
net and the L1 regularized sparse coding, respectively.

limited. The elastic net can stabilize the sparse code, which
selects and deselects highly correlated elements together
in the sparse representation. So when a voxel to classify
finds its similar elements in both prostate and background
subdictionaries, instead of selecting one of them in the sparse
representation, which may cause serious classification error
due to the existence of noises, the elastic net tends to be cau-
tious and selects all of them, which results in an informative
classification probability that is useful for later refinements.

In this experiment, we evaluate the contribution of the elas-
tic net in the context of iterative SRC since we believe that
the prostate probability map obtained by the elastic net can
better guide the classification refinement than that by the L1
regularized sparse coding. The elastic net and the L1 regular-
ized sparse coding are separately used in our extended SRC.
Their final classification results along the superior–inferior
(z) direction are compared based on DSC. SPArse Modeling
Software (SPAMS) toolbox36 is adopted to solve both the L1
regularized sparse coding and the elastic net. Figure 9 shows
the DSCs of final classification results of patient 1 using the
elastic net and the L1 regularized sparse coding, respectively.
From the figure, we can see that better classification results
are obtained using the elastic net. Figure 10 visually compares
several typical classification results between the elastic net
and the L1 regularized sparse coding, from which we can see
that, by adopting the elastic net, smoother and clearer bound-
aries can be achieved in the final classification results for dif-
ferent prostate regions (e.g., apex, central, and base regions).

V.E. Residue-based linear regression versus
residue-norm-based classification

In this experiment, we show that by adopting residue-based
linear regression the classification performance can be im-
proved. Since the classification results of residue-based linear
regression are probabilistic, we first binarize the results us-
ing 0.5 threshold and then compare them with residue-norm-
based classification results. Only one classification iteration is
used to exclude the influence of context information.

Figure 11 displays the mean DSCs of all 24 patients
obtained using residue-norm-based classification (RN) and
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(a) (b) (c) (d)

FIG. 10. The first row shows several typical classification results using the L1 regularized sparse coding in different prostate regions. The second row shows
the corresponding classification results using the elastic net. The major differences between the classification results of the L1 regularized sparse coding and the
elastic net are highlighted by circles. (a) Apex slice; (b) central slice; (c) central slice; (d) base slice.

residue-based linear regression (RBLR), respectively. From
the figure, we can find that the classification performance
is increased in almost all patients by adopting residue-based
linear regression. Only in patient 5, the classification perfor-
mance shows a noticeable decrease. That is because our clas-
sification method fails in one treatment image of patient 5. In
such case, residue-based linear regression can lead to worse
classification performance than residue-norm-based classifi-
cation. Figure 12 visually compares several final classification
results in different prostate regions (e.g., apex, base, and cen-
tral part) using residue-based linear regression and residue-
norm-based classification, respectively, from which we can
see that by considering different contributions of features in
regression and weighting their residues accordingly, better
segmentation results can be achieved, especially at voxels
near the prostate boundary which are considered the most
difficult to segment. Statistically, we find the classification

FIG. 11. The mean DSCs of 24 patients after one classification iteration
using RN and RBLR, respectively.

performance by adopting residue-based linear regression is
significantly (p < 0.0001) better than that using residue-norm-
based classification.

V.F. Iterative SRC versus single-iteration SRC

This subsection evaluates the iterative classification
scheme in the extended SRC and shows how the classifica-
tion results get refined during iterations. In the iterative SRC,
the context features extracted from previous classification re-
sults are incorporated to gradually increase the discriminatory
power of two subdictionaries. Figure 13 shows typical dictio-
nary element correlation matrices in successive three itera-
tions, from which we can see that the correlations between
elements of prostate and background subdictionaries con-
siderably decrease during iterations. This indicates that two
subdictionaries become more and more discriminant. As the
across-subdictionary correlations decrease, the performance
of SRC increases.

Figure 14 gives two additional examples to illustrate the
classification refinements during three iterations in the apex
and central regions of the prostate. In the first iteration,
without the assistance of context information, it is difficult
to accurately classify all voxels, especially those located near
the prostate boundary. So the classification maps contain
many misclassifications and the prostate boundaries are also
not clear. However, as more context information becomes
available, the classification results get obviously refined and
the prostate boundary becomes clearer and clearer. This
shows the effectiveness of context information in classifi-
cation. Figure 15 quantitatively compares the classification
performance using one-iteration and three-iteration classi-
fications. As we can see, classification performance can be
improved by taking into account the context information.
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FIG. 12. The first and second rows show several final classification results in different prostate regions overlaid with manually delineated prostate contours
using residue norm and residue-based linear regression, respectively. (a) Apex slice; (b) central slice; (c) central slice; (d) base slice.

(c)(b)(a)

FIG. 13. The dictionary element correlation matrices between prostate and background subdictionaries in successive three classification iterations.

FIG. 14. Three columns show classification results in the first, second, and third iterations, respectively. The first and the second rows show typical classification
refinements in the central slice and the apex slice of the prostate, respectively.
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FIG. 15. The mean DSCs of 24 patients using one-iteration and three-
iteration classifications, respectively.

V.G. Multi-atlas-based segmentation

In this subsection, we evaluate multi-atlas-based segmen-
tation and purely classification-based segmentation. In multi-
atlas-based segmentation, we first use the proposed extended
SRC to do the classification, then rigidly align the patient-
specific atlases to the target image based on the matching with
the classification result, and finally adopt the majority voting
strategy to fuse the labels from different aligned atlases. In the
purely classification-based segmentation, we simply use 0.5
as a threshold to binarize the classification map for segmenta-
tion. We compared two strategies using the classification map
obtained along the superior–inferior (z) direction, and used
DSC to measure their performances. Figure 16 displays the
mean DSCs of all 24 patients between these two strategies.
Obviously, by using multi-atlas-based segmentation, which
takes patient-specific shape priors into account, irregular
prostate shapes can be avoided in the final segmentation
result, and thus the segmentation accuracy can be largely
improved, especially for the cases where the classification
does not do a good job (e.g., patients 5, 13, 14, and 17).

FIG. 16. The mean DSCs of 24 patients using purely classification-based
segmentation and multi-atlas-based segmentation, respectively.

V.H. Comparison with other state-of-the-art methods

To demonstrate the effectiveness of our method in
prostate segmentation, five state-of-the-art prostate segmen-
tation methods are used to compare with our method, in-
cluding two deformable-model based methods,8, 9 two reg-
istration based methods,10, 12 and one classification based
method.13 The best quantitative results reported in their works
are adopted in the comparison. Figure 17 shows the box-
and-whisker diagram of DSC and ASD measurements of our

FIG. 17. (a) and (b) The box-and-whisker diagram of DSC and ASD mea-
surements of our method on 24 patients, respectively. The bottom and top of
each box are the 25th and 75th percentile, respectively. The band near the
middle is the 50th percentile. The whiskers extend to the most extreme data
points not considered as outliers. Outliers (marked as crosses) are defined
as data measurements outside the range [q1 − 1.5(q3 − q1), q3 + 1.5(q3

− q1)], where q1 and q3 are the 25th and 75th percentiles, respectively.
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TABLE I. The quantitative comparison of our method with other five state-of-the-art prostate segmentation methods based on various measurements. NA in the
table means the corresponding measurement was not reported. The best performance of each measurement among comparison is shown in bold letter.

Deformable models Registration methods Classification methods
Category
Method Feng et al. (Ref. 8) Chen et al. (Ref. 9) Davis et al. (Ref. 10) Liao et al. (Ref. 12) Li et al. (Ref. 13) Our method

Subject no. 24 13 3 10 11 24
Image no. 330 185 40 163 161 330
Mean DSC (%) 89.3 ± 5.0 NA 82.0 ± 6.0 89.0 ± 2.0 90.8 ± NA 91.3 ± 4.5
Median DSC (%) 90.6 NA 84.0 90.0 NA 92.1
Median TP NA 0.84 NA NA 0.90 0.92
Median FP NA 0.13 NA NA 0.10 0.08
Mean ASD (mm) 2.08 ± 0.79 NA NA NA 1.4 ± NA 1.24 ± 0.77
Median ASD (mm) 1.87 1.10 NA NA NA 1.14
Mean CD, x (mm) NA NA −0.26 ± 0.6 NA 0.18 ± NA 0.02 ± 0.61
Mean CD, y (mm) NA NA 0.35 ± 1.4 NA 0.02 ± NA −0.05 ± 1.53
Mean CD, z (mm) NA NA 0.22 ± 2.4 NA 0.57 ± NA 0.14 ± 1.84

method on 24 patients. In most cases, our method achieves
over 0.9 DSC and about 1 mm ASD, which is one pixel width.
Table I quantitatively compares our method with other state-
of-the-art methods based on various measurements. From the
table, we can observe that our method achieves the best per-
formance on almost all measurements. Although the median
ASD of our method is slightly larger than that of Chen et al.,9

the median TP and FP of our method are much better than
theirs. In the mean centroid comparison, the mean CD along

y direction of our method is slightly worse than that of Li
et al.,13 but in other two directions our method achieves more
accurate estimation. Moreover, compared with Li’s method,
our method is more extensively evaluated on a larger dataset
that consists of more than 300 CT images. It should be
further pointed out that we use the same dataset as Feng
et al.,8 Liao and Shen,12 and Li et al.13 The datasets of Liao’s
method12 and Li’s method13 are subsets of our dataset. There-
fore, the comparison with their methods clearly reflects the

FIG. 18. Several typical segmentation results by our method. Each row corresponds to different slices of one CT image. The dark lines indicate the prostate
contours manually delineated by expert, and the light lines indicate our segmentation results.
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effectiveness of our methods in prostate segmentation.
Figure 18 gives several visual segmentation results achieved
by our method. It can be seen that even in the existence of
bowel gas or heterogeneous prostate region, our method can
still achieve accurate segmentation results.

VI. CONCLUSION AND DISCUSSION

In this paper, we propose to first use sparse representa-
tion based classification to enhance the prostate by pixel-
wise classification in order to address the poor contrast of
CT prostate images. Then, based on the classification results,
previous segmented prostates of the same patient can be used
as patient-specific atlases to align onto the current treatment
image space and finally the majority voting strategy can be
adopted to segment the prostate. In order to overcome the
limitation of the traditional SRC in pixel-wise classification,
especially for the purpose of image segmentation, we further
propose to extend SRC from four aspects. Five state-of-the-art
prostate segmentation methods have also been compared with
our method using various measurements. The experimental
results show that our method can achieve better segmentation
accuracy than others under comparison.

The main limitation of our method is the use of semiauto-
matic procedure. The future direction includes automatic es-
timation of middle slices and automatic segmentation of the
first two treatment images. One possible direction is to learn
the appearance information of distinctive prostate landmarks
and train several landmark detectors, which can be used to de-
tect the landmarks in the new treatment image. These detected
landmarks can be used to robustly estimate the middle slice
positions. To automatically segment the first two treatment
images, we will consider using the transfer-learning methods
to borrow the appearance information from the population
data for guiding the segmentation. As more patient-specific
treatment data are collected, the influence of population data
will be gradually reduced and replaced by the current patient’s
data. Thus, the classification performance of learned classi-
fiers can be gradually improved.
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