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Abstract

In neuroimaging, cortical surface atlases play a fundamental role for spatial normalization, 

analysis, visualization, and comparison of results across individuals and different studies. 

However, existing cortical surface atlases created for adults are not suitable for infant brains 

during the first two years of life, which is the most dynamic period of postnatal structural and 

functional development of the highly-folded cerebral cortex. Therefore, spatiotemporal cortical 

surface atlases for infant brains are highly desired yet still lacking for accurate mapping of early 

dynamic brain development. To bridge this significant gap, leveraging our infant-dedicated 

computational pipeline for cortical surface-based analysis and the unique longitudinal infant MRI 

dataset acquired in our research center, in this paper, we construct the first spatiotemporal (4D) 

high-definition cortical surface atlases for the dynamic developing infant cortical structures at 7 

time points, including 1, 3, 6, 9, 12, 18, and 24 months of age, based on 202 serial MRI scans from 

35 healthy infants. For this purpose, we develop a novel method to ensure the longitudinal 

consistency and unbiasedness to any specific subject and age in our 4D infant cortical surface 

atlases. Specifically, we first compute the within-subject mean cortical folding by unbiased 

groupwise registration of longitudinal cortical surfaces of each infant. Then we establish 

longitudinally-consistent and unbiased inter-subject cortical correspondences by groupwise 

registration of the geometric features of within-subject mean cortical folding across all infants. 

Our 4D surface atlases capture both longitudinally-consistent dynamic mean shape changes and 

the individual variability of cortical folding during early brain development. Experimental results 

on two independent infant MRI datasets show that using our 4D infant cortical surface atlases as 

templates leads to significantly improved accuracy for spatial normalization of cortical surfaces 

across infant individuals, in comparison to the infant surface atlases constructed without 

longitudinal consistency and also the FreeSurfer adult surface atlas. Moreover, based on our 4D 

infant surface atlases, for the first time, we reveal the spatially-detailed, region-specific correlation 
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patterns of the dynamic cortical developmental trajectories between different cortical regions 

during early brain development.
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1. Introduction

Brain atlas is a representation of anatomical structures and other reference information in a 

spatial framework, providing a useful repository of knowledge and also facilitating the 

analysis of spatially-localized experimental data (Evans et al., 2012; Van Essen and Dierker, 

2007). In neuroimaging studies, brain atlases play a fundamental role for spatial 

normalization, analysis, visualization, and comparison of results across individuals and 

different studies (Evans et al., 2012; Van Essen and Dierker, 2007). Two types of brain 

atlases have been extensively used, including volumetric atlases (for volume-based analysis) 

(Eickhoff et al., 2005; Greitz et al., 1991; Habas et al., 2010; Mazziotta et al., 2001a; 

Mazziotta et al., 2001b; Mazziotta et al., 1995; Shattuck et al., 2008; Tzourio-Mazoyer et al., 

2002) and cortical surface atlases (for cortical surface-based analysis) (Fischl et al., 1999b; 

Hill et al., 2010a; Lyttelton et al., 2007; Thompson et al., 1996; Van Essen, 2005; Van Essen 

and Dierker, 2007). While volumetric atlases are suitable for studying subcortical structures, 

cortical surface atlases enable better studying of the highly-convoluted and highly-variable 

cerebral cortex (Van Essen and Dierker, 2007). This is because cortical surface-based 

analysis, which explicitly reconstructs surface mesh representations of the highly-folded 

cerebral cortex, respects the intrinsic topological properties of the cortex and thus greatly 

facilitates the spatial normalization, analysis, comparison, and visualization of convoluted 

cortical regions (Fischl et al., 1999b; Goebel et al., 2006; Han et al., 2004; Li et al., 2009, 

2010a; MacDonald et al., 2000; Mangin et al., 2004; Nie et al., 2007; Shattuck and Leahy, 

2002; Shi et al., 2013; Shiee et al., 2014; Van Essen and Dierker, 2007; Xu et al., 1999). 

Moreover, cortical surface-based measurements, e.g., surface area (Hill et al., 2010b), 

cortical thickness (Fischl and Dale, 2000), and cortical folding/gyrification (Habas et al., 

2012; Li et al., 2010b; Rodriguez-Carranza et al., 2008; Zhang et al., 2009; Zilles et al., 

2013), each with distinct genetic underpinning, cellular mechanism, and developmental 

trajectory (Chen et al., 2013; Lyall et al., 2014; Panizzon et al., 2009), can comprehensively 

provide various detailed aspects of the cerebral cortex (Li et al., 2014a). Accordingly, 

several cortical surface atlases have been created and extensively used in current 

neuroimaging studies (Fischl et al., 1999b; Goebel et al., 2006; Hill et al., 2010a; Lyttelton 

et al., 2007; Van Essen, 2005), such as FreeSurfer surface atlas (Fischl et al., 1999b), PALS-

B12 and PALS-term12 surface atlases (Hill et al., 2010a), and MNI surface atlas (Lyttelton 

et al., 2007).

The first two postnatal years is an exceptionally dynamic period for structural and functional 

development of the human cerebral cortex (Gao et al., 2009; Gilmore et al., 2012; 

Knickmeyer et al., 2008; Li et al., 2013; Nie et al., 2014), as illustrated in Fig. 1. 

Particularly, in the first postnatal year, the cerebral cortex expands 80% in surface area (Li et 
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al., 2013), increases 31% in cortical thickness (Lyall et al., 2014), and increases 42% in 

sulcal depth (Meng et al., 2014). Although our knowledge on early brain development is still 

scarce, many neuropsychiatric and neurodevelopmental disorders have been indicated as the 

consequence of abnormal brain development during this critical stage of rapid cortex growth 

(Gilmore et al., 2012; Lyall et al., 2014). The increasing availability of longitudinal infant 

MR images unprecedentedly allows us to quantitatively and precisely unravel the dynamic 

cortex development of each individual infant and the population during this critical stage. 

This will greatly increase our limited knowledge on normal early brain development and 

also provide important insights into neurodevelopmental disorders (Gilmore et al., 2012; Li 

et al., 2014e; Li et al., 2014f; Lyall et al., 2014).

However, the existing brain atlases created for adults are problematic for studying infant 

MR images, owing to the extremely low signal-to-noise, dynamic changes of intensity 

appearance, brain size, and cortical folding degree in the infant brain, as shown in Fig. 1. For 

example, the currently available adult brain atlases poorly serve as templates for spatial 

normalization of dynamic developing brains across infant individuals, thus seriously 

degenerating the accuracy of subsequent quantitative analysis. To better study early brain 

development, various neonatal and infant age-matched volumetric brain atlases have been 

created (Altaye et al., 2008; Habas et al., 2010; Joshi et al., 2004; Kazemi et al., 2007; 

Kuklisova-Murgasova et al., 2011; Oishi et al., 2011; Serag et al., 2012; Shi et al., 2014; Shi 

et al., 2011). Owing to capturing the dynamic changes of the intensity appearance and brain 

size during early brain development, these infant volumetric atlases have significantly 

improved the accuracy of tissue segmentation and spatial normalization of infant brains. As 

a result, these infant atlases are now playing important roles in volumetric analysis of infant 

MR images, leading to a set of new findings on early brain development. Although 

encouraging, the volumetric brain atlases do not respect cortical topology and also obscure 

key spatial relationships between neighboring locations in the cortex, thus leading to blurred 

cortical structures and eventually less accurate results in the cortex.

For precise revealing the detailed patterns of early cortex development by using advanced 

cortical surface-based analysis (Dubois et al., 2008; Hill et al., 2010a; Li et al., 2013; 

Rodriguez-Carranza et al., 2008; Xue et al., 2007), the infant age-matched cortical surface 

atlases are highly desired yet still lacking. Currently, there is only one neonate/infant 

dedicated cortical surface atlas, i.e., PALS-term12 atlas, which was constructed by 

landmark-constrained co-registration of 12 term born neonates (Hill et al., 2010a). In fact, to 

fully characterize the exceptionally dynamic, regionally-heterogeneous, nonlinear 

development of infant cortical structures, ideally, the infant cortical surface atlases should be 

constructed as spatiotemporal (4D) atlases with a high temporal definition using multiple 

time points, especially in the first postnatal year. Owing to the remarkable inter-individual 

variability of cortical folding patterns, single-subject based atlas cannot well represent the 

whole population and thus will introduce strong biases and inaccuracy to the subsequent 

analysis. Therefore, to capture both individual developmental trajectories and inter-

individual variability of cortical folding, 4D infant cortical surface atlases would be better 

constructed by using longitudinal images of a population of subjects.
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However, construction of 4D infant cortical surfaces faces a number of unique obstacles, as 

available tools for processing and analysis of adult brains are unsuitable for infant MR 

images, due to their dramatic differences in image contrast, intensity appearance, brain size, 

and cortical folding degree. To address these critical issues, we have recently developed a 

set of infant-dedicated, longitudinally-consistent neuroimage analysis tools, covering all 

major steps of brain tissue segmentation (Wang et al., 2014a; Wang et al., 2014b; Wang et 

al., 2012), cortical surface modeling (Nie et al., 2012b), reconstruction (Li et al., 2014a), 

parcellation (Li et al., 2014d), and measurements of cortical thickness, surface area, sulcal 

depth, and cortical folding/gyrification (Li et al., 2014a; Li et al., 2014f; Meng et al., 2014). 

The rationale is that all primary and secondary cortical folding are present at term birth and 

are preserved during postnatal brain development, thus images at the later time points with 

good tissue contrast and clear cortical folding can help alleviate imprecision in those images 

at earlier time points with poor tissue contrast and ambiguous cortical folding. These infant-

dedicated computational tools ensure accurate and consistent processing and analysis of 

longitudinal infant MR images, thus providing prerequisites for construction of 4D infant 

cortical surface atlases. Moreover, we have a very unique cohort of longitudinal infant 

multimodal MRI scans, where each infant was scanned every 3 months in the first year since 

birth and then every 6 months in the second year.

As existing methods for 4D atlas construction either lead to longitudinally-inconsistent 

atlases or are biased by specific time points (Davis et al., 2010; Durrleman et al., 2009; Liao 

et al., 2012), we develop a new method for construction of 4D infant cortical surface atlases 

that are longitudinally-consistent and unbiased to any individual and any time point, by 

capitalizing on the within-subject longitudinal constraints and also the unbiased groupwise 

surface registration. Leveraging our unique longitudinal infant MRI dataset and our infant-

dedicated computational tools, in this paper, we construct the first spatiotemporal (4D) high-

definition cortical surface atlases to characterize the dynamic developing cortical structures 

at 7 time points, including 1, 3, 6, 9, 12, 18, and 24 months of age, based on 202 longitudinal 

MRI scans from 35 typically developing infants. Based on our 4D surface atlases, we reveal 

hitherto unseen region-specific correlation patterns of dynamic cortical developmental 

trajectories between different cortical regions. A preliminary version of this work was 

presented at the International Conference on Medical Image Computing and Computer 

Assisted Intervention (MICCAI) (Li et al., 2014c). This paper significantly extends the 

previous work with more details on introduction of methodology and also more extensive 

validations and discussions.

2. Materials and Methods

2.1 Subjects and MR Image Acquisition

This study was approved by the Institutional Review Board of the University of North 

Carolina (UNC) School of Medicine. Pregnant mothers were recruited during the second 

trimester of pregnancy from the UNC hospitals. Informed consent was obtained from all 

parents. Exclusion criteria included abnormalities on fetal ultrasound, or major medical or 

psychotic illness in the mother. Infants in the study cohort were free of congenital 

anomalies, metabolic disease, and focal lesions. All infants were scanned unsedated while 
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asleep, fitted with ear protection and with their heads secured in a vacuum-fixation device. 

A physician or nurse was present during each scan, and a pulse oximeter was used to 

monitor heart rate and oxygen saturation. More information on subjects can be found in (Li 

et al., 2014a; Nie et al., 2012b; Wang et al., 2012).

Serial T1-weighted, T2-weighted, and diffusion-weighted MR images of 35 healthy infants 

(18 males/17 females) were acquired using a Siemens 3T head-only MR scanner with a 32 

channel head coil. Each infant was scheduled to be scanned every 3 months in the first year 

since birth and then every 6 months in the second year. All images were reviewed by a 

neuroradiologist and images with insufficient quality were removed from the study. Due to 

insufficient-quality and uncompleted scans, each infant has different number of scans, 

ranging from 4 to 7 in the first two years. In total, 202 quality MR scans from 35 infants 

were acquired, with each infant having 5.8 scans on average. The number of scans was 35 at 

1 month, 28 at 3 months, 31 at 6 months, 27 at 9 months, 29 at 12 months, 31 at 18 months, 

and 21 at 24 months, respectively.

T1-weighted MR images (144 sagittal slices) were acquired with the imaging parameters: 

TR/TE = 1900/4.38 ms, flip angle = 7, acquisition matrix = 256 × 192, and resolution = 1 × 

1 × 1 mm3. T2-weighted MR images (64 axial slices) were acquired with the parameters: 

TR/TE = 7380/119 ms, flip angle = 150, acquisition matrix = 256 × 128, and resolution = 

1.25 × 1.25 × 1.95 mm3. Diffusion-weighted images (DWI) (60 axial slices) were acquired 

with the parameters: TR/TE = 7680/82 ms, acquisition matrix = 128 × 96, resolution = 

2×2×2 mm3, 42 non-collinear diffusion gradients, and diffusion weighting b =1000s/mm2. 

More information on image acquisition can be found in (Nie et al., 2012b; Wang et al., 

2012).

2.2 Image Preprocessing

All MR images were preprocessed using an infant-specific computational pipeline as 

detailed in (Li et al., 2013; Li et al., 2014b; Li et al., 2014f). Briefly, it includes the 

following major steps: 1) distortion correction of DWI and also the computation of 

fractional anisotropy (FA) image (Wang et al., 2012; Yap et al., 2011); 2) rigid alignment of 

T2 and FA images onto their T1 image and further resampling to be of 1 × 1 × 1 mm3 using 

FLIRT in FSL (Smith et al., 2004); 3) skull stripping by a learning-based method (Shi et al., 

2012) and further removal of cerebellum and brain stem by registration with an atlas (Shen 

and Davatzikos, 2002), as shown in Fig. 2b; 4) correction of intensity inhomogeneity by N3 

(Sled et al., 1998); 5) rigid alignment of all longitudinal images of the same infant; 6) 

longitudinally-consistent tissue segmentation by an infant-dedicated, 4D level-set method 

(Wang et al., 2014a; Wang et al., 2011; Wang et al., 2012), based on the complementary 

multimodal information from T1, T2, and FA images, for reducing the structural ambiguities 

in tissue segmentation owing to low image contrast, as shown in Fig. 2c; 7) masking of and 

filling non-cortical structures, and separation of each brain into left and right hemispheres 

(Li et al., 2013; Li et al., 2014b), as shown in Fig. 2d.
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2.3 Cortical Surface Reconstruction

For each hemisphere of each image, topologically correct and geometrically accurate inner 

and outer cortical surfaces, which were represented by triangular meshes, were reconstructed 

by using a topology-preserving deformable surface method (Li et al., 2014a; Li et al., 2012), 

based on tissue segmentation results. Specifically, the inner cortical surface (white/gray 

matter interface) was reconstructed by first correction of topological defects in the white 

matter by using in-house developed tools and then tessellation of the corrected white matter 

as a triangular mesh (Fig. 2e). To address the severe partial volume effects in the tight sulci 

of small-sized infant brain MRI, which might result in incorrect reconstruction of the outer 

cortical surface, explicit thin separations between opposite tight sulci were further recovered 

(Han et al., 2004; Li et al., 2014a; Li et al., 2012). Next, the inner cortical surface was 

deformed using forces derived from Laplace’s equation to reconstruct the outer cortical 

surface by preserving its initial topology (Li et al., 2014a; Li et al., 2012). The cortical 

thickness of each vertex was then computed as the average value of the minimum distance 

from inner to outer surfaces and the minimum distance from outer to inner surfaces (Fig. 2f). 

For cortical surface registration, the inner cortical surface was further smoothed, inflated, 

and mapped to a sphere by minimizing the metric distortion between the cortical surface and 

its spherical representation (Fischl et al., 1999a), as shown in Fig. 2g and Fig. 2h, where 

both the inflated surface and the spherical surface were color-coded by the average 

convexity of each vertex on the cortical surface. Our infant-specific computational pipeline 

for cortical surface-based analysis has been extensively verified on more than 500 infant 

brain MR images (Li et al., 2014a; Li et al., 2013; Lyall et al., 2014).

2.4 Construction of Longitudinally Consistent 4D Infant Cortical Surface Atlases

To construct cortical surface atlases, we had to determine cortical correspondences across 

different subjects. As using the cortical surface of any specific subject as the template for 

surface registration would inevitably introduce bias, groupwise surface registration can be 

employed as an unbiased manner to establish inter-subject cortical correspondences. 

Therefore, one straightforward strategy for 4D cortical surface atlas construction was to 

independently register the spherical surfaces of all infants at each age using groupwise 

surface registration. However, this strategy ignored the within-subject longitudinal 

constraints and thus could lead to temporally inconsistent surface atlases, eventually 

resulting in inaccurate analysis of the dynamic cortex development. This was because 

cortical surface registration typically involved highly-complex nonlinear optimization, 

owing to the highly convoluted and variable cortical folding patterns, thus independent 

groupwise registration at each age would inevitably lead to inconsistent inter-subject cortical 

correspondences across different ages. In other words, inter-subject corresponding vertices 

at one time point might not be corresponding vertices at the other time points any more. To 

ensure the longitudinal consistency of inter-subject cortical correspondences, another 

strategy was to first register all cortical surfaces of the same infant to a specific time point 

(e.g., the first or the last time point), and then establish inter-subject cortical 

correspondences at this specific time point by using groupwise surface registration. Finally, 

longitudinally-consistent inter-subject cortical correspondences at other time points can be 

determined based on those established at the selected time point. However, 4D cortical 
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surface atlases constructed by this strategy would be eventually biased and dominated by the 

selected time point.

Therefore, we proposed a novel framework to ensure both longitudinal consistency and 

unbiasedness to any individual and any age in the constructed 4D infant cortical surface 

atlases, by capitalizing on the within-subject longitudinal constraints and also the unbiased 

groupwise surface registration. Herein, both within-subject and inter-subject cortical 

correspondences were established by using the diffeomorphic Spherical Demons groupwise 

registration method (Yeo et al., 2010). Specifically, our method for construction of 

consistent and unbiased 4D infant cortical surface atlases consisted of the following 5 major 

steps, as shown in Fig. 3. First, to establish within-subject cortical correspondences that 

were unbiased to any time point, for each hemisphere, all longitudinal spherical surfaces of 

the same infant were groupwisely aligned using Spherical Demons (Yeo et al., 2010), based 

on their geometric features of cortical folding (Step 1 in Fig. 3). Specifically, Spherical 

Demons aligned the cortical folding patterns mapped on the spherical space based on several 

geometric features, including mean curvature of the inflated cortical surface, average 

convexity of the cortical surface, and mean curvature of the cortical surface. It has been 

shown that Spherical Demons achieved similar registration accuracy as FreeSurfer, but with 

a much faster computational speed. To use Spherical Demons for groupwise surface 

registration, 1) a template consisting of the mean and variance of cortical geometric features 

of all subjects in a group was created; 2) all cortical surfaces in the group were nonlinearly 

registered to the created template; 3) the template was then updated based on the currently 

refined registration results. These steps of registration and template updating were iteratively 

performed. In our application, for both within-subject and inter-subject registration, 3 

iterations were performed for achieving reasonable results, since there was no large change 

of registration accuracy after 3 iterations, and also too many iterations typically resulted in 

over-fitting (Yeo et al., 2008). Second, for each infant, the geometric features of the within-

subject mean cortical folding were derived based on their cortical correspondences 

established in Step 1. Note that, as all primary and secondary cortical folding are present at 

term birth and are preserved during the postnatal cortex development (Hill et al., 2010a; Li 

et al., 2013), the within-subject cortical folding patterns were well aligned by Spherical 

Demons. Therefore, the within-subject mean cortical folding was very sharp and contained 

very detailed information of cortical folding patterns, as shown in Fig. 3 and Fig. 4. Third, 

to establish unbiased inter-subject cortical correspondences, the within-subject mean cortical 

folding of all infants were groupwisely aligned using Spherical Demons (Step 3 in Fig. 3). 

Fourth, to determine temporally-consistent inter-subject cortical correspondences, for each 

age, the inter-subject cortical correspondences were established based on the cortical 

correspondences defined by their within-subject mean cortical folding, and each cortical 

surface was accordingly resampled to a standard-mesh tessellation with 163,842 vertices. Of 

note, we chose the mesh tessellation with 163,842 vertices (subdivision level 7 of an 

icosahedron) in order to well preserve the spatial detailed information of the convoluted 

cortical surface in infants, which typically had less than 110,000 vertices for each 

hemisphere. Finally, for each age, a cortical surface atlas consisting of the mean and 

variance of geometric features of cortical folding, e.g., mean curvature, sulcal depth, average 

convexity, and mean curvature of inflated surfaces, across all infants at this age was 
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constructed on the spherical surface (Step 5 in Fig. 3), which preserved the inherent 

topological properties of the cortex and greatly facilitated cortical surface registration and 

analysis. Note that, each geometric attribute reflects a different aspect of the cortex. For 

example, the mean curvature reflects the fine-scale geometry of cortical folding, while the 

average convexity (which records the accumulated normal movement for each vertex during 

surface inflation) reflects the large-scale geometry of cortical folding (Fischl et al., 1999b). 

In this way, the constructed 4D infant cortical surface atlases were temporally consistent and 

unbiased to any individual and any age, thus capturing both longitudinally-consistent mean 

shape changes and individual variability of cortical folding.

2.5 Application to Study Correlation Patterns of Early Brain Development

In our constructed 4D infant cortical surface atlases, each cortical surface of each infant has 

been aligned onto the same space. Based on this, for the first time, we can reveal the 

spatially-detailed correlation patterns of the dynamic early brain development between 

different cortical regions. To do this, one strategy was to first compute the developmental 

trajectory of the whole population for each vertex using a mixed model, and then compute 

the correlation matrix of developmental trajectories between each pair of vertices. However, 

as the early cortical developmental trajectories in infants were highly nonlinear and 

regionally heterogeneous (as illustrated in Fig. 1), the parametric forms of the mixed model 

might not be easily determined. Herein, we developed a new strategy by defining a subject-

specific correlation matrix of the cortical developmental trajectories.

For each vertex of each infant, we first defined its longitudinal developmental trajectory by 

using cortical thickness, which essentially reflects the underlying dynamic microstructural 

changes of the cortex and is correlated with cognitive functions (Lyall et al., 2014). 

However, other cortical attributes, such as surface area and local gyrification index, could 

also be used to define the developmental trajectory. For each infant, we then computed its 

subject-specific correlation matrix of the developmental trajectories of cortical thickness 

between each pair of vertices using Pearson’s correlation. Specifically, for an infant subject 

s with ns time points, at a vertex i, its cortical thickness trajectory was denoted as 

. For two vertices i and j, Pearson’s correlation coefficient was 

computed as: . The range of  was 

between −1 and 1, indicating that two vertices’ trajectories were either completely 

negatively or positively correlated. Note that Rs was defined for each pair of vertices and 

relied solely on the developmental trajectories. Finally, we computed the mean correlation 

matrix by averaging the corresponding elements of correlation matrices of all infants. To 

account for the dynamic cortex development in infants, before computing Pearson’s 

correlation, for each time point of each infant, the cortical thickness map was smoothed and 

normalized by the mean cortical thickness of the cortical surface.
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3. Results

3.1 Visual Inspection of 4D Infant Cortical Surface Atlases

Fig. 5 showed the means and variances of the sulcal depth, average convexity, and mean 

curvature of our constructed 4D infant cortical surface atlases on the spherical space for the 

left hemisphere at 1, 3, 6, 9, 12, 18, and 24 months of age. Herein, the sulcal depth was 

defined as the distance from each vertex on the cortical surface to the nearest point in the 

cerebral hull surface, providing a continuously varying measure of both coarse and fine 

cortical folding geometry (Li et al., 2014b; Meng et al., 2014; Van Essen, 2005). As 

mentioned, the mean curvature reflected the fine-scale geometry of cortical folding, while 

the average convexity reflected the large-scale geometry of cortical folding (Fischl et al., 

1999b). For better inspection of the 4D infant cortical surface atlases, we also mapped the 

means and variances of the geometric features of cortical folding onto the age-specific 

average cortical surface at each age, which was generated by averaging the 3D coordinate 

positions of corresponding cortical vertices across all subjects at each age. As can be seen 

from Figs 5 and 6, the major cortical folding patterns in terms of sulcal depth, average 

convexity, and mean curvature were established at term birth and were preserved well 

during the postnatal development during the first 24 months. However, the cortical surface 

area and the sulcal depth increased dramatically, and also the magnitude of the average 

convexity increased considerably, while the magnitude of the mean curvature decreased 

gradually. This was also confirmed in Fig. 7, which provided the mean values of the sulcal 

depth, absolute average convexity, and absolute mean curvature of each age on the 4D infant 

surface atlases. From Figs 5 and 6, we can also clearly observe large variances of the sulcal 

depth and average convexity in the intraparietal sulcus, parietotemporal junction area, and 

middle frontal cortex consistently across all ages, indicating large inter-subject variability of 

cortical folding in those regions. In contrast, the central sulcus consistently exhibited small 

inter-subject variability of cortical folding.

To demonstrate the advantage of the proposed method for 4D infant cortical surface atlas 

construction, we compared it with the conventional method that constructed the infant 

cortical surface atlases by independent groupwise registration of all surfaces at each time 

point. Fig. 8 provided a representative example for the close-up views of the mean 

curvatures on 4D infant cortical surface atlases constructed by the two different methods. 

Red arrows pointed to a representative region with inconsistent curvature pattern across 

different ages using independent groupwise registration. As we can see, the proposed 

method generated longitudinally more consistent 4D cortical surface atlases, along with 

much sharper and clearer cortical folding patterns, than the counterpart method that used 

independent groupwise registration of cortical surfaces for each time point.

3.2 Quantitative Evaluation of Accuracy for Spatial Normalization

To demonstrate the advantage of our 4D infant cortical surface atlases, we utilized them as 

templates for spatial normalization of cortical surfaces across different infants. For this 

purpose, we adopted two independent longitudinal infant MRI datasets. As it is very difficult 

to obtain other quality multimodal infant MRI datasets containing subjects in between the 

first postnatal year, herein we used the 35 infants as Dataset 1, with each subject having up 
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to 7 time points scanned at 1, 3, 6, 9, 12, 18, and 24 months of age. For evaluation, we 

divided the Dataset 1 into three sub-groups, with the first and second sub-groups each 

containing 12 infants, and the third sub-group containing 11 infants, to perform 3-fold cross-

validation. In each round, two subgroups were used to construct the 4D infant surface 

atlases, and the remaining sub-group was used for validation. For more extensive validation, 

we also adopted an independent Dataset 2, which included 73 healthy infants, each having 3 

time points scanned at 1 month, 1 year, and 2 years of age. For each time point of each 

infant, we nonlinearly registered these cortical surfaces onto the age-matched atlas in the 4D 

infant surface atlases by using Spherical Demons. For comparison, we also performed the 

registration by using the infant surface atlases generated by independent groupwise 

registration at each age (named independent infant surface atlases) and also the FreeSurfer 

adult surface atlas as the templates. It was expected that using our 4D infant surface atlases 

would lead to better registration accuracy than the other two comparison atlases. As there 

was no ground truth for the cortical surface registration, to quantitatively evaluate the 

accuracy of the registration results, we adopted three different measurements: 1) average 

information entropy of the sulcal and gyral regions of all aligned cortical surfaces at each 

age; 2) pairwise overlap of sulcal and gyral regions between each pair of subjects at each 

age; 3) correlation coefficient of the average convexity map between each pair of subjects at 

each age. For the first two measurements, we first partitioned each cortical surface into 

sulcal regions and gyral regions based on the average convexity map, as in FreeSurfer 

(Fischl, 2012). Then, for each age, we computed the average information entropy of the 

sulcal and gyral regions of all aligned cortical surfaces as:

(1)

Here, N was the total number of vertices. psulci(x) and pgyri(x) were the probabilities of 

vertex x belonging to the sulcal region and gyral region, respectively, estimated based on the 

frequency in the aligned cortical surfaces. This measurement has been previously adopted 

for evaluating the performance of surface registration in (Lyttelton et al., 2007). Intuitively, 

lower values of information entropy indicated better alignment of sulcal and gyral regions. 

As shown in Fig. 9, at each age in both datasets, infant surface atlases consistently leaded to 

lower information entropy than FreeSurfer adult surface atlas, with particularly significant 

improvement at 1 month and 3 months of age, demonstrating more suitability of using age-

matched atlases for early brain development. Meanwhile, our 4D infant surface atlases 

consistently achieved lower information entropy than both independent infant surface atlases 

and FreeSurfer adult surface atlas. Specifically, on Dataset 1, the average information 

entropy across all 7 time points were 0.314 by our 4D infant surface atlases, 0.321 by 

independent infant surface atlases, and 0.335 by FreeSurfer adult surface atlas, respectively. 

On Dataset 2, these values were 0.387 by our 4D infant surface atlases, 0.394 by 

independent infant surface atlases, and 0.421 by FreeSurfer adult surface atlas, respectively.

Meanwhile, at each age, we also computed the mean overlap ratio of sulcal and gyral 

regions between each pair of subjects on their aligned cortical surfaces. Herein, higher 

overlap ratios indicated better alignment of the sulcal and gyral regions between subjects. As 
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shown in Fig. 10, at each age of each dataset, our 4D infant surface atlases consistently 

achieved higher overlap ratios for both sulcal and gyral regions than both independent infant 

surface atlases and FreeSurfer adult surface atlas. Specifically, on Dataset 1 across all ages, 

for the sulcal regions, the mean overlap ratio were 0.732 by 4D infant surface atlases, 0.721 

by independent infant surface atlases, and 0.712 by FreeSurfer adult surface atlas, 

respectively. For the gyral regions, the values were 0.713 by 4D infant surface atlases, 0.712 

by independent infant surface atlases, and 0.703 by FreeSurfer adult surface atlas, 

respectively. On Dataset 2, for the sulcal/gyral regions, the mean overlap ratio were 

0.716/0.697 by 4D infant surface atlases, 0.707/0.690 by independent infant surface atlases, 

and 0.695/0.674 by FreeSurfer adult surface atlas, respectively.

To further evaluate the accuracy, we also computed the correlation coefficient of the average 

convexity map between each pair of subjects at each age on their aligned cortical surfaces, 

as in (Lyttelton et al., 2007). Fig. 11 displayed the mean and standard deviation of the 

correlation coefficient at each age. Herein, larger correlation coefficients indicated better 

alignment of cortical surfaces across different subjects. As can be seen again, at each age in 

both datasets, our 4D infant surface atlases consistently achieved significantly higher 

correlation coefficients than the other two atlases. Specifically, on Dataset 1 across all ages, 

the average correlation coefficients were 0.847 by 4D infant surface atlases, 0.841 by 

independent infant surface atlases, and 0.830 by FreeSurfer adult surface atlas, respectively. 

On Dataset 2, these values were 0.822 by 4D infant surface atlases, 0.817 by independent 

infant surface atlases, and 0.801 by FreeSurfer adult surface atlas, respectively.

3.3 Quantitative Evaluation of Temporal Consistency of Spatial Normalization

Since our 4D infant cortical surface atlases were constructed in the same space, the vertex-

to-vertex correspondences across different time points were naturally established among 

those atlases. Therefore, after registration of each cortical surface of each infant onto the 4D 

infant surface atlases, the within-subject longitudinal cortical correspondences in each infant 

were also approximately established. To quantitatively evaluate the longitudinal consistency 

after registration to 4D infant surface atlases, for each infant, we defined a longitudinal 

consistency measure for sulcal and gyral regions as:

(2)

where a(x) was the accumulated time of region label (sulcal region or gyral region) changes 

between each pair of temporally neighboring time points at vertex x, on the aligned cortical 

surfaces in the atlas space. T was the total number of time points of an infant. Ideally, C 

should be close to 1, and larger values of C indicated better temporal consistency of the 

surface registration results. Since the Dataset 2 only had three time points, we only 

computed longitudinal consistency measure on Dataset 1. Fig. 12 showed the consistency 

measure in each of the 35 infants by our 4D infant surface atlases and FreeSurfer adult 

surface atlas. Note that, herein we didn’t compare with independent infant surface atlases, 

because across different ages they were not located in the same spatial space, thus leading to 

unaligned longitudinal cortical surfaces in each infant after registration onto its age-matched 

infant surface atlas. As we can see, 4D infant surface atlases achieved longitudinally more 
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consistent results than FreeSurfer adult surface atlas. Specifically, the average consistency 

measures of all infants were 0.927±0.011 by our 4D infant surface atlases and 0.917±0.015 

by FreeSurfer adult surface atlas, respectively. Meanwhile, we also computed the correlation 

coefficient of the average convexity map between each pair of temporally neighboring 

cortical surfaces in the atlas spaces, as shown in Fig. 13. As can be seen again, our 4D infant 

surface atlases consistently leaded to higher within-subject correlations than FreeSurfer 

adult atlas. Of note, subjects with relatively low values in Fig. 12 and Fig. 13 had relatively 

less consistent tissue segmentation results over time than other subjects, which was likely 

caused by motion artifacts during infant MR scanning, although for these subjects their 

tissue segmentation and surface reconstruction results at each time point were still quite 

reasonable. In summary, the average correlation coefficient across all infants were 

0.960±0.016 by 4D infant surface atlases and 0.947±0.024 by FreeSurfer adult surface atlas, 

respectively, indicating better longitudinal consistency by 4D infant surface atlases.

3.4 Mapping Correlation Patterns of Early Brain Development

In this section, for the first time, we revealed the spatially-detailed correlation patterns of 

dynamic developmental trajectories of cortical thickness between different cortical regions 

in infants. Fig. 14 showed the average Pearson’s correlation maps of the developmental 

trajectories of cortical thickness between each vertex and all other vertices of 12 randomly 

selected infants, along with the mean correlation maps of all 35 infants. Individual variations 

of correlation patterns may come from inherent inter-subject variability of developmental 

patterns or each infant having different number of scans. However, the overall correlation 

patterns (positive vs. negative correlations) of individuals were quite similar with those of 

the averaged patterns of all infants. Specifically, the primary motor, somatosensory, superior 

parietal, and visual cortices have strong positive correlations with other regions, while 

lateral temporal, insula, inferior frontal, and superior frontal cortices have strong negative 

correlations with other regions in their developmental trajectories. Of note, the average 

correlation map may potentially be confounded by regional variations of surface alignment 

errors, e.g., the association cortex with more variable cortical folding patterns may have 

relatively lower alignment accuracies than the unimodal cortex.

To reveal spatially-detailed correlation patterns of cortical developmental trajectories, Fig. 

15 displayed the seed-based analysis of group averaged correlation patterns of cortical 

thickness developmental trajectories from 35 infants. For each of 38 relatively uniformly 

distributed seeds, its correlation map with all other vertices was shown as a respective color-

coded small cortical surface map. Green curves in each small surface map enclosed the 

regions with p < 0.05 after FDR correction for multiple comparisons (Benjamini and 

Hochberg, 1995). As can be seen, the correlation patterns were extremely variable across 

different regions. For example, seeds in the superior parietal cortex and unimodal cortex, 

i.e., primary motor cortex, primary somatosensory cortex, and visual cortex, always had 

strong positive correlations with vertices in those regions, and strong negative correlations 

with vertices in the insula cortex and heteromodal association cortex, e.g., lateral temporal 

cortex, prefrontal cortex, and inferior parietal lobule. While seeds in the lateral temporal 

cortex, inferior parietal lobule, and insula cortex always had strong positive correlations 

with vertices in those regions, and strong negative correlations with vertices in the unimodal 
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cortex and superior parietal cortex. In contrast, seeds in the dorsolateral prefrontal cortex 

had quite variable correlation patterns across different seed positions, with strong positive 

correlations only with nearby vertices. Seeds in the medial frontal cortex had strong positive 

correlations with vertices in this region, and also strong negative correlations with medial 

parietal, occipital, and temporal regions.

4. Discussion and Conclusion

This paper presented an original method for construction of 4D infant cortical surface atlases 

that were longitudinally-consistent and unbiased to any individual and any time point, by 

capitalizing on the within-subject longitudinal constraints and also the unbiased groupwise 

surface registration. To the best of our knowledge, this is the first method for construction of 

longitudinally-consistent and unbiased 4D cortical surface atlases. Although several 

methods have been proposed for construction of longitudinal 4D volumetric atlases, they 

either leaded to longitudinally-inconsistent atlases or were biased by specific time points 

(Davis et al., 2010; Durrleman et al., 2009; Liao et al., 2012). Leveraging the proposed 

method and our unique longitudinal infant MRI dataset as well as our infant-dedicated 

pipeline for cortical surface-based analysis, we have unprecedentedly constructed the 4D 

infant cortical surface atlases with 7 time points, including 1, 3, 6, 9, 12, 18, and 24 months 

of age, to comprehensively characterize the dynamic, nonlinear development of the cortex 

during the first two postnatal years. From our constructed 4D surface atlases, we found that 

all major cortical folding was present at 1 month and were preserved thereafter, consistent 

with the previous studies of cortical folding in infants (Hill et al., 2010a; Li et al., 2013; 

Meng et al., 2014). We also observed small inter-subject variability of sulcal depth in the 

central sulcus, and large inter-subject variability in the frontal and parietal regions in 4D 

infant surface atlases consistently from 1 to 24 months, in line with the finding in the term 

born neonates and adults (Hill et al., 2010a). One contradiction with the existing studies is 

that we found the relatively small inter-subject variability of sulcal depth in the middle 

region of the superior temporal sulcus consistently from 1 month to 24 months of age, in 

contrast to the observed large inter-subject variability in this region in neonates (Hill et al., 

2010a). A possible explanation is that (Hill et al., 2010a) purely used landmark curves to 

drive surface registration, without leveraging the rich geometric information of cortical 

folding, especially for the regions far away from landmark curves, e.g., the middle region of 

the superior temporal sulcus, thus leading to less accurate alignment of cortical surfaces. We 

also noticed that the sulcal depth in 4D surface atlases increased more dynamically in the 

first year than in the second year, consistent with our previous findings in studying cortical 

surface area expansion (Li et al., 2013) and cortical gyrification development in infants (Li 

et al., 2014f).

Using our 4D infant surface atlases as age-matched templates for spatial normalization of 

infant subjects has led to significantly improved accuracy and longitudinal consistency, in 

comparison with infant surface atlases constructed without longitudinal consistency and also 

FreeSurfer adult surface atlas. Our 4D surface atlases will have a range of applications in 

early brain development studies. For example, in the cross-sectional studies of infant brain 

development, registration of all cortical surfaces at different ages onto the atlas of a specific 

age would eventually bias the results and also lead to less accurate results for those subjects 
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unmatching with the age of the atlas. Since our 4D infant cortical surface atlases were 

constructed in the same space for all ages, we can register individual cortical surfaces at 

different ages onto their age-matched 4D surface atlases to naturally establish more accurate 

and unbiased inter-subject cortical correspondences both at the same age and across 

different ages.

To build 4D infant cortical surface atlases, we need to first reconstruct cortical surfaces 

based on the tissue segmentation results of infant brain MRI. However, segmentation of 

infant MRI is extremely challenging due to the poor tissue contrast, severe partial volume 

effect, dynamic changes of intensity appearance, and the ongoing maturation and 

myelination processes, as shown in Fig. 1. In neonates, T2 images have much better tissue 

contrast than T1 images (Wang et al., 2014b). While, in around 6 months of age, both T1 

and T2 images have extreme low tissue contrast. Therefore, only by adaptive integration of 

complementary information from multimodal images of T1, T2 and FA (derived from DTI) 

images, we can achieve accurate and reliable tissue segmentation and cortical surface 

reconstruction for infant MRI (Wang et al., 2014a). This is in contrast to adults, where T1 

images are typically adopted for tissue segmentation and surface reconstruction. Moreover, 

to deal with the poor tissue contrast during early infancy, we used images at later time points 

with clear cortical structures to guide the tissue segmentation during early infancy for 

achieving accurate and longitudinally-consistent results (Wang et al., 2012). This is mainly 

because all primary and secondary cortical folding are present at term birth and preserved 

during postnatal brain development (Hill et al., 2010a; Li et al., 2013; Meng et al., 2014). 

Indeed, this strategy greatly increases the accuracy and longitudinal-consistency of the tissue 

segmentation, and subsequently the cortical surface reconstruction and registration results. 

Despite using this advanced strategy, surface atlases at later time points still likely have 

better quality than those at early time points.

Based on our constructed 4D infant cortical surface atlases, for the first time, we 

investigated the spatially-detailed correlation patterns of the early dynamic developmental 

trajectories of cortical thickness between different cortical regions. To do this, we 

innovatively constructed subject-specific correlation matrix. Our results suggested that the 

correlation patterns of cortical thickness trajectories were extremely variable across different 

regions during this critical period of rapid cortex development. Specifically, we revealed 

several hitherto unseen properties of the correlation patterns of cortical thickness 

developmental trajectories in infants, including 1) the global correlation patterns (positive 

vs. negative correlations) of individuals were quite similar with each other, despite 

considerable inter-subjects variations of correlation magnitudes; 2) the unimodal cortex and 

superior parietal cortex had strong positive correlations with vertices in these regions, and 

also strong negative correlations with vertices in the heteromodal association cortex and 

insula cortex, and vice versa; 3) the high-order prefrontal cortex exhibited extremely 

variable correlation patterns with other regions, with large correlations only with nearby 

vertices. To the best of our knowledge, previous studies of early brain development have 

been limited to either point-wise or region-based longitudinal developmental trajectories or 

cross-sectional inter-region correlations (Gilmore et al., 2012; Li et al., 2013; Li et al., 

2014f; Lyall et al., 2014; Nie et al., 2014). Distinct correlation patterns between unimodal 

cortex and high-order association cortex are likely related to their differential growth 
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patterns. For example, primary sensory, superior parietal, visual regions all have low values 

of cortical thickness, and also low-growth of cortical thickness in the first year, whereas 

high-order association cortex, insula cortex and cingulate cortex exhibit high-growth of 

cortical thickness (Lyall et al., 2014). Moreover, our previous studies of cortical local 

gyrification development in infants also revealed a pattern of low-growth in unimodal 

regions (primary motor, somatosensory, and visual cortices) and high-growth in high-order 

association regions (lateral prefrontal, lateral temporal, and inferior parietal cortices) in the 

first postnatal year (Li et al., 2014f). This study has greatly bridged the critical knowledge 

gap on the correlation patterns of longitudinal cortical developmental trajectories of early 

brain development. However, we should mention that simply averaging subject-specific 

correlation matrices might not be the best strategy to study the population’s correlation 

patterns. In our future work, we will investigate better strategies to account for inter-subject 

variability.

There still exist several potential limitations in our 4D infant cortical surface atlases. First, 

we used 35 typically developing infants for construction of the first 4D infant surface 

atlases. Given the remarkable inter-subject variability in terms of cortical folding and 

cortical developmental trajectories, more infant subjects are expected for 4D surface atlases 

construction in order to fully capture the inter-subject variability. Second, owing to 

uncompleted or insufficient quality scans, each time point had a different number of subjects 

for construction of 4D infant surface atlases, which introduced biases at certain time points. 

Using more subjects from large-scale longitudinal infant dataset as being acquired in our 

institute would mitigate this problem. Another strategy is to first estimate the missing 

cortical data by learning information from both subject-specific and population-based 

developmental trajectories, and then construct the 4D surface atlases using both the existing 

cortical data and the estimated cortical data. Third, our 4D infant surface atlases were 

constructed in its own space. To maximize the usage, we will concatenate our 4D infant 

cortical surface atlases with some existing cortical surface atlases by establishing inter-atlas 

vertex correspondences. At last, currently only normal infants were used to construct 4D 

surface atlases. Although, our 4D infant surface atlases can be generally used in various 

studies of early brain development, there exist possible cortical structural differences 

between normal and abnormal infants, between males and females, and between different 

ethnicities. Thus, disorder-specific, gender-specific and ethnicity-specific atlases, which 

could better capture the cortical structural information when studying particular populations, 

may further improve the accuracy in some specific studies. In the future, we will also add 

infants with or at risk for neurodevelopmental disorders for atlas construction.

In our future work, we will also add more attributes of the cortex, e.g., local gyrification 

index (Li et al., 2014f), sharpness, and curvedness (Nie et al., 2013), or even the underlying 

fiber connectivity information derived from DWI (Nie et al., 2012a; Zhang et al., 2010), 

onto 4D infant cortical surface atlases, to achieve more accurate results for mapping early 

brain development. We will make our 4D infant cortical surface atlases publically available 

for facilitating early brain development studies. With our 4D infant surface atlases and the 

increasing availability of large-scale longitudinal infant MRI datasets, we will 

comprehensively investigate the normal developmental trajectories of cortical surface area, 
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cortical thickness, and cortical folding/gyrification, as well as their correlation patterns in 

both healthy infants and infants at risk for brain disorders, to increase our limited knowledge 

on early brain development and also to provide fundamental insights into 

neurodevelopmental disorders.
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Highlights

• We propose a method for construction of consistent and unbiased 4D surface 

atlases;

• We construct the first 4D infant cortical surface atlases with 7 time points;

• We study correlation patterns of early cortex development between different 

regions.

Li et al. Page 21

Med Image Anal. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Longitudinal dynamic brain development of an infant in the first 24 months of life. (a) T1-

weighted MR images. (b) T2-weighted MR images. (c) Reconstructed outer cortical 

surfaces, color-coded by cortical thickness (mm).
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Fig. 2. 
Illustration of several major steps involved in our computational pipeline for infant cortical 

surface reconstruction and mapping.
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Fig. 3. 
Illustration of the proposed method for construction of unbiased and longitudinally-

consistent 4D infant cortical surface atlases. (1) Establishing unbiased within-subject 

cortical correspondences by groupwise surface registration; (2) Computing within-subject 

mean cortical folding; (3) Inter-subject groupwise surface registration based on geometric 

features of their within-subject mean cortical folding; (4) Establishing inter-subject cortical 

correspondences at each age based on the correspondences defined by their within-subject 

mean cortical folding; (5) Computing means and variances of geometric features of the 

cortical folding at each age. Here all spherical surfaces are color-coded by the average 

convexity maps of the cortical surfaces, which reflect the large-scale geometry of the 

cortical folding.
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Fig. 4. 
(a) Longitudinal inner cortical surfaces of the left hemisphere of a representative infant from 

1 to 24 months of age, color-coded by the mean curvatures, as well as their within-subject 

mean cortical surface (color-coded by the average values of mean curvatures of all time 

points) computed based on the cortical correspondences established by within-subject 

groupwise surface registration. (b) Longitudinal spherical surfaces of the left hemisphere of 

the infant after within-subject groupwise registration, color-coded again by the mean 

curvatures, and their average values of mean curvature of all time points. Red colors indicate 

sulci, and blue colors indicate gyri. Here the mean curvature reflects the fine-scale geometry 

of the cortical folding. As we can see, the within-subject mean cortical folding is very sharp 

and contains very detailed information of folding patterns.
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Fig. 5. 
Constructed 4D infant cortical surface atlases on the spherical space at 1, 3, 6, 9, 12, 18, and 

24 months of age. (a) Sulcal depth (mm). (b) Average convexity. (c) Mean curvature. Blue 

color indicates gyri, and red color indicates sulci. CS=Central Sulcus, PreCS=Precentral 

Sulcus, PostCS=Postcentral Sulcus. (d) Variance of sulcal depth. (e) Variance of average 

convexity. (f) Variance of mean curvature.
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Fig. 6. 
4D infant cortical surface atlases mapped onto the age-matched average cortical surfaces at 

1, 3, 6, 9, 12, 18, and 24 months of age.
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Fig. 7. 
Mean values of (a) sulcal depth (mm), (b) absolute average convexity, and (c) absolute mean 

curvature on our 4D infant cortical surface atlases.
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Fig. 8. 
Visual comparisons of 4D infant surface atlases (color-coded by the mean curvature) from 1 

to 24 months, constructed by (a) the proposed method and (b) groupwise surface registration 

at each age independently.
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Fig. 9. 
Average information entropy of the sulcal and gyral regions of all aligned cortical surfaces 

at each age, by using 4D infant surface atlases, independent infant surface atlases, and 

FreeSurfer adult surface atlases as the templates.
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Fig. 10. 
Means and standard deviations of the overlap ratio of the sulcal and gyral regions between 

each pair of subjects on their aligned cortical surfaces at each age, by using 4D infant 

surface atlases, independent infant surface atlases, and FreeSurfer adult surface atlas as the 

templates.
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Fig. 11. 
Mean and standard deviation of the correlation coefficients of the average convexity map 

between each pair of subjects at each age on their aligned cortical surfaces, by using 

different surface atlases as the templates.

Li et al. Page 32

Med Image Anal. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 12. 
Longitudinal consistency measure of sulcal and gyral regions in each of 35 infants by 

registration onto FreeSurfer adult surface atlas and 4D infant surface atlases.
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Fig. 13. 
Mean and standard deviation of the correlation coefficients of the average convexity map 

between each pair temporally neighboring cortical surfaces in each of 35 infants, by 

registration onto FreeSurfer adult surface atlas and 4D infant surface atlases.
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Fig. 14. 
Average Pearson’s correlation map of the developmental trajectories of cortical thickness 

between each vertex and all other vertices. (a)–(b) Correlation maps of 12 randomly selected 

infants. (c)–(d) Mean correlation maps of 35 infants. Both lateral and medial views are 

provided.
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Fig. 15. 
Seed-based analysis of group averaged correlation patterns of cortical thickness 

developmental trajectories from 35 infants. For each of 38 seeds, its correlation map with all 

other vertices is shown as a respective color-coded small surface map. Green curves enclose 

the regions with p < 0.05 after FDR correction for multiple comparisons.
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