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Abstract

In medical imaging studies, there is an increasing trend for discovering the intrinsic anatomical 

difference across individual subjects in a dataset, such as hand images for skeletal bone age 

estimation. Pair-wise matching is often used to detect correspondences between each individual 

subject and a pre-selected model image with manually-placed landmarks. However, the large 

anatomical variability across individual subjects can easily compromise such pair-wise matching 

step. In this paper, we present a new framework to simultaneously detect correspondences among 

a population of individual subjects, by propagating all manually-placed landmarks from a small 

set of model images through a dynamically constructed image graph. Specifically, we first 

establish graph links between models and individual subjects according to pair-wise shape 

similarity (called as forward step). Next, we detect correspondences for the individual subjects 

with direct links to any of model images, which is achieved by a new multi-model correspondence 

detection approach based on our recently-published sparse point matching method. To correct 

those inaccurate correspondences, we further apply an error detection mechanism to automatically 

detect wrong correspondences and then update the image graph accordingly (called as backward 

step). After that, all subject images with detected correspondences are included into the set of 

model images, and the above two steps of graph expansion and error correction are repeated until 

accurate correspondences for all subject images are established. Evaluations on real hand X-ray 

images demonstrate that our proposed method using a dynamic graph construction approach can 
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achieve much higher accuracy and robustness, when compared with the state-of-the-art pair-wise 

correspondence detection methods as well as a similar method but using static population graph.

Graphical abstract
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1. Introduction

Correspondence detection (Shen et al., 1999) is a fundamental problem in medical image 

analysis with a wide range of applications, such as skeletal bone age estimation (BAE) 

(Martin-Fernandez et al., 2003; Thangam et al., 2012), medical image registration (Xue et 

al., 2006; Yang et al., 2008; Heimann and Meinzer, 2009; Tang et al., 2009; Wu et al., 

2011), and organ detection and segmentation (Zhan et al., 2008; Shi et al., 2010; Zheng et 

al., 2010). For the case of computational anatomy, robust correspondence detection is a key 

step to allow the quantitative measurement of anatomical difference across individuals. 

However, it is still challenging for accurate correspondence detection, especially between 

the subjects with very large anatomical differences.

Given a set of landmarks in the model image (delineated either manually (Styner et al., 

2003; Murphy et al., 2008; Castillo et al., 2009) or automatically (Criminisi et al., 2010; Ou 

et al., 2010; Paganelli et al., 2012)), the goal of correspondence detection is to determine the 

corresponding location of each landmark in the subject images. The existing pairwise 

correspondence detection methods can be roughly classified into two categories, according 

to the correspondence relationship and the expression of geometric transformation. The first 
category of methods determines point-to-point correspondences and geometric 

transformation simultaneously, such as iterative closest point algorithm (ICP) (Besl and 

McKay, 1992), thin plate spline–robust point match (TPS-RPM) (Chui and Rangarajan, 

2003), etc. These methods mostly focus on point-to-point correspondences and model the 

whole transformation between the two point sets explicitly. The second category of methods 

takes into account pair-to-pair relationship. They mostly represent the geometric 

transformation implicitly, but focus on the correspondence searching, such as using graph-

based methods. Graph-based methods have shown their potential in medical imaging 

applications by modeling not only the point-to-point correspondence (Zhang and Lu, 2004; 

Jiang et al., 2007) but also the pair-to-pair consistency (Leordeanu and Hebert, 2005; Zass 

and Shashua, 2008). Many scholars have developed various graph-based methods 

(Duchenne et al., 2011; Sanromà et al., 2012; Sanromà et al., 2012). Guo et al. (Guo et al., 

2013) introduced a sparsity constraint into the conventional graph matching method for 

more accurate and robust correspondence detection.
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Apart from these pairwise correspondence detection methods, some scholars also studied 

various groupwise models for correspondence detection. Donner et al. (Donner et al., 2009) 

proposed a MRF model for groupwise model learning. Adeshina and Cootes (Adeshina and 

Cootes, 2010a, b) and Zhang et al. (Zhang et al., 2012; Zhang and Cootes, 2012) proposed 

parts-based methods for initializing groupwise registration. Although these matching 

methods have been successfully used for correspondence detection, they still have 

limitations in detecting correspondences between images with large anatomical difference, 

such as in medical studies that often involve a large amount of images with variable 

anatomical shapes.

In the past, some methods have been proposed for addressing the above challenges. For 

example, in the case of image segmentation, Wolza et al. (Wolza et al., 2010) proposed the 

learning embeddings for atlas propagation (LEAP), which uses an intensity-based similarity 

to build a population graph for linking similar images in the neighboring nodes first. Then, 

they decomposed the task of segmenting all subjects into a series of easy segmentation tasks, 

i.e., 1) segmenting images with similar anatomical structures and 2) propagating 

segmentations forward to other nearby images, thus avoiding segmenting images with large 

structural discrepancies. However, the population graph built by LEAP does not prevent the 

propagation errors, since it is fixed throughout the whole segmentation procedure. Thus, this 

will lead to possible accumulation of segmentation errors due to the use of spurious graph 

links, since no mechanism is used to re-evaluate the population graph and then improve the 

segmentation results. More critically, the similarity measure used for building the population 

graph is simply computed with image intensity difference, which unfortunately has no direct 

relation with the shape of anatomical structure.

To address all the above issues, we propose using dynamic population graph for detecting 

correspondences among a set of individual images. Our method includes two steps, forward 

step and backward step, which are repeated until completion. In the forward step, we 

investigate shape discrepancies between any pair of images, instead of simply using the 

traditional image intensity similarity. Then, we build a population graph with the nodes 

representing (model or subject) images and the edges linking pairs of model-subject images 

with small shape differences. Note that we here establish correspondences only for the 

subject images with direct links to any of the model images. For the case that one subject 

image is linked to multiple model images, we propose a multiple model selection and fusion 

method for correspondence detection. In the backward step, we update the population graph 

according to the current correspondences just established, after removing correspondence 

detection errors in the forward step by using our proposed error detection mechanism which 

is built based on the shape similarity and the spatial relationship of all landmarks. As the 

result of this backward step, the inaccurate correspondence detection results are removed 

and also the set of model images is updated by including the subject images with their newly 

established correspondences. We repeat the above two steps until correspondences for all 

subject images are determined.

We have comprehensively evaluated our proposed correspondence detection method on the 

real hand X-ray images. Compared with the state-of-the-art methods, our correspondence 
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detection method (based on the dynamic population graph) achieves significant 

improvement, in terms of both accuracy and robustness.

The rest of this paper is organized as follows. In Section 2, we present our proposed method. 

In Section 3, we compare our method with the state-of-the-art methods. Finally, we draw the 

conclusion in Section 4.

2. Method

2.1. Overview of Our Proposed Method

Conventional methods often detect correspondences independently between each subject 

image and the pre-defined model image. Thus, their performances are limited when subject 

and model images have large structural discrepancies. To address this issue, we propose a 

novel correspondence detection method by dynamically updating the population graph 

during the iterative correspondence detection procedure. The framework of our proposed 

method is depicted in Fig. 1.

Specifically, each image is regarded as a node in the population graph. In the forward step, 

we first build a population graph by linking between model images and their most similar 

subject images. Here, we use a novel shape similarity measurement, instead of simple image 

intensity similarity, as described in Section 2.2 for measuring the similarity of two images. 

Then, we determine correspondences for each subject image that is linked to any of model 

images by using the model image(s) linked to this subject image, as detailed in Section 

2.3.1. For the case that a subject is linked to multiple model images, our proposed multiple 

model selection and fusion method based on the shape similarity are used, as described in 

Section 2.3.2. In the backward step, we first detect wrong correspondences and then 

dynamically update the population graph by removing those graph edges linked to the 

subject images with wrong correspondences, as described in Section 2.4. In this way, only 

the subject images with reasonable correspondences will be included in the set of model 

images, thus avoiding the propagation of errors to connected subjects (under correspondence 

detection). By repeating the above forward step and backward step, correspondences on the 

remaining subject images can be detected.

Fig. 2 and Fig. 3 illustrate our approach in an intuitive way. Fig. 2 shows an initial 

population graph after linking the model image (a) with the most similar subject images (b)-

(g), based on the shape similarity. Since these subject images are similar to the model image, 

we can determine their correspondences more accurately, compared to other subject images. 

By using the error detection mechanism, we detect the wrong correspondence results for 

subject image (g), and thus remove its respective edge and further update the population 

graph. In this way, we can prevent the propagation of correspondence detection errors to the 

rest of subject images. Next, we include all subject images (b)-(f) with reasonable 

correspondences into the set of model images. Fig. 3 shows a new population graph, which 

is built by linking the remaining subject images with the newly added models (i.e., subject 

images (b)-(f)). Then, we can perform correspondence detection for all the remaining 

subject images (g)-(l). It is worth noting that our described progressive correspondence 
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detection method can be straightforwardly extended to the case of multiple initial models, 

instead of only a single model as used for the example given in Fig. 2 and Fig. 3.

2.2. Population Graph Construction Based on the Shape Boundary Distance

Given a large number of subject images, it is inevitable to have some subject images with 

large anatomical dissimilarity with respect to the model images. To avoid the difficulty of 

detecting correspondences for those subject images in the initial stage, we propose to learn 

the distribution of all (model and subject) images in the manifold, so that we can identify, 

for each model image, its nearby subject images (with the most similar anatomical 

structures) in the manifold.

Specifically, we build a population graph, with each node representing an image and each 

edge linking two most similar images. For building a reasonable population graph, it is 

important to accurately measure image similarity. The conventional methods often use 

image intensity similarity to measure the similarity of two images (Jia et al., 2012). Recall 

that the goal in our application is to detect accurate landmark correspondences between the 

model image(s) and the subject images, where landmarks are often located on image 

boundaries. Hence, here we will use the shape boundary difference as a similarity 

measurement, instead of image intensity similarity.

Specifically, we compute the similarity between two images with the following 3 steps: (1) 

affinely register the two images by using Elastix (Klein et al., 2010; Shamonin et al., 2014), 

or Flirt in FSL toolbox (Smith et al., 2004; Woolrich et al., 2009; Jenkinson et al., 2012); (2) 

obtain the boundary point set in each image by applying the Canny edge detector; and (3) 

compute the bi-directional distance (Du et al., 2011) between the two point sets as explained 

below.

For the two affinely-aligned images Ii and Ij(i≠j), we apply the Canny edge detector to 

extract their own boundary point sets, as denoted by Si={si,k|k = 1,…,Li} and Sj = {Sj,l|l = 1,

…,Lj} for images Ii and Ij, respectively. Here, Li and Lj are the numbers of boundary points 

in Si and Sj, respectively. The bi-directional distance between images Ii and Ij is then defined 

as:

(1)

where the first and second terms represent the point set distances from Si to Sj and Sj to Si 

respectively. In Eq. (1), d(si,k,Sj) denotes the shortest Euclidian distance between the point 

si,k and the point set Sj, which is defined as . The 

distance d(Si,sj,l) can be defined similarly. Therefore, the computational complexity between 

every two images is O(LiLj).

Fig. 4 shows an example demonstrating the superiority of using the shape boundary 

difference over the simple image intensity difference. As we can see from this figure, the 

accurate correspondences between model image (a) and subject image (b) can be 

established, while it fails to establish correspondences for the subject image (c) by the model 
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image (a). But if using the simple image intensity difference (even after histogram matching 

and normalization), subject image (c) is more similar to the model image (a) than the subject 

image (b). Obviously, this result does not reflect the underlying anatomical similarity, as 

indicated by the correspondence detection results.

As a result, we compute the bi-directional shape boundary distances between all current 

model images and subject images to estimate their respective similarities/differences. In this 

way, we can build a population graph by linking all pairs of subject-model images if their 

respective distances are below a certain threshold r0. Specifically, after computing the 

distance d(Ii, Ij) between every pair of images Ii and Ij, a similarity matrix can be obtained. 

Then, based on this similarity matrix, we can compute the minimum value among the 

maximum values along columns of this similarity matrix, i.e., rm = minj maxi d(Ii, IJ), which 

is the minimum threshold to connect all other images for a certain image. Next, we use this 

value as a reference, and further define a searching range around rm to finally determine our 

threshold r0, according to the experimental results on the training samples. Fig. 2 and Fig. 3 

show such two graphs built in two iterations of our approach.

2.3. Correspondence Detection Based on Sparse Point Matching

2.3.1. Sparse Point Matching—In the scenario of graph matching (Cour et al., 2006), 

multiple correspondences are allowed and each potential correspondence is considered as 

the graph node. Then, graph edge is used to measure the pointwise and pairwise agreement 

between possible correspondences, which includes the similarity of the geometric 

relationships and the local descriptors. After encoding the graph into an affinity matrix, the 

task of correspondence detection becomes the optimization problem of finding the set of 

one-to-one correspondences that produce the maximal pairwise agreement in the affinity 

matrix. The graph matching methods make full use of different image information including 

point-to-point and pair-to-pair correspondences, which have been intensively studied.

As mentioned, we will propagate landmarks from model images to subject images through 

the determination of correspondences between any pair of model image and subject image 

that are linked together in the population graph (as detailed above in Section 2.2). Note that, 

in the model image, we already have a set of manually-placed landmarks, e.g., 30 landmarks 

as shown in Fig. 5. For the subject image, we need to first determine the candidates of 

feature points, which will be used for locating landmarks for the subject image (since all 

landmarks in the model images are manually placed on the joints (edge) of hand bones). To 

do this, 1) we will first detect edge points in the subject image by Canny edge detector. 2) 
To reduce the unnecessarily large number of feature points generated by Canny edge 

detector, we keep only the edge points that are close to model landmarks (after affine 

alignment of subject image with the model image) and also have distinctive local 

appearances. With this operation, we can reduce from > 3000 feature points generated by 

Canny edge detector to ∼ 700 feature points, as demonstrated in Fig. 5(c).

Finally, we determine landmarks for the subject image by the correspondence detection 

method, as described below. Fig. 5 shows an example of detecting correspondences on a 

hand X-ray image.
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We use the sparse point matching method in (Guo et al., 2013) for detecting 

correspondences between the model image and the subject image. Assume that we have NL 

landmarks (i.e., equal to 30 in Fig. 5) on the model image, which can be represented by 

M={mi|i= 1,…,NL}. Similarly, assume that we have NF feature points on the subject image, 

denoted by F = {fi|j = 1,…,NF} . We represent correspondences between these two sets of 

landmarks/points by the assignment matrix X=[xi,j]NL×NF, where xi,j ∈ {0,1} indicates 

whether the i-th model landmark corresponds to the j-th subject feature point or not. To 

obtain one-to-one correspondences, we impose the constraint that each landmark mi must be 

matched to one feature point in F, i.e., . By reshaping the assignment matrix X 
into a NLNF dimensional assignment vector , we can reformulate the one-to-one constraint 

in an affine way as follows: , where C is a matrix used to ensure the sum 

of each row in X close to 1 (Maciel and Costeira, 2003). To solve the assignment vector , 

we construct an NLNF × NLNF affinity matrix M for describing the compatibility between all 

pairs of correspondences between the model image and the subject image, whose 

computational complexity is O((NLNF)2). We further take into account the coherence in 

distances, angles, and local appearance, to compute such compatibilities. Finally, the sparse 

point matching method formulates correspondence detection as the following quadratic 

optimization problem:

(2)

where parameters γ and λ control sparsity and one-to-one matching constraint, respectively. 

Note that the sparsity constraint helps suppress ambiguous correspondences in the 

assignment vector . Moreover, the maximization of the objective function (2) is a 

quadratic programming problem, whose computational complexity is O((NLNF)3.2)(Du et 

al., 2010).

2.3.2. Multi-model Correspondence Detection—In the above, we have provided a 

method for detecting correspondences for the subject image, if it is connected with one 

model image. In many situations, for a subject image, it can be linked with multiple model 

images. In such case, we detect correspondence for this subject image with each model 

image separately, and then apply our multi-model selection method proposed below to fuse 

the most confident correspondence candidates for achieving the final accurate result.

In our multi-model selection method, we assume that the overall distribution of the detected 

correspondences in the subject image should be similar to the global shape of landmarks in 

each model image. With this assumption, we can remove incorrect landmarks placed in the 

subject image, as detailed next. First, we use an affine transform to map all landmarks of 

each model image onto the subject image space, to best match with the detected 

correspondences in the subject image. Then, we keep only those detected correspondences 

as candidates for fusion, if their distances to the mapped landmarks of the model image are 

small.

More formally, assume that we have K landmark sets from K model images, Mi = {mi,n|n = 

1,…,NL}, (i = 1,…,K), each with the same NL landmarks. The detected landmarks for the 
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subject image by each of K model images can be denoted by Di = {di,n|n = 1, ….,NL}, (i = 1, 

…,K). As mentioned in the last paragraph, we select the candidate landmarks that are only 

close to the affine aligned counterparts of the model image. Here, the affine transformation 

to best match the detected correspondences Di in the subject image and the mapped 

landmarks Mi in the model image is estimated as follows:

(3)

where Ai is the 2×2 matrix (including rotation, scaling and shearing), and ti is the translation 

vector. The objective function in Eq. (3) can be easily solved according to (Du et al., 2008), 

as given below:

(4)

where  and .

Using Eq. (4), we can obtain the affine transformation between subject image and each 

model image, denoted as {Ai, ti}. Then, we can compute the n-th transformed landmark of 

the i-th model as Aimi,n + ti, and further compute its distance to the corresponding detected 

landmark of subject image as ║Aimi,n + ti – di,n║2. Since the shapes of both the model 

image and the subject image are often similar, the distance ║Aimi,n + ti– di,n║2 should be 

small as well. Thus, we keep this detected landmark as a candidate landmark for the subject 

image, only if its computed distance is less than a certain threshold r1, which depends on 

both image resolution and the distribution of landmarks. Specifically, the threshold r1 is 

used to search the candidate landmarks according to the global shape similarity, which is 

often set to a relatively large value since the global affine transformations usually does not 

accurately register the point sets. The final threshold r1 can be determined based on the 

statistics estimated from images with similar hand shapes.

Afterwards, we can combine all detected landmark candidates from all model images that 

are linked to the subject image under study. Specifically, for each landmark, we can use a 

mean-shift method to estimate the actual location from all landmark candidates. In 

particular, we can first compute the mean of all landmark candidates and then remove the 

one with the largest distance to the calculated mean location. Next, we repeat the same 

procedure until only two corresponding locations remain. Finally, the estimated landmark 

location for the subject image can be computed as the mean of the two remaining landmark 

candidates.

Note that our above multi-model correspondence detection method can help remove gross 

errors, not the small errors in the local parts, because of using global affine transformation. 

However, these remaining small errors will be corrected by our error detection mechanism 

as proposed in the next section (Section 2.4).
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2.4. Graph Update by Error Detection Mechanism

As described above, we can detect correspondences for each subject image if it is connected 

to one or more model image(s) in the previously built population graph. Then, the subject 

images with reasonably detected correspondences can be included into the set of model 

images, and further used to expand the previous population graph in the next iteration, by 

computing the links from the newly added model images to the remaining subject images. 

By iteratively repeating this procedure, the correspondences for all subject images can be 

eventually detected. Since the population graph connects the model images only to the 

subject images with similar global shapes, we have high confidence on the detected 

correspondences for the linked subject images in the population graph. However, since our 

above-proposed approach ignores local similarity between model image and subject image, 

some local errors may still exist, as shown in Fig. 6(b) where the model image (a) and 

subject image (b) are globally similar but have some discrepancies in the local regions, i.e., 

in thumb and forefinger. Such errors could be easily propagated through the population 

graph, if not corrected immediately. Accordingly, in the following, we propose an error 

detection mechanism for updating the population graph, thus avoiding the propagation of 

even those small errors.

Specifically, we divide each (model or subject) image into several different local regions 

and then check their similarities in the model and subject images, respectively. In particular, 

the hand image is divided here into six local regions, consisting of five fingers and palm. 

Then, in each local region, we can use the landmarks of each model image to examine 

whether the detected corresponding landmarks in the subject image are correct or not. As 

there often exist different numbers of landmarks in each local region, we need to use two 

different methods for evaluating the respective detection results, as detailed below. Note 

that, for correcting the local correspondences in the subject image, we often need to compute 

affine transformation from at least 3 pairs of correspondences established between model 

and subject images, and then we can use the computed affine transformation to possibly 

verify other detected correspondences in the local region of subject image. By repeating this 

step, we can possibly verify all correspondences in the local region; of course, with more 

pairs of correspondences for computing affine transformation, the computed transformation 

can be more robust and accurate and then the verification results can be better. Since there 

are different numbers of landmarks in each local region, we adopt two different strategies 

for evaluating the detection results:

• In the first case, when the number of pairs of correspondences is more than five, 

such as for the palm region, we can use Eq. (5) to compute the affine 

transformation between palms of the model and subject images, and then transform 

all model landmarks onto the subject image for landmark correction. Specifically, 

we consider a detected landmark as correct if its distance to the corresponding 

transformed landmark of the model image is less than a certain threshold r2. 

Otherwise, we consider it as wrong detection result.

• In the second case, if the number of pairs of correspondence is less than or equal to 

five, such as for each of five finger regions, the computed affine transformation 

could be not good enough to validate the correspondence detection results. Also, 
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for this case, the incorrectly detected landmarks are often clustered together. To 

identify this situation, we will compute the distance between any two detected 

landmarks in each finger region. If we find the distance is below a certain threshold 

r3, we will consider these two detected landmarks are clustered together and thus 

should regard them as false detections.

Note that, for both above cases, their respective thresholds r2 and r3 could be determined 

according the image resolution and also the landmark distribution of each region. 

Specifically, the transformation of the palm region is always smaller than that of the finger 

region, so r2 is always smaller than r3. To determine these two parameters, we perform the 

experiments based on the training samples by varying these parameters within a suitable 

range and finally select their optimal values for the testing samples. Moreover, if any 

correspondence/landmark is determined to be wrong, this subject image will be removed 

from the population graph, and its correspondence detection will be postponed to the next 

iterations, after it is included again into the future population graph.

Fig. 7 gives an example demonstrating the idea proposed above, with two iterations. In the 

first iteration, as shown in the left panel of Fig. 7, landmarks of two subject images (b) and 

(g) (which are the same subjects as in Figs. 2 and 3) are detected by applying the sparse 

point matching method and using the model image (a). Note that the detected landmarks are 

shown in blue points, while model landmarks are shown in red points. Then, the above-

proposed error detection mechanism is applied to verify the landmark detection results for 

the two subject images (b) and (g), and find out that the detection results for subject image 

(g) are incorrect, while the detection results for subject image (b) are correct. In this way, 

only the subject image (b) will be included into the set of model images, but the subject 

image (g) will be removed from the population graph by deleting its link with the model 

image (a). In the second iteration, as shown in the right panel of Fig. 7, the image (g) is 

connected to the subject image (b) (now used as a new model image) during the updating of 

population graph. Then, the landmarks for the subject image (g) can be correctly detected by 

the newly added model image (b).

2.5. Summary of Our Proposed Method

Our method can be summarized as follows. (i) Given the set of model images and the set of 

subject images, we establish a population graph by linking the model images with the 

subject images according to their shape similarities, as described in Section 2.2. (ii) In the 

forward step, we detect correspondences for the subject images included in the current 

population graph via our sparse point matching method, as described in Section 2.3. (iii) In 

the backward step, correspondence detection results are evaluated by our error detection 

mechanism, and the subject images with false detection results are removed from the current 

population graph to prevent their error propagation to other subject images, as described in 

Section 2.4. Note that only the subject images with reasonable correspondences will be 

included into the set of model images. The above 3 steps are repeated until all subject 

images are detected with landmarks, or no further subjects could be connected to the model 

images. The whole method is also summarized in Algorithm 1.
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Algorithm 1

Correspondence detection based on dynamic population graph construction

Input: A set of model images,  with manually-placed landmarks; and also a set of subject images,  for 
correspondence/landmark detection.
Repeat
  Forward Step
    for each subject image Ij ∈ 

1 Compute distance d(Ii,Ij) between this subject image Ij and each model image Ii ∈ and then connect this 
subject image Ij to the model image Ii, if d(Ii, Ij)< r0. In this way, we can build a population graph.

2 Use the correspondence detection method in Section 2.3 to detect correspondences/landmarks for the 
subject image Ij, if it is connected to the model image(s) in the above population graph.

    end for
  Backward Step

Evaluate the correspondence detections for each subject image connected to the model image(s) in the population 
graph, by using the error detection mechanism in Section 2.4. All subject images with reasonable detected 
correspondences will be included into the set of model images,  and then deleted from the set of subject images, 

until |  = 0, or no any subjects could be connected to the model images.

3. Experimental Results

In this section, we evaluate the performance of our correspondence detection method on 50 

hand X-ray images (Cao et al., 2003). The image size varies across the image set with a 

width ranging from 1100 to 1800 pixels and a height ranging from 1800 to 2400 pixels, and 

the resolution of the image is 0.1 mm per pixel. We compare our method with both the 

spectral matching with affine constraint (SMAC) (Cour et al., 2006) and the sparse point 

matching (SPM) (Guo et al., 2013). Moreover, we compare our method with the idea of 

learning embedding for atlas propagation (LEAP) (Wolza et al., 2010), to demonstrate the 

advantage of dynamically constructing the population graph (in our method) than simply 

using the fixed population graph in the whole procedure. In the experiments, we set the 

maximum number of connections to the model images to be 5 , which is 10% of the total 

number of images. Then, we set the distance thresholds as follows: r0=2.5 mm, r1=12 mm, 

r2=8 mm, r3=10 mm. Also, we found that, when varying r0, r1, r2 and r3 by 0.1, 1.5, 1 and 

1, respectively, the obtained results are similar, indicating the robustness of our method.

3.1. Evaluation with Single Model

In this section, we evaluate the performances of all comparison methods (SMAC, SPM, and 

our method) in detecting landmarks by using a single (randomly selected) image as the 

model image. Both SMAC and SPM directly detect correspondences between the model 

image and the remaining 49 subject images, whereas our method detects correspondences 

for the subject images through a dynamic population graph. Table 1 shows the mean and 

standard deviation of landmark detection errors between the ground truth and the estimated 

correspondences by SMAC, SPM and our method, respectively. To avoid any bias 

introduced by the selection of the model image, we repeat our experiment for 5 times by 

randomly selecting a model image at each time to detect landmarks for the remaining 

subject images.
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As we can see, our method achieves much higher accuracy than other two compared 

methods. Moreover, our method obtains a smaller standard deviation, indicating more 

stability of our method. To further analyze the performances, we compare the maximum 

error among all the detected landmarks on each subject image by each method. Thus, we can 

obtain a maximum landmark error for all subjects, and then report in Table 2 the average of 

maximum landmark errors of all subject images for each method.

As shown in Table 2, our method achieves considerably lower maximum landmark errors 

than both SMAC and SPM methods, which indicates that our method can achieve 

considerably more accurate results. Fig. 8 shows a typical correspondence detection result. 

As we can see from this figure, the detection accuracies of both SMAC and SPM are 

limited, due to large shape discrepancies between the model image and the subject image. 

However, our method overcomes this issue, because of using the dynamically-constructed 

population graph, as well as a progressive correspondence detection strategy. In Fig. 8, our 

method also shows the correspondence detection results for an intermediate subject image 

(d), which is much closer to the model image (a) (than the subject image (e)) and thus has its 

correspondence determined first. Then, the detection results of this intermediate subject 

image are used to detect correspondences for the subject image (d), thus obtaining much 

better results compared to those by SMAC and SPM in (b) and (c), especially for the 

highlighted regions.

3.2. Evaluation with Multiple Models

In this section, we further demonstrate the performance of our correspondence detection 

method by using multiple model images, instead of only one model image. For each selected 

number of model images, we similarly repeat the experiment 5 times by randomly selecting 

model images from the dataset. For fair comparison with SPM, we use their multi-model 

based approach as well (Guo et al., 2013), i.e., first computing correspondences between 

each subject and all model images and then fusing all results by using a mean-shift 

technique. Table 3 shows the mean and standard deviation of the landmark detection errors, 

as well as both maximum error and mean maximum error, for SPM and our method, 

respectively. Note that, since SMAC has no respective strategy for handling multiple model 

images, we did not include it for comparison here. Results in Table 3 show that our method 

achieves not only more accurate but also more stable correspondence detection results, 

compared to SPM. Specifically, our method achieves lower maximum errors by the use of 

the dynamic population graph, which demonstrates that the proposed approach can prevent 

the incorrect results effectively. One typical example is also shown in Fig. 9, demonstrating 

more accuracy and robustness of our method than SPM.

To give more visual insight on the performance of these comparison methods, Fig. 10 shows 

the average results of the above 5 random testing experiments, with respect to the use of 

different number of model images. Our approach achieves much better performance than 

SPM.
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3.3. Evaluation on Each Anatomical Part

Here, we give more detailed performance comparison for the palm and fingers, separately. 

First, we randomly select 5 model images, and then use them to detect correspondences for 

the 45 remaining subject images. There are a total of 19 landmarks on the fingers, and 11 

landmarks on the palm. To avoid any bias induced by random selection, we again repeat the 

experiment 5 times. We calculate the mean error of all subjects for all 5 experiments. Fig. 11 

shows the average of all mean errors.

As we can see, our method obtains much better results at the fingers. This is because fingers 

undergo much larger variability, compared to the palms. In such case, our built population 

graph can effectively reduce the error, as reflected by the bar plot in Fig. 11. On the other 

hand, the palm gets worse results than fingers. The main reason is that landmarks on the 

palm are too close to each other and their appearances are also more similar. Therefore, it is 

difficult to identify them. In Fig. 12, we report the average error for each landmark across 

the whole dataset.

3.4. Evaluation of Dynamic vs. Static Population Graph

Here, we will demonstrate the advantage of using the dynamic population graph, compared 

to the use of the static graph in LEAP (Wolza et al., 2010). Although LEAP used an 

intensity-based similarity measurement for construction of the population graph, for fair 

comparison, we combine the idea of LEAP with our proposed landmark-based similarity 

measurement to construct a static population graph and then use SPM for correspondence 

detection. Here, we denote this method as the LEAP-like method.

In the experiment, we again select 5 model images randomly, and then repeat the experiment 

for 5 times. As these two methods work in a very similar way, only a few results from 

LEAP-like are worse, so the mean and median errors of our method are just a little better 

than LEAP-like method. However, due to the use of backward step, our method is superior 

at preventing errors, as reflected by the lower standard deviations. In addition, we also 

compute the maximum landmark error for each subject image, and further compare 95th 

percentile value of the maximum landmark errors for all methods (Zhang and Cootes, 2012). 

Table 4 shows the results by LEAP-like method and our method in each of 5 experiments. 

We can see that the use of the dynamic graph construction produces much smaller standard 

deviation and considerably lower maximum errors. Specifically, both the maximum 

landmark errors and the 95th percentile values of the maximum landmark errors by our 

method are much smaller than those by the LEAP-like method. This is mainly because the 

backward step in our method helps effectively prevent error propagation. On the other hand, 

both our method and LEAP-like method obtain better results than SPM, indicating the 

benefit of establishing the population graph for propagating correspondences across subject 

images.

4. Conclusion

In this paper, we have proposed a dynamic correspondence detection method for the subject 

images with large anatomical differences. Specifically, to improve correspondence detection 
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results, we fully use the distribution information of all images to dynamically construct a 

population graph, and then progressively determine correspondences (for selected subjects at 

each time) in an iterative manner. Specifically, our method alternates two steps, forward 

step and backward step. In the forward step, we construct a population graph by linking only 

the subject images with similar shapes to the current model images. Here, we further 

integrate a sparse point matching into a multiple model detection approach for detecting 

correspondences of each subject image that is connected to multiple model images. In the 

backward step, we propose an error detection mechanism for identifying subject images 

with wrongly detected correspondences and further remove them from the population graph 

for avoiding error propagation. Then, we include those subject images with reasonable 

correspondences into the new set of model images, and repeat the above two steps until the 

correspondences for all subject images are detected. We have demonstrated higher accuracy 

of our method than the state-of-the-art methods on correspondence detection of 50 hand X-

ray images.

The main contribution of this paper is: 1) The bi-directional distance for boundary points is 

introduced to measure the shape similarity between every two images, instead of directly 

using the simple image intensity similarity. The proposed similarity measure used for 

building the graph can better capture the manifold structure of the data. 2) A graph-based 

approach is used for correspondence detection, where the graph is built to connect similar 

images. By using the proposed way of simultaneous graph construction and correspondence 

detection, we can decompose the initial large deformation between subject images into 

several small ones, thus progressively achieving more accurate correspondence detection 

results. 3) A novel fusion method is also proposed to combine multiple correspondence 

detection results for a subject image if it is linked to multiple model images. 4) Finally, an 

error detection mechanism is further proposed in our method to limit the propagation of 

potential detection errors.

In the future, we will integrate our proposed correspondence detection method into image 

registration framework, and then validate its performance in various medical imaging 

applications.
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Highlights

• A dynamic graph based on multi-models is built for accurate correspondence 

detection across subject images with large anatomical differences

• Bi-directional distance with boundary points is presented to measure the image 

similarity.

• Error detection mechanism is proposed for updating graph to avoid error 

propagation.

• Our method achieves much higher accuracy on correspondence detection.
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Fig. 1. 
Correspondence detection based on a dynamic population graph.
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Fig. 2. 
Correspondence detection results after completing the 1st iteration in our approach. (a) 

Model image with manual landmarks (red points). (b)-(f) Subject images with direct links to 

the model image, each of them having reasonable correspondences (thus these subject 

images will be eventually included into the set of model images) (blue points). (g) Subject 

image with wrong correspondences (thus it will not be included into the set of model 

images). (h)-(l) Subject images not linked to the model image in the 1st iteration.
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Fig. 3. 
Correspondence detection results after completing the 2nd iteration in our approach. (a) 

Model image with manual landmarks (red points). (b)-(f) Additional model images (blue 

points), which are actually the subject images included into the set of model images in the 

previous iteration. (g)-(l) Newly annotated subject images (green points) using the 

(additional) model images (b)-(f).

Du et al. Page 20

Med Image Anal. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Advantage of using the shape boundary difference compared to the simple image intensity 

difference. (a) Model image with manual landmarks (red points). (b)-(c) Subject images 

with correspondence detection results (blue points). Averaged intensity difference is 0.0251 

between (a) and (b) and 0.0139 between (a) and (c), after histogram matching and further 

normalizing the intensity to the range [0, 1]. (d)-(e) Shape boundaries between model image 

(red) and subject image (blue). The root mean square error for the shape boundary difference 

is 2.00 mm between (a) and (b) and 3.14 mm between (a) and (c). This example shows the 

importance of using shape boundary difference for comparing two images.
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Fig. 5. 
An example of the correspondence on X-ray hand image. (a) Model image with 30 

landmarks. (b) Subject image with detected correspondences. (c) Subject image with feature 

points.
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Fig. 6. 
Correspondence detection results by sparse point matching. (a) Model image with manual 

landmarks (red points). (b) Detected corresponding landmarks (blue points) in the subject 

image, along with the ground-truth landmarks (red points). (c) Shape discrepancies between 

model (red) and subject (blue) images.
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Fig. 7. 
Two iterations of graph updating with the use of error detection. (a) Model image with 

manual landmarks (red). (b) Subject image with detected corresponding landmarks in the 1st 

iteration and kept in the 2nd iteration (blue). (g) Subject image with detected corresponding 

landmarks in the 1st iteration (blue) and the 2nd iteration (green), respectively.
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Fig. 8. 
Comparison between ground-truth correspondences (red points) and the automatic 

correspondences (blue points) estimated by SMAC, SPM, and our methods, respectively. (a) 

Model image. (b) Results by SMAC. (c) Results by SPM. (d) Results by our method 

obtained first for an intermediate subject image. (e) Results by our method obtained finally 

for the subject image. (Note that the same subject image is shown in (b), (c), and (d), with 

correspondence detection results by three different methods.)
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Fig. 9. 
Comparison between the ground truth (red points) and the automatic landmarks (blue points) 

detected by SPM and our method. (a)-(e) Model images. (f) Results by SPM. (g) Results by 

our method.

Du et al. Page 26

Med Image Anal. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10. 
Average of mean errors of SPM and our method, with respect to the use of different number 

of model images.
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Fig. 11. 
Average of mean errors of SGM and our method separately for the fingers and the palm.
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Fig. 12. 
Average error for each landmark obtained by SPM and our method.
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Table 1

Mean and standard deviation of landmark detection errors between the ground truth and the estimated 

correspondences by SMAC, SPM, and our method in each of the 5 experiments. (Unit: mm)

Test No. SMAC SPM Our Method

1 2.16±3.81 1.69±2.77 1.26±1.32

2 1.55±2.23 1.49±2.43 1.17±1.27

3 1.86±3.76 1.61±2.72 1.26±1.28

4 1.71±3.00 1.66±2.86 1.26±1.29

5 1.99±4.27 1.56±2.25 1.39±1.26

Avg. 1.85±3.41 1.60±2.61 1.27±1.28
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