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Purpose: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) shows high sensi-

tivity in detecting breast cancer. However, its performance could be affected by patient motion dur-

ing the imaging. To overcome this problem, it is necessary to correct patient motion by deformable

registration, before using the DCE-MRI to detect breast cancer. However, deformable registration

of DCE-MR images is challenging due to the dramatic contrast change over time (especially

between the precontrast and postcontrast images). Most existing methods typically register each

postcontrast image onto the precontrast image independently, without considering the dynamic con-

trast change after agent uptake. This could lead to the inconsistency among the aligned postcontrast

images in the precontrast image space, which will eventually result in worse performance in cancer

detection. In this paper, the authors present a novel hierarchical registration framework to address

this problem.

Methods: First, the authors propose a hierarchical registration framework to deploy the groupwise

registration for simultaneous registration of all postcontrast images onto their group-mean image

and further aligning the group-mean image of postcontrast images onto the precontrast image space

for final alignment of all precontrast and postcontrast images. In this way, the postcontrast images

(with similar intensity patterns) can be jointly aligned onto the precontrast image for increasing

their overall consistency after registration. Second, in order to improve the registration between the

precontrast image and the group-mean image of the postcontrast images, the authors propose using

the contrast-invariant attribute vectors to guide the robust feature matching during the registration.

Results: Our proposed hierarchical registration framework has been comprehensively evaluated

and compared with affine registration and widely used deformable registration methods in both

pairwise and groupwise registration formulation. The experimental results on both real and simu-

lated images show that our method can obtain not only more accurate but also more consistent

registration results than any of all other registration algorithms.

Conclusions: The authors have proposed a novel groupwise registration method to achieve

accurate and consistent alignment for breast DCE-MR images. In the future, the authors will

further evaluate our proposed method with more clinical datasets. VC 2012 American Association of
Physicists in Medicine. [DOI: 10.1118/1.3665705]

Key words: dynamic contrast-enhanced (DCE) MRI, feature-based deformable registration, breast

tumor image, groupwise registration, local steering kernel

I. INTRODUCTION

DCE-MRI, termed as dynamic contrast-enhanced magnetic res-

onance imaging, is a widely used imaging protocol in the diag-

nosis of breast tumor. After injection of contrast agent, the

patterns between benign and malignant tumors in the DCE-MR

image behave differently, as can be reflected by the wash-in

and wash-out curves of the contrast agent. As Refs. 1 and 2

show, the intensity around carcinoma (malignant tumor) in

DCE-MR image increases rapidly at the first and second post-

contrast time points and then decreases gradually at subsequent

time points. In contrast, the curve of the fibroadenoma (benign

tumor) keeps increasing after injection. Therefore, the consist-

ent point-by-point comparison of intensity change over time

between the precontrast image (before contrast injection) and

postcontrast images (after contrast injection) is important for

the classification between benign and malignant tumors.

Accordingly, the precontrast and postcontrast images

should be well aligned in a common space (usually the pre-

contrast image space) before using them to detect tumors.

However, the conventional optical flow-based methods,3,4

which assume the intensities to be constant in the precontrast

and postcontrast images, might not be able to correct the

entire patient motion because of the nonuniform intensity

change. To this end, many deformable registration methods,

parameterized by local transformation models, have been

investigated to more accurately align the DCE-MR images,

e.g., using the normalized mutual information as a cost func-

tion and modeling the deformation field by B-splines,5–7 mul-

tiscale fluid model,8 or finite element model (FEM).9,10

However, these intensity-based registration methods still suf-

fer from the dramatic intensity change between precontrast

and postcontrast images, which could introduce some artifacts
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after registration, especially around tumor area. For example,

as reported in Refs. (11 and 12), the dramatic contrast change

could result in the unrealistic shrinkage or expansion of tumor

after registration. To alleviate this issue, the concept of vol-

ume preserving registration11,12 is introduced to the B-spline-

based free-form deformation framework to enforce the incom-

pressibility of tumor region.

Many methods have been proposed to address the prob-

lem of dramatic contrast change in DCE-MR images by ex-

plicitly estimating the enhanced contrast after agent

injection when registering the precontrast and postcontrast

images. For example, several methods in Refs. 13–15 intro-

duce the brightness shift term in the optical flow equation to

account for the dynamic intensity changes. Besides, an itera-

tive optimization algorithm has also been presented in Ref.

16 to de-enhance the breast DCE-MR images and then to

register precontrast and postcontrast images for avoiding the

dynamic intensity changes. Recently, Zheng et al.17 further

proposed to use the Lorentzian estimator, which is the log

function of time, to handle the temporal intensity change.

However, the existing breast DCE-MR image registration

algorithms are limited at several aspects. (1) Most algorithms

only use image intensity to drive the registration. However,

the matching of image intensities does not necessarily mean

the correct anatomical correspondences. (2) The large con-

trast difference between the two underlying images is not

considered during the image registration. Although some

methods can manage to make the contrast as similar as possi-

ble before registration, the solutions have not been fully

incorporated into the registration. (3) The registrations are

independently performed between precontrast image and

each of the postcontrast images, thus possibly leading to

inconsistent registration among all postcontrast images. This

may lead to discontinuous intensity change over time, while

the intensities in the real tumor should be smoothly evolved

according to the wash-in and wash-out curves.

It is clear that the key to achieve accurate and consistent

registration is to resolve the difficulty in the large contrast dif-

ference among a series of DCE-MR images. In this paper, we

present a novel hierarchical registration framework for breast

DCE-MR images. We observe that the intensity variations

among all postcontrast images are much smaller than those

between precontrast and postcontrast images. In other words,

the registration between the postcontrast images is much less

challenging than that between precontrast and postcontrast

image pair. In light of this, we propose to solve the registration

problem in a divide-and-conquer way, which consists of two

steps. In the first step, we propose to employ groupwise regis-

tration on all postcontrast images. Thus, we are able to gain

reliable and consistent alignment of these postcontrast images.

Here, we follow the unbiased groupwise registration approach

which iteratively (1) estimates the group-mean image according

to the current registration results and (2) registers all postcon-

trast images to the latest estimated group-mean image. In the

second step, we propose a robust feature-based, instead of only

intensity-based, registration method to align the group-mean

image of all postcontrast images with the precontrast image.

Specifically, two kinds of image features, i.e., local histogram

(LH) and local steering kernel (LSK), are utilized, which work

in intensity and gradient domains, respectively. In particular,

the LSK (Ref. 18) estimated from the covariance matrix of

local gradients is robust to the contrast change19 since it cap-

tures the local variations of boundary. On the other hand, the

local histogram based feature, measuring the regional intensity

changes, is less sensitive to the image noise than the gradient-

based features. After combining these two image features, we

follow the hierarchical deformation strategy used in our

previous work20 to establish the reliable correspondences

between precontrast and postcontrast images. By registering all

postcontrast images and precontrast image in these two steps,

we can achieve much better registration results in terms of

registration accuracy and consistency. We have comprehen-

sively evaluated the performance of our proposed registration

method on both simulated and real breast DCE-MR images,

with the comparison to affine registration, free-form deforma-

tion (FFD)5 method with volume-preserving constraint, hier-

archical attribute-based registration algorithm (HAMMER),20

in both pairwise and groupwise formulation. In all experiments,

our proposed method outperforms all other algorithms, thus

demonstrating the advantage of our hierarchical groupwise

registration framework.

In the following, we first present the details about our pro-

posed registration method in Sec. II. Then, we evaluate our

proposed method in Sec. III by comparison with affine regis-

tration, three pairwise registration, and three groupwise

registration methods. Finally, we make a conclusion in

Sec. IV.

II. METHODS

We will first present the overview of our hierarchical regis-

tration framework for breast DCE-MR images in Sec. II A.

Then, we will describe the groupwise registration of all

postcontrast images in Sec. II B, followed by the registration

between the precontrast image and the group-mean image

of all postcontrast images by a robust feature matching

algorithm in Sec. II C. Finally, we will summarize our overall

registration framework for the breast DCE-MR images in

Sec. II D.

II.A. The overview of our hierarchical registration
framework

The goal of the registration on a DCE-MR image sequence

is to align all N postcontrast images Itðt ¼ 1;…;NÞ to the do-

main of precontrast image I0 by estimating the dense deforma-

tion fields Ft ¼ fftðxÞjftðxÞ ¼ xþ uI0!It
ðxÞ; x 2 XI0

g, where

uI0!It
ðxÞ denotes the displacement of a point x in the precon-

trast image domain XI0
to the postcontrast image It. After

injecting the agent, the contrast around tumor area greatly

increases in the first few minutes and then the intensity change

becomes stable in the following postcontrast stage. As shown

in Fig. 1, the histograms of N postcontrast images look very

similar to each other, but all of them are quite different

from the precontrast image. It is worth noting that all the

conventional methods [as illustrated in Fig. 1(a)] overlook this

phenomena by simply registering each postcontrast image
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independently with the precontrast image. As mentioned ear-

lier, the registration between precontrast image and any post-

contrast image is extremely challenging due to the dramatic

contrast change. Also, by registering each postcontrast image to

the precontrast image independently, the temporal consistency

of all aligned postcontrast images in the precontrast image

space cannot be guaranteed, which will eventually affect the

measurement of dynamic contrast change in different parts of

breast that is important for the diagnosis of breast cancer.

Accordingly, we propose a hierarchical registration frame-

work [as described in Fig. 1(b)] to overcome these limitations

in two steps. In the first step (SP1: groupwise registration

upon all postcontrast images), we consider all postcontrast

images as a whole and deploy a groupwise registration algo-

rithm to jointly register them onto their common space, i.e., a

group-mean image space. Since the contrasts among all post-

contrast images are similar, more reliable registration results

can be achieved. As we will make it clear in Sec. II B,

the group-mean image M and the intermediate deformation

field FM!It
¼ ffM!It

ðxÞjfM!It
ðxÞ ¼ xþ uM!It

ðxÞ; x 2 XMg
[i.e., the solid arrows in Fig. 1(b)] of all It toward the common

space can be jointly obtained at the end of groupwise registra-

tion. In the second step (SP2: registration between the precon-

trast image and the group-mean image), we propose a robust

feature-based registration algorithm to estimate the

deformation field from the precontrast image I0 to group-

mean image M, denoted as FI0!M ¼ ffI0!MðxÞjfI0!MðxÞ ¼ x
þuI0!MðxÞ; x 2 XI0

g [see the red dashed arrow in Fig. 1(b)].

Specifically, we use the attribute vector as the morphological

signature to establish the reliable anatomical correspondences

between M and I0. The difficulties lying here are the image

noise as well as the contrast change between I0 and M. Here,

we use local histogram and local steering kernel based fea-

tures as the attribute vector of each point to deal with these

problems. As we will demonstrate later, more robust registra-

tion results can be achieved by integrating this attribute

vector in our registration. Finally, the deformation field Ft

of the precontrast image to each postcontrast image can be

composed by the deformation fields FI0!M and FM!It
, i.e.,

Ft ¼ FM!It
� FI0!M.

Compared with the conventional registration methods,

our hierarchical registration framework has the following

advantages: (1) The registration consistency can be well pre-

served by considering all postcontrast images jointly; (2) the

registration accuracy can be better achieved by robust

feature matching between the group-mean and the post-

contrast images. These two points will be made clear in

Secs. II B–II C.

II.B. Groupwise registration on postcontrast images

The goal of this step is to register all postcontrast images

It to the common space by jointly estimating the deformation

field FM!It
and the group-mean image M. We follow the

unbiased groupwise registration method21, which has two

iterative steps: Step 1: Compute the group-mean image

based on current registration results; Step 2: Register all

images to the latest group-mean image by a pairwise regis-

tration algorithm.

Suppose that in the end of ðk � 1Þth iteration, each post-

contrast image It has been deformed as Ik�1
t w.r.t its current

estimated deformation field Fk�1
M!It

, where Ik�1
t ðxÞ

¼ ItðFk�1
M!St
ðxÞÞ. Then in the next iteration (k th iteration), the

mean image Mk can be updated as

MkðxÞ ¼ 1

N

XN

i¼1

Ik�1
i ðxÞ: (1)

After that, each postcontrast image It needs to register with

Mk by pairwise registration (i.e., with the method presented

in Sec. II C), thus obtaining its new deformation field Fk
M!It

for the next iteration [ðk þ 1Þ th]. In the end of groupwise

registration, the group-mean image M in the common space

can be obtained, as well as the deformation field FM!It
of

each postcontrast image It.

Although many existing intensity-based registration algo-

rithms can be deployed in step 2, they may still suffer from

FIG. 1. Illustration of the conventional pairwise registration approach (a) and the proposed hierarchical registration framework (b).
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the contrast difference between the group-mean image and

each postcontrast image. In our point of view, a good registra-

tion method needs to (1) Establish the correct corres-

pondences for the DCE-MR images with dramatic contrast

changes and image noise; (2) Avoid overdeformation of breast

tumor which keeps relatively rigid during the breast motion.

Although some methods have been proposed to handle the

rigid transformation of tumor during registration,11,22–26 they

usually incorporate the tumor motion constraint by a specified

regularization term, e.g., using Jacobian determinant to force

the local volume incompressibility.

In Sec. II C, we will present our robust feature-based

registration method for DCE-MR images, which is used in

both the registration of all postcontrast images and their

group-mean image in SP1 and the registration between the

precontrast image and the group-mean image of all postcon-

trast images in SP2.

It is worth noting that we will use T to denote the tem-

plate image and S for the subject image in Sec. II C. In SP1,

i.e., the groupwise registration of all postcontrast images,

each postcontrast image It needs to align with the currently

estimated group-mean image Mk at each iteration k. Thus,

we use Mk as the template T and also It as subject S in the

registration method described below. In SP2, we will register

the precontrast image I0 with the group-mean image M of all

postcontrast images. Therefore, in this case, we will use I0 as

the template T and also M as the subject.

II.C. Robust feature-based registration for DCE-MR
images

In our registration method, we establish robust anatomical

correspondences in two ways. First, we define an attribute

vector as the morphological signature for each point to char-

acterize its geometric information in the neighborhood.

Second, we hierarchically select a set of points with distinc-

tive attribute vectors to drive the registration of the whole

images, thus better avoiding the ambiguity in image

matching. Moreover, we treat tumor motion as rigid motion

by fitting rigid transformation to the estimated nonrigid de-

formation around the tumor area. In the following, we will

first detail these two strategies and then present the energy

function and its solution for our deformable registration

method.

II.C.1. Attribute vector

The attribute vector on each point x consists of three

components, which can be represented as a
*ðxÞ ¼ ½aBoundðxÞ;

a
*HistðxÞ; a*LSKðxÞ�. Here, aBoundðxÞ is a scalar value denoting

the boundary response by the Canny edge detector.27 a
*HistðxÞ

denotes a set of low-order geometric moments on local in-

tensity histogram, computed from a spherical region of point

x with radius r. Here, we use the zeroth-, first-, and second-

order geometric moments. It is worth noting that a
*HistðxÞ has

been normalized between 0 and 1. Thus, given a point x in

the template T and another point y in the subject image S, the

similarity of their histogram-based features can be defined as

mHist a
*Hist

T ðxÞ;a
*Hist

S ðyÞ
� �

¼
Y

j 1�jaHist
T; j � aHist

S; j ðyÞj
� �

; (2)

where aHist
T; j ðxÞ and aHist

S; j ðxÞ are the jth element of LH-based at-

tribute vector of the template and subject images, respectively.

The histogram-based features a
*HistðxÞ are rotation-invariant

and robust to image noise, however, they are not invariant to

contrast change, which is the main challenge in the registra-

tion of DCE-MR images. To overcome this difficulty, we

introduce the LSK as the complementary attribute vector to

deal with the contrast change. In brief, LSK-based feature is

computed by the following three steps: (i) the D�D (i.e.,

D¼ 2 in 2D image and D¼ 3 in volumetric image) covari-

ance matrix C(x) of gradients is first calculated from a P�P
local patch around each point x; (ii) an LSK-based attribute

vector of the point x is defined from a Q�Q window centered

at x as a
*LSKðxÞ ¼ LSKðxi � x;CðxiÞÞ; i ¼ 1;…;Q2½ �, where xi

denotes a point in the Q�Q window. Each element

LSKðxi � x;CðxiÞÞ is obtained by:

LSKðxi � x;CðxiÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðCðxiÞÞ

p
h2

exp �ðx� xiÞ0CðxiÞðx� xiÞ
2h2

� �
(3)

where h denotes the kernel width and detðCðxiÞÞ returns the

determinant value of covariance matrix C(xi). The principle

behind Eq. (3) is that the local geometric structure is implic-

itly encoded by the intensity differences (i.e., gradients in

P�P local patch), which characterizes the shape and size of

canonical kernel; (iii) a
*LSKðxÞ needs to be normalized within

the Q�Q window. Therefore, each element LSKðxi � x;CiÞ
after normalization is given as

LSKðxi � x;CðxiÞÞ  
LSKðxi � x;CðxiÞÞPQ2

i¼1 LSKðxi � x;CðxiÞÞ
(4)

The examples of LSK on three pairs of correspondences

(pink boxes) between template (a) and subject image (b) are

demonstrated in Fig. 2, with their LSK features displayed in

the color maps. It can be observed that the patterns of LSK

are quite unique in different locations of the image. Also, the

LSK in the template image is similar only to its correspon-

dence in the subject image, which indicates its ability for

correspondence detection in the registration.

We use the cosine similarity measure19 to evaluate the

similarity between template point x and subject point y as

mLSK a
*LSK

T ðxÞ; a
*LSK

S ðyÞ
� �

¼ a
*LSK

T ðxÞ

a
*LSK

T ðxÞ
����

����
;

a
*LSK

S ðyÞ

a
*LSK

S ðyÞ
����

����
* +

¼ a
*LSK

T ðxÞ � a
*LSK

S ðyÞ

a
*LSK

T ðxÞ
����

���� � a
*LSK

S ðyÞ
����

����
: (5)

In this way, the overall similarity measurement between a
*ðxÞ

in the template and a
*ðyÞ in the subject can be combined as
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mða*TðxÞ;a*SðyÞÞ¼ ð1�jaBound
T ðxÞ�aBound

S ðyÞjÞ
� 	
� k �mHist a

*Hist

T ðxÞ;a
*Hist

S ðyÞ
� �h

þð1�kÞ �mLSK a
*LSK

T ðxÞ;a
*LSK

S ðyÞ
� �i

; (6)

where k is used as the weight to balance between a
*Hist

and a
*LSK

.

II.C.2. Driving points

Driving points (with distinctive attribute vectors) are used to

help alleviate the ambiguity in correspondence matching and

thus better avoid the local minima in registration.20,28 There-

fore, instead of determining the correspondence for each breast

point, we perform the correspondence detection only on the

driving points and let them guide the registration of other non-

driving points. Here, we follow our previous work20 to adap-

tively select the driving points by setting the threshold on the

boundary attribute aBoundðxÞ on each point x. That is, N points

with the large boundary values will be selected as the driving

points, denoted as DP ¼ fxd
i ji ¼ 1;…;Ng. As we will make it

clear next, the selection of the driving point makes the energy

function simple and allows only the critical points to drive the

deformation during the image registration. With the progress of

registration, more and more points will be selected as the driv-

ing points to join the registration of the images, and finally all

points will be considered to drive the registration.

II.C.3. Energy function

The problem of image registration is usually solved by mini-

mizing the energy function, which evaluates the similarity

between two underlying images. In order to cast the deformable

registration into the optimization of well-posed problem, we

introduce the correspondence field G ¼ fgðxÞjx 2 XTg which

only gives the corresponding location of template driving

points fxd
i g in the subject image domain. Here, one advantage

of using correspondence field G is that it decouples the com-

plex optimization problem into two easy-to-conquer tasks,29

i.e., establishing the correspondences gðxd
i Þ on the driving

points and fitting the dense deformation field F w.r.t. corre-

spondence field G with the smoothness regularization. The

overall energy function used in our registration method

between two DCE-MR images is

EðF;GÞ ¼
XN

i¼1

X
t2nðxd

i Þ
m a

*

TðvÞ; a*SðgðvÞÞ
� �

þ
XN

i¼1

f ðxd
i Þ � gðxd

i Þ
��2

��� þ r
X

x

Lf ðxÞkk 2; (7)

where nð�Þ denotes the small neighborhood of the underlying

point. It is clear that the first term in the energy function

measures the image similarity between template T and sub-

ject S; here, we only consider the driving points xd
i , instead

of all image points. In terms of robust feature matching, we

measure not only the pointwise similarity but also the

regionwise similarity in the neighborhood nðxd
i Þ. The second

term in Eq. (7) requires the correspondence detection results

on the driving points should be spatially close to the previous

estimated deformations. The last term is the widely used reg-

ularization term on the deformation field F with minimal

bending energy.30 The parameter r controls the smoothness

of the final deformation field F.

II.C.4. Optimization

The optimization of Eq. (7) is achieved by iteratively per-

forming two steps, i.e., correspondence detection step and

dense deformation field estimation step. By fixing the dense

deformation F, the correspondence gðxd
i Þ on each driving

point xd
i can be solved by minimizing the first and second

terms in Eq. (7). Here, we use the greedy search strategy to

refine the correspondence of each driving point xd
i by evalu-

ating the regionwise similarity of each candidate location in

a certain searching neighborhood. Since only a limited num-

ber of driving points are selected in our registration method,

the computational speed is still fast.

After updating the correspondence on each driving point

xd
i , the dense deformation F can be estimated by fixing the

latest updated correspondence field G and minimizing the

last two terms in Eq. (7) (since the first similarity term is not

related with F). Thus, it turns to the typical data fitting prob-

lem, i.e., interpolate the dense deformation field F based on

the sparse correspondence field G. Considering all fxd
i g as

FIG. 2. The LSK on three pairs of correspondences between template (a) and subject (b). As can be observed, the kernel shapes between the corresponding

points are more similar that other non-corresponding points, indicating the good discrimination ability of LSK in image registration.
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the source point (control point) set and fgðxd
i Þg as the target

point set, the thin-plate spline (TPS)29 can be deployed here,

which has the unified solution to minimize the bending

energy as well as fit the results of correspondence detection

gðxd
i Þ on the driving point xd

i .

II.C.5. Constraint on tumor motion

Considering the physical property of tumor, tumor does

not deform a lot during patient motion, compared with other

normal breast tissues.12,24 However, the deformable registra-

tion algorithms allow the free-form deformation on every

point, which may result in unrealistic distortion on tumor.

Therefore, it is important to consider the tumor region differ-

ently from the normal tissues during the registration, i.e.,

preserve its volume. Similar to the approach in Refs. 11 and

12, we first roughly extract the tumor region by detecting the

intensity change over time, based on the observation that

large contrast change usually occurs in tumor. Particularly,

we calculate the maximum intensity change of MR signal

between the precontrast image and all postcontrast images

for each pixel as

eðxÞ ¼max
i¼1;…;N

IiðxÞ � I0ðxÞ
I0ðxÞ

: (8)

Then, the tumor region can be segmented by setting thresh-

old on the values in the whole image, followed by some mor-

phological operations. Next, the obtained regions are

clustered by merging neighboring points to handle multiple

tumor regions separately. The regions with a small number

of points or very thin and long shape are not selected as tu-

mor regions, in order to avoid inclusion of the enhanced non-

tumor regions, e.g., vessels.

The rigidity constraint on tumor deformation during

registration can be well controlled by the nice property

offered by TPS. For example, in TPS, the estimated displace-

ment of each point is the weighted combination of global

motion (guided by the affine transformation matrix of all

image points) and the local deformation (guided by the

parameters on TPS control points). Thus, we can enforce the

rigidity constraint on tumor motion by raising the weight for

global motion for each tumor point to suppress the local de-

formation. It is worth noting that the rigid transformation

matrix for tumor is obtained by the least-square fitting from

the correspondences of all driving points inside the extracted

tumor region, instead of the entire driving point set, in order

to more accurately measure tumor motion. The weights for

global motion part are high inside the tumor mask and are

gradually reduced to lower weights for the outside soft tis-

sues. Figure 3 demonstrates the advantage of this strategy in

registering a postcontrast image with a precontrast image

[Fig. 3(a)]. Figures 3(b) and 3(c) display the deformation

fields of tumor [the pink box in (a)] without and with the

rigidity constraint, respectively. The tumor size becomes

94.9% of the original tumor size after using the rigidity con-

straint in (c), while it becomes only 70.1% without using

the rigidity constraint (b). Therefore, it is clear that, when

using the rigidity constraint, the tumor deformation is more

reasonable.

II.D. Summary of our hierarchical registration
framework

II.D.1. Summary of pairwise registration algorithm
between two DCE-MR images

Given the template image T and subject image S, our

pairwise registration algorithm can be briefly summarized

below:

1. Perform the Canny edge detection on T and S, and get

the boundary attribute aBound.

2. Calculate the local histogram-based attributes a
*Hist

for T
and S.

3. Calculate the LSK-based attributes a
*LSK

for T and S.

4. Select the driving points for template T based on the

aBound.

5. Determine the tumor region with Eq. (8).

6. Set the correspondence field G equal to the latest esti-

mated deformation field F, i.e., G F.

7. For each driving point xd
i , perform the greedy search

in a certain neighborhood by evaluating the region-

wise similarity w.r.t. each candidate in the subject

image S.

8. Interpolate the dense deformation field F by TPS accord-

ing to the correspondences on fxd
i g.

9. Estimate the affine transformation in tumor region and

enforce the rigid motion of tumor.

10. Smooth the deformation field to avoid the possible dis-

continuity between tumor and nontumor regions.

11. Relax the criterion on the boundary attribute aBound for

selecting more driving points and go to step 6, until no

more driving points can be added.

FIG. 3. The advantage of rigidity constraint on tumor region. (b) and (c) show the deformations inside the box of tumor in (a), with and without rigidity con-

straint, respectively.
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FIG. 4. The evolution of intensity in benign tumor region before registration and after registration by eight registration methods. It can be observed that our

method achieves more consistent registration result than all other methods, in both uniform tumor region and tumor boundary.

359 Kim, Wu, and Shen: Breast DCE-MR image registration 359

Medical Physics, Vol. 39, No. 1, January 2012



FIG. 5. The evolution of intensity in the malignant tumor region before registration and after registration by eight registration methods. It can be observed that

our method achieves more consistent registration result than any other methods, especially along tumor boundary.
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II.D.2. Summary of hierarchical registration algorithm
for whole DCE-MR images

Given the precontrast image I0 and several postcontrast

images Itðt ¼ 1;…;NÞ, our hierarchical registration method

for whole DCE-MR image is performed with the following

steps:

1. Groupwise registration for all postcontrast images (SP1).

(a) Estimate the group-mean image M according to the

currently registered postcontrast images [by Eq. (1)].

(b) Register all postcontrast images with the group-

mean image obtained in step 1.1 and get the defor-

mation field FM!It
(by using our pairwise registra-

tion algorithm proposed in Sec. II C).

(c) If not converged, go to step 1.1.

2. Register the group-mean image M of all postcontrast

images with the precontrast image I0 (SP2).

3. Compute the final deformation Ft for each postcontrast image

It by composing the deformation field FM!It
with FI0!M.

III. EXPERIMENTAL RESULTS

Our proposed registration method has been extensively

evaluated on both real and simulated breast DCE-MR

images. The performance of our registration method is com-

pared with affine registration (FSL package31), and three

pairwise registration methods: (1) pairwise free-form (B-

spline-based) registration method without volume-

preserving constraint,5 (2) pairwise free-form registration

method with volume-preserving constraint, and (3) pairwise

(feature-based) HAMMER registration method.20 In order to

specifically evaluate the proposed registration method for

breast DCE-MRI registration in Sec. II C, we further inte-

grate the free-form registration method with or without

FIG. 6. Simulated intensity enhancement curves for the malignant tumor

(upper one) and benign tumor (lower one). The percentage of intensity

enhancement of post-contrast image at different time points (between 1 and

8) is computed relative to the pre-contrast image (time point 0).

FIG. 7. Simulated benign (a) and malignant (b) tumor images according to the intensity enhancement curves given in Fig. 6 and the simulated global transfor-

mation and local B-spline based deformation field. To show the amount of breast motion at different time points compared to the pre-contrast image, the con-

tour from pre-contrast image (t¼0) is overlaid onto all post-contrast images at different time points (t=1…8).
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volume-preserving constraint and the HAMMER registration

method into our groupwise registration framework, thus

called the groupwise free-form registration without volume-

preserving constraint, the groupwise free-form registration

with volume-preserving constraint, and the groupwise HAM-

MER registration, respectively. For all free-form registration

methods, the third-order B-spline function with the control

point spacing of 20 mm is used. For all of the following

experiments, we use the same set of parameters for each

method.

Dataset: The images used in our experiments are the

T2-weighted DCE-MR images acquired from ten subjects,

with five subjects having malignant tumor and five subjects

having benign tumor. The temporal resolution is 45 s, i.e.,

the DCE-MR images were acquired every 45 s after injecting

agent, with totally 4–9 images acquired. The images size and

resolution range from 384� 384 with 0.47� 0.47 mm2 to

896� 896 with 0.22� 0.22 mm2, depending on the imaging

scanners used. Background and chest wall area are removed

before performing registration.

III.A. Experiments on real dataset

III.A.1. Evaluation on benign case

We evaluate the registration accuracy in aligning the

postcontrast images to the precontrast image, by visual

inspection on a benign tumor case. Since the contrast agent

takes effect to all tumor points homogeneously in precontrast

and postcontrast stages for the example we used in this

experiment, the intensity change of tumor points should be

continuous and consistent over time. Therefore, Fig. 4 shows

the estimated evolution curve of intensity in the benign tu-

mor region [Fig. 4(a)], from the precontrast image (t¼ 0) to

all warped postcontrast images (t¼ 1,2,3). Especially, we

evaluate at the tumor boundary [red in Fig. 4(a)] and inside

uniform regions [blue in Fig. 4(a)] separately. From left to

right and top to bottom, Fig. 4(b) shows the estimated inten-

sity evolution curves of internal tumor points before registra-

tion and after registration by affine registration, pairwise

free-form registration without volume-preserving constraint,

groupwise free-form registration without volume-preserving

FIG. 8. The evolution of intensity in the simulated benign (a) and malignant (b) tumor regions before registration and after registration by eight methods. It

can be observed that our method achieves more consistent registration result than all other methods.
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constraint, pairwise free-form registration with volume-

preserving constraint, groupwise free-form registration with

volume-preserving constraint, pairwise HAMMER registra-

tion, groupwise HAMMER registration, and our registration

method, respectively. Following the same order, Fig. 4(c)

shows the intensity evolution curves of points at tumor

boundary before and after registration by different registra-

tion methods. It can be observed that the longitudinal inten-

sity changes of tumor points after registration is much more

consistent by our method than by all other methods, in both

uniform region [Fig. 4(b)] and tumor boundary [Fig. 4(c)].

III.A.2. Evaluation on malignant case

Similarly, Fig. 5 shows the temporal intensity change at a

tumor region, for a typical malignant case. Again, our regis-

tration method outperforms all other methods in terms of

registration consistency. It is worth noting that the character-

istics of estimated intensity evolution curves on both benign

and malignant cases (i.e., the pattern of intensity changes)

are well matched with the agent wash-in=wash-out curves

described in the clinical literatures.1,2

III.B. Experiments on simulated dataset

Due to the lack of ground truth in real data, we generate

the simulated data to validate the registration accuracy by

considering both breast deformation and contrast changes.

To achieve it, we manually delineated tumor ROI on the

postcontrast image (with maximum intensity enhancement)

by an expert. This ROI is then warped onto the precontrast

image to extract tumor ROI in the precontrast image space.

After this, we use the following two steps to simulate a series

of new postcontrast images for each simulated subject. First,
we simulate the evolution of contrast change at each pixel of

the precontrast image to generate a set of postcontrast

images over time, without geometric deformation at this

stage. Specifically, the evolution of contrast change for be-

nign and malignant tumor2 is learned from real cases, with

examples shown in Fig. 6. For points inside the tumor

FIG. 8. (Continued)
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region, the intensity is increased according to the intensity

evolution curve as shown in Fig. 6. Since normal tissues are

also enhanced by the contrast agent but much less than

tumor, we also simulate this effect in our data. In this way,

we can generate contrast-enhanced images with higher

enhancement in the tumor ROI and lower enhancement in

the normal tissues. Second, we simulate breast deformation

for each of the above-simulated contrast-enhanced images as

follows. (1) We use a conventional registration method, e.g.,

mutual-information-based registration method,5 to compute

the deformation field between each pair of postcontrast and

precontrast images, for all ten subjects. (2) We estimate the

B-spline parameters from these deformation fields, as well

as the magnitude of breast deformation, i.e., �4 mm. (3) We

perturb each B-spline parameter for a certain amount (up to

4 mm), and then reconstruct the dense deformation fields

from these simulated B-spline parameters. (4) We generate

the final postcontrast images by deforming the previous-

simulated contrast-enhanced images (in the first step) with

the simulated deformation fields. Note that we apply only

rigid transformation to tumor ROIs, while applying the simu-

lated deformations to other areas. This can preserve tumor

volume over time in the simulated images. Figure 7 shows

the typical simulated postcontrast images for the benign (a)

and malignant cases (b), respectively.

To evaluate the registration performance, we register the

simulated images in Fig. 7 to the precontrast image by affine

registration, pairwise=groupwise free-form registration with

and without volume-preserving constraint, pairwise=groupwise

HAMMER, and our groupwise registration methods. Figure 8

shows the estimated curves of intensity change in the tumor

area for all warped postcontrast images (t¼ 1…8), with benign

case in (a) and malignant case in (b). Compared with the

ground truth [the curve displayed on the top of Figs. 8(a) and

8(b), respectively], the estimated intensity evolution curves by

our groupwise registration methods are visually much closer

to the ground truth and smoother over time than all other regis-

tration methods. To quantitatively evaluate each registration

method, we can further compute the average distance between

the ground-truth intensity evolution curves and their corre-

sponding curves estimated by each registration method. The

distance for the benign tumor case [Fig. 8(a)] is 1.49 mm

before registration, 1.09 mm by affine registration, 0.95 mm by

pairwise unconstrained free-form registration (FFD), 0.92 mm

by groupwise unconstrained FFD, 0.91 mm by pairwise con-

strained FFD, 0.86 mm by groupwise constrained FFD, 0.8

mm by pairwise HAMMER, 0.7 mm by groupwise HAMMER,

and 0.66 mm by our registration method, respectively. Simi-

larly, the distance for the malignant case [Fig. 8 (b)] is 1.35

mm before registration, 0.93 mm by affine registration, 0.85

mm by pairwise unconstrained FFD, 0.81 mm by groupwise

unconstrained FFD, 0.74 mm by pairwise constrained FFD,

0.7 mm by groupwise constrained FFD, 0.67 mm by pairwise

HAMMER, 0.62 mm by groupwise HAMMER, and 0.58 mm

by our registration method, respectively. It is clear that our

registration method achieves the best registration performance

among all methods under comparison.

Given the ground-truth deformation field, we can

also calculate the voxelwise residual errors between the

ground-truth deformation fields and the deformation fields

estimated by each of the eight registration methods. The

mean and maximum residual errors by affine registration,

FIG. 9. Top: The mean (a) and maximum (b) deformation estimation errors in the whole breast; Bottom: The mean (c) and maximum (b) deformation estima-

tion errors in the tumor by six registration methods.

364 Kim, Wu, and Shen: Breast DCE-MR image registration 364

Medical Physics, Vol. 39, No. 1, January 2012



pairwise=groupwise unconstrained free-form registration,

pairwise=groupwise HAMMER registration, and our group-

wise registration methods are shown in Fig. 9. Note that the

results by the constrained free-form registration methods are

not reported here, since the related software package32 does

not provide the explicit deformation fields. As shown in

Fig. 9, it can be confirmed that our method again achieves

the best performance in estimating accurate breast motion.

IV. CONCLUSION

In this paper, we have proposed a novel groupwise regis-

tration method to achieve accurate and consistent alignment

for breast DCE-MR images. The simultaneous alignment of

postcontrast images to a precontrast image via a group-mean

greatly improves the registration consistency of the postcon-

trast images. The attribute vectors, which consist of local

histogram- and local steering kernel-based features, are

utilized to obtain robust anatomical correspondences in case

of dramatic contrast change and image noise. In order to

reduce the unrealistic deformation in tumor region, we

adaptively treat motion of tumor as rigid in the proposed

framework while allowing other soft tissues to follow the de-

formable motion. The registration performance of the pro-

posed method has been evaluated in both real and simulated

data, by comparison with various pairwise=groupwise regis-

tration methods. In all experiments, our proposed method

achieves the best performance in both registration accuracy

and registration consistency. In the future, we will further

evaluate our proposed method on more real images with vari-

ous tumor patterns and make it applicable for the clinical study.
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