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Abstract
Obtaining validation data and comparison metrics for segmentation of magnetic resonance images
(MRI) are difficult tasks due to the lack of reliable ground truth. This problem is even more evident
for images presenting pathology, which can both alter tissue appearance through infiltration and
cause geometric distortions. Systems for generating synthetic images with user-defined degradation
by noise and intensity inhomogeneity offer the possibility for testing and comparison of segmentation
methods. Such systems do not yet offer simulation of sufficiently realistic looking pathology. This
paper presents a system that combines physical and statistical modeling to generate synthetic multi-
modal 3D brain MRI with tumor and edema, along with the underlying anatomical ground truth,
Main emphasis is placed on simulation of the major effects known for tumor MRI, such as contrast
enhancement, local distortion of healthy tissue, infiltrating edema adjacent to tumors, destruction
and deformation of fiber tracts, and multi-modal MRI contrast of healthy tissue and pathology. The
new method synthesizes pathology in multi-modal MRI and diffusion tensor imaging (DTI) by
simulating mass effect, warping and destruction of white matter fibers, and infiltration of brain tissues
by tumor cells. We generate synthetic contrast enhanced MR images by simulating the accumulation
of contrast agent within the brain. The appearance of the the brain tissue and tumor in MRI is
simulated by synthesizing texture images from real MR images. The proposed method is able to
generate synthetic ground truth and synthesized MR images with tumor and edema that exhibit
comparable segmentation challenges to real tumor MRI. Such image data sets will find use in
segmentation reliability studies, comparison and validation of different segmentation methods,
training and teaching, or even in evaluating standards for tumor size like the RECIST (Response
Evaluation Criteria in Solid Tumors) criteria.
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1 Introduction
The segmentation of brain tumor from magnetic resonance (MR) images is a vital process for
treatment planning, monitoring of therapy, examining efficacy of radiation and drug
treatments, and studying the differences of healthy subjects and subjects with tumor. The
process of automatically extracting tumors from MR images is a challenging process. This
leads to many different approaches for automatic tumor segmentation (Clark et al., 1998; Kaus
et al., 2001; Prastawa et al., 2004). The usual standard used for validating segmentation results
of the automatic methods is the manual segmentation results done by human experts. However,
different investigators are likely to employ different image acquisition parameters and different
manual segmentation techniques. A compounding issue is that any manual segmentation
method suffers from lack of reliability and reproducibility. Even if a rich set of manual
segmentations are available, they may not reflect the ground truth and the true gold standard
may need to be estimated (Warfield et al., 2004). Furthermore, validation is typically not
performed for the segmentations of non-tumor structures since manual segmentations of edema
and the healthy brain tissue are very challenging tasks and have a high degree of variability.

Brain MRI exhibiting tumor is difficult to segment due to a combination of the following
factors:

• The deformation of brain tissue due to tumor mass effect or volume expansion.
• The infiltration of brain tissue by tumor and edema (swelling). Edema appears around

tumor mainly in the white matter regions and may also contain infiltrative tumor cells.
• The gradual transition between tumor, edema, and surrounding brain tissue. This

results in the ambiguity of the structural boundaries.
• The T1w MRI with contrast enhancement, typically using a gadolinium agent, is the

standard modality for identifying tumors. This modality results in active tumor tissue
appearing with bright intensity. Unfortunately, blood vessels also appear bright while
parts of tumor that are necrotic do not have higher levels of intensity. Therefore, the
information provided by the intensities in this modality is not always consistent, and
it is generally impossible to segment the tumor by thresholding the intensities in this
image modality.

In order to provide objective assesments of segmentation performace, there is a need for an
objective 3D ground truth with associated MR images that exhibit the same major segmentation
challenges as that of common, realistic scans of a tumor patient. A database of real brain tumor
MR images, along with their segmentations, may provide the means to measure the
performance of an algorithm by comparing the results against the variability of the expert raters’
judgements. However, an objective evaluation to systematically compare different
methodologies also needs a ground truth with little or no variability. An example of such a
ground truth is the synthetic brain MRI database provided by the Montreal Neurological
Institute 1 that is currently considered to be the common standard for evaluating the
segmentations of healthy brain MR images. For this purpose, we propose a method that
generates realistic looking MR images with the associated ground truth by approximating the
brain tumor generation process.

Rexilius et al.(Rexilius et al., 2004) proposed a framework for generating digital brain
phantoms with tumor. They used a biomechanical linear elastic finite element model to simulate
the tumor mass effect. In their method, the MRI of a healthy subject is deformed and a tumor
structure from a real subject is inserted into the MRI. Their model for edema is computed from

1BrainWeb: http://www.bic.mni.mcgill.ca/brainweb
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the distances to the tumor boundary and the white matter mask. This is insufficient to simulate
real edema infiltration properties since infiltration can occur in regions away from tumor. Such
regions are typically connected through white matter fibers. The framework of Rexilius et al.
only considered contrast enhancement inside tumors, without contrast enhancement of blood
vessels.

Models for brain tumor expansion and edema have been proposed by Nagashima et al.
(Nagashima et al., 1990a), Clatz et al.(Clatz et al., 2004, 2005), and Mohamed et al.(Mohamed
and Davatzikos, 2005; Mohamed et al., 2006). More recently, Clatz et al. developed a realistic
tumor growth model that explicitly simulates the main effects of tumor growth (mass effect
and infiltration) using simple computational models. Clatz et al. used a linearized
biomechanical finite element model to simulate mass effect and they used a reaction-diffusion
process that is modulated by the diffusion tensor field to simulate the infiltration by tumor cells
and edema. The simple computational models used by Clatz et al. are ideal for generating
realistic tumor models in an efficient manner. We propose a method for generating new
pathological ground truth by applying their mass effect and infiltration model to a well defined
ground truth for normal brains. Additionally, we propose to extend the Clatz et al. model by
using random pressure directions, and by simulating the effect of volume expansion on the
white matter fibers by warping the diffusion tensors and making them more isotropic depending
on the magnitude of local deformations.

We develop a method for generating realistic-appearing contrast enhanced T1 weighted MR
images (a standard modality for diagnosis) by simulating the accumulation of contrast agents
in the brain. The corresponding multi-modal MR images (contrast enhanced T1w, T1w, and
T2) are generated from the simulated ground truth and from textures that are synthesisized
using samples of real tumor MRI data. Figure 1 shows an overview of the proposed method.
Our method is capable of generating 3D whole brain ground truth that exhibits the primary
effects of tumor on normal brains, along with simulated multimodal MR images that are
challenging to segment.

The proposed method does not attempt to simulate the complete process of real tumor growth
and the true MR image generation process. Instead, our aim is to generate a database of
synthetic brain tumor MR images that have similar challenges for segmentation as in real
tumors, along with the associated anatomical ground truth. The simulated brain tumor MR
images can function as test data for any segmentation method and the ground truth can provide
the means for objective assessment of segmentation performance. We do not aim to create a
database of simulated brain tumor MR images that are indistinguishable from real brain tumor
MR images. Such an effort requires the faithful modeling of the anatomical, chemical, and
vascular changes in the brain due to tumor. It would also require the exact formulation of what
neuroradiologists and neurosurgeons define as tumor. Currently, this definition involves a large
degree of intuition and cannot be formulated algorithmically. Our simulated data provides a
standard benchmark for different tumor segmentation methods that is currently not available
to the community.

2 Generation of Pathological Ground Truth
Tumor and edema growth involves many concurrently occurring processes. As proposed by
Wasserman et al.(Wasserman et al., 1996), the growth model may involve biomechanics,
nutrient distribution, and metabolic processes. Since our goal is not to model tumor growth per
se, we have chosen to simplify the model and use three separate sequential processes for
efficiency, as shown in Figure 2. First, we simulate the deformation that is due to tumor mass
effect using a biomechanical model. It is then followed by the simulation of the infiltration
process using reaction-diffusion. Finally, we compute the deformation that is due to tumor
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infiltration of brain tissue and the mass effect of edema. The BrainWeb dataset (Cocosco et
al., 1997), which contains multimodal MR images along with spatial probabilities of normal
brain structures, is used as the healthy brain ground truth that is transformed into a pathological
ground truth. Figure 3 shows subject 04 from a collection of 20 normals from the BrainWeb
datasets (Aubert-Broche et al., 2006), which is used as the initial anatomical model for
generating the results shown in this paper. The dataset of subject 04 includes spatial
probabilities for each voxel being white matter, gray matter, cerebrospinal fluid, and blood
vessel.

2.1 Mass Effect
The effect of tumor volume expansion on surrounding tissues is modeled using continuum
mechanics (Gurtin, 1981). The initial tumor region is defined manually and then deformed to
simulate mass effect. This initialization can also be done automatically given some prior
knowledge of the spatial distribution, configuration, and image intensity characteristics of
various brain tumor types. Meningiomas, for example, tend to be uniformly enhancing, to
posses smooth borders, and to originate from meningothelial cells associated with the
arachnoid and dura mater. Glioblastomas, on the other hand, tend to be ring enhancing with
irregular borders and almost always arise within the white matter. Metastatic lesions tend to
be solidly or ring enhancing, are often relatively spherical, and can appear in any location. The
current work described in this paper provides examples of tumors that might likely represent
metastatic lesions or small glioblastomas, but the approach is generalizable to any tumor type.

In the initial tumor region, the tumor probabilities are set to one, ptumor(x) = 1, and tissue or
fluid probabilities are set to zero. The set of spatial probabilities for healthy tissue, along with
the new tumor probabilities, are deformed according to the biomechanical model of brain
tissue.

Brain deformation is modeled using the classic linear elasticity model. The constitutive
equation that relates stress and strain is

(1)

and the corresponding linear strain-displacement equation is

(2)

where σ denotes the stress tensor, E denotes the elasticity tensor, ε denotes strain, and u denotes
the displacement. Following Clatz et al.(Clatz et al., 2005), we use the linearized homogeneous
version of the constitutive equation proposed by Miller (Miller, 2002) where brain tissue (white
and gray matter) is assigned the value of 694 Pa for the Young modulus and 0.4 for the Poisson
ratio. The falx cerebri, the fold of dura matter that divides the left and right bran hemispheres,
is considered to be a sti3 material with the value of 200, 000 Pa for the Young modulus and
0.4 for the Poisson ratio. The skull is considered fixed and we assume brain tissue slides along
contact with it.

The volume expansion due to tumor mass effect is simulated by using a homogeneous pressure
that is applied to tissues surrounding tumor (Kyriacou et al., 1999; Mohamed and Davatzikos,
2005; Wasserman et al., 1996). The displacement field solution satisfies the static equilibrium
equation
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(3)

with fext being the external forces applied to the model. The external forces that act on the
tumor surface is formulated as follows

(4)

where P is the constant pressure (in Pa), A is the surface area, and ℳℱ(n, κ) is a direction
drawn randomly from the von Mises-Fisher distribution with mean direction n and
concentration parameter κ (Mardia and Jupp, 2000). The von Mises-Fisher distribution can be
considered as the directional analogue to the multivariate normal distribution, where we use
the surface normal n as the mean direction and we use κ as the parameter that is inversely
proportional to the spread or variability of the directions. The use of randomly generated
directions increases the variability of the generated tumor shape and thus presents more
challenges in segmenting the brain tumor. With regard to the displacements u, the following
boundary conditions are applied:

1. Sliding boundary condition in the regions where brain tissue contacts the skull,

where n is the normal direction for the element boundary (Miga et al., 1999b).

2. The pressure inside the ventricular system is considered negligible relative to the
pressure induced by tumor on the brain tissue, so the ventricular nodes are allowed
to move freely.

The biomechanical problem is discretized using the finite element method, similar to the
approaches used by Ferrant et al. (Ferrant et al., 2001) for interoperative registration and
Kyriacou et al.(Kyriacou et al., 1999) for tumor mass effect simulation. We use the method
proposed by Persson and Strang (Persson and Strang, 2004) to generate the tetrahedral mesh.
The tetrahedral mesh generation is described in Appendix A. The displacement solution for
the linear elastic model is computed by minimizing the potential energy,

(5)

details are available in (Clatz et al., 2005; Hughes, 2000). The displacement solutions are
computed by taking into account the boundary conditions (Axelsson and Barker, 1984). The
linearized growth process tends to result in slow deformations so the model solution is
computed iteratively and integrated until the volume of the expanded tumor exceeds a particular
threshold.

2.2 Modification of Diffusion Tensors
Tumor infiltration and edema generally occurs along white matter fibers, where diffusion is
more likely. The properties of the white matter fiber within the brain is reflected in diffusion
tensor MR images (DT-MRI). Since the BrainWeb data (Cocosco et al., 1997; Aubert-Broche
et al., 2006) does not contain average diffusion tensor images, we generate the average tensors
from 5 normal subjects. The subjects are drawn at random from a dataset that contains 100
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subjects, designed to study differences across age groups (Mortamet et al., 2005) (age range
is 18 – 74 years). We registered the 5 DT-MR images to the T2w image provided by BrainWeb
by matching the associated mean diffusivity (MD) images to the T2w image using affine
transformation and mutual information (Maes et al., 1997). The tensors are mapped and
reoriented following the finite strain reorientation strategy proposed by Alexander et al.
(Alexander et al., 2001). The average tensors at each voxel are computed using the efficient
log-Euclidean tensor framework proposed by Arsigny et al.(Arsigny et al., 2005). Given image
coordinate x, the average diffusion tensor is

(6)

where Exp is the matrix exponential function and Log is the matrix logarithm function. The
Log function linearizes the space allowing us to use efficient linear operations to manipulate
the tensors. The Exp function maps the result of the linear operations back to the original space
of diffusion tensors.

We have found that registration and reorientation of DT-MRI may not be sufficient to generate
edema that appears realistic. White matter fibers around a tumor tend to be displaced, and as
observed by Lu et al.(Lu et al., 2003) in regions near the tumor the mean diffusivity (MD) tends
to be increased while the fractional anisotropy (FA) tends to be decreased. This observations
can be attributed to the destruction of white matter fibers due to tumor growth, which makes
tensors more isotropic. Therefore, it was desirable to reflect this destruction in the simulator.
To the best of our knowledge, the interactions between tumor growth and diffusion tensors are
not fully understood, so we make the following assumptions:

1. Local volume expansion reduces tensor coherence and results in more isotropic
tensors. Tumor tend to destroy white matter fibers so water is no longer restricted to
flow in specific directions.

2. Local volume compression or shrinking does not modify tensor information. We have
observed that in real tumor DT-MRI some fibers can appear condensed without being
destroyed.

The influence of tumor mass effect on DT-MRI is modeled using a combination of image
warping and nonlinear interpolation. The displacement of white matter fibers is simulated by
warping the DT-MRI following the strategy described in (Alexander et al., 2001), where a rigid
rotation is applied to each individual tensor. The rigid rotation is computed based on the local
warping property. Given the displacement field u, we compute the local affine transform F =
I3×3 + ∇u. This transform is decomposed into a rigid rotation component R and a linear
deformation component W, F = RW. The reoriented tensor D is obtained using the following
equation

(7)

where D0 is the resampled original tensor. The destruction of tensor information is modeled
as a nonlinear interpolation between the original tensor and an isotropic version of the tensor.
The isotropic version of a given tensor D is formulated as the identity matrix multiplied by the
scaled determinant value of the original tensor:
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(8)

A scale factor of 2 is used to increase the determinant of the tensor. This value is found through
repeated experiments to find sufficiently realistic looking MD images with tumor. The
transformed diffusion tensor is computed as follows (see (Arsigny et al., 2005) for details):

(9)

The interpolation weight α is inversely proportional to the amount of volume expansion

(10)

where J is the Jacobian matrix of coordinate mapping function and sJ reflects the amount of
expansion that results in significant destruction of fibers. In regions with high amount of
volume expansion (low values of α), the tensors become homogenized and no longer have
preferred directions for diffusion. In regions with local volume compression, the determinant
of the Jacobian is less than one and the original tensor is maintained since α = 1. This behavior
is chosen to simulate destruction of white matter fibers due to expansive mass effect while
ignoring compression effects. An example application of this model to a registered DT-MRI
is shown in Figure 4.

2.3 Tumor Infiltration
In order to simulate the growth and spreading of tumor cells following the preferred diffusion
directions in the brain, the spatial probability that a particular location is infiltrated by
pathological cells or fluid (edema) is evolved using a reaction-diffusion model guided by the
modified DT-MRI (Clatz et al., 2005). More precisely, the change for pinfiltrated = φ in time is
governed by

(11)

where cd is the diffusion rate, D′ is the diffusion tensor that has been modified using the method
described in section 2.2, and cr is the reaction rate. The diffusion rate cd depends on the local
tissue type. White matter is more likely to be infiltrated than gray matter, while csf is not likely
to be infiltrated at all. The reaction rate or growth term cr is a constant. The diffusion tensors
D′ are normalized so that the trace of the tensors is within the range of [0, 1]. The initial
probability of tissue being infiltrated with tumor is chosen to be the probability of tumor after
mass effect deformation: φ (x, t = 0) = pmass−effect(x). This probability is obtained by applying
Gaussian smoothing to the manually defined tumor seed region after deformation, which
simulates the margin of uncertainty for the tumor boundaries. The evolution is stopped when
the volume of infiltrated brain regions exceeds a predefined fraction of the brain tissue volume.

The infiltrating tumor cells and edema also tend to displace nearby tissue. This results in a
secondary mass effect that is coupled with the infililtration process. The effect of the infiltrating
tumor cells is modeled using the equilibrium equation (Clatz et al., 2005)
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(12)

where λ is the coupling factor that describes the contribution of an infiltrating tumor to the
internal forces. The equilibrium equation can be interpreted as the application of body forces
−λ∇φ to the classic linear elastic model, which models the outward forces proportional to the
concentration of tumor cells.

Brain tissue can be infiltrated by edema (swelling) and/or tumor cells. Since edema regions
can also contain tumor cells, it is difficult to classify or separate the infiltrating component into
distinct tumor and edema regions. We approximate the distinction of non-enhancing edema by
assigning the regions formed early in the infiltration process as tumor and assigning the regions
formed later in the infiltration process as edema-like regions. This approximation is chosen
since the concentration of tumor cells typically goes lower at locations further away from the
main tumor bodys, and regions marked by clinicians as edema typically have low tumor cell
count. Using this approach, we use the following spatial probability functions for the tumor
and edema:

(13)

where pmass−effect is the deformed initial tumor probability according to the mass effect model,
ptissue is the probability of brain tissue (white matter or gray matter), tfinal is the time where
the infiltration process is stopped, and tearly is a fraction of the total time that indicates when
we expect concentration of tumor cells would drop and infiltration would be dominated by
fluid. The probability for infiltrated tissue is modeled as the probability that a location is both
infiltrated and part of brain tissue. The choice for the value of tearly depends on the type of
tumor being modeled. For example, an appropriate model for gliomas would typically have a
large tearly since the active tumor cells in gliomas tend to infiltrate large regions. Alternatively,
an appropriate model for menigiomas with large surrounding edema would involve a small
value for tearly since most of the infiltrating regions should be attributed as edema. The proposed
approach does not model edema in the strict biological sense. However, this distinction is
necessary to determine regions with significant tumor presence against regions with mostly
fluid as these two types of regions have very different appearances.

In summary, the creation of a new pathological ground truth that contain brain tumor and edema
is performed through the following steps:

1. Manual definition of an initial tumor seed region in the space of a healthy ground
truth data (e.g., the BrainWeb data).

2. Simulation of deformation of brain tissue due to tumor mass effect, given the
anatomical description (the BrainWeb classification), the initial seed region, and the
constant pressure value P at the tumor surface. The deformation is modeled as a linear
biomechanical equation and computed iteratively to mimic the possible non-linear
deformations.

3. Warping the average diffusion tensor MR images using the tumor mass effect
displacements. Destruction of white matter fibers due to tumor is simulated by making
tensors more isotropic depending on the magnitude of deformation.
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4. Simulation of tissue infiltration using the DT-MRI guided reaction-diffusion equation
(Equation 11) to account for infiltration of tissue by tumor cells and edema.

5. Simulation of deformation of brain tissue due to edema mass effect, given the
infiltration probabilities and the value of λ for Equation 12.

3 Generation of MR Images
For the purpose of validating segmentation methods, we need a set of synthetic MR images
that appear reasonably realistic and that correspond to the 3D pathological ground truth. These
images serve as test data for the evaluation of segmentation methods. The generation of
synthetic tumor MRI involves the simulation of two processes: contrast enhancement in T1w
MRI due to the use of contrast agents (the standard modality for tumor diagnosis), and
generation of intensity patterns similar to those observed in real MRI. These processes are
detailed in the following two subsections. Contrast enhancement is simulated using a model
of the accumulation of contrast agent in the brain, while the generation of realistic MRI intensity
patterns is accomplished using texture synthesis. A conceptual view of the combination of the
two processes for generating a synthetic contrast enhanced T1w image is shown in Figure 5.

3.1 Contrast Agent Accumulation
One of the particular challenges in segmenting brain tumor MRI are inconsistencies in the
contrast enhanced T1w image, which can be attributed to biological processes such as tumor
formation, blood flow, and cell death. The contrast agent is generally accumulated in regions
other than the active tumor regions. Particularly, the blood vessels within the brain are almost
always enhanced. Brain tissue may also appear enhanced if there is leakage of contrast agent
due to the breakdown of the blood-brain barrier. Conversely, the contrast agent does not
accumulate in the necrotic parts of the tumor at all, which are generally found in the core tumor
regions.

We explicitly model the accumulation of the contrast agent in active tumor tissue and blood
vessel regions in order to generate inconsistent contrast enhanced T1w images that are more
challenging to segment. The spatial probability for the accumulation of contrast agent,
paccum = γ, is evolved using a reaction-diffusion equation that models the spread of contrast
agent within blood vessel and tumor regions while excluding necrotic regions:

(14)

Here, each I is an indicator function, ad is the diffusion rate for the contrast agent, asource is
the source coefficient, and asink is the sink coefficient. The value of ad depends on the structure
type at location x. We assign higher values of ad in blood vessel regions, moderate values of
ad in tumor tissue, and very low values of ad in healthy tissue. The selection of the values of
ad for each class models the fact that contrast agent is more likely to spread in blood vessel
regions than in tumor tissue and is not likely to spread to healthy tissue at all. This corresponds
to the actual biological process, where contrast agent is injected intravenously and then
transported to the active tumor regions through the brain arteries. Healthy brain tissue generally
does not accumulate contrast agent due to the blood-brain barrier. Conversely, there tends to
be a higher accumulation of the contrast agent within and around tumor structures due to
increased tumor metabolism and possible leakage of the blood-brain barrier.

Xsource and Xsink in Equation 14 are sets of points that act as sources or sinks, respectively. The
source points Xsource are chosen at random from a probability function that indicates likely
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blood vessel regions or likely tumor regions that are close to the tumor boundary. These source
regions correspond to regions that likely accumulate contrast agent and thus appear enhanced.

This provides an approximation of the accumulation of contrast agent through blood flow. The
sink points Xsink are chosen at random from a probability function that indicates likely tumor
regions that are close to the tumor core. The internal tumor regions are typically necrotic and
thus do not accumulate contrast agent. The probability that a location is at the boundary or the
core regions is computed using the distance maps and expressed as half-normal distributions.
For example, when drawing points that are at the tumor border the following probability
function is used:

(15)

where ψtumor(x) indicates the distance from a location x to the nearest tumor boundary point.
ℋ (z, ω) denotes the half-normal distribution with parameter ω, which is defined as follows:

(16)

For a parameter value ω, ℋ (z, ω) is a distribution with mean  and variance . The border
extent of the active tumor region or the standard deviation for ℋ  (ψtumor(x), ω) is a user-
specified parameter value that is inversely proportional to ω. Tumors with nearly uniform
enhancement can be simulated by drawing source pointsfrom a uniform distribution (within
tumor), as opposed to a half-normal distribution, while non-enhancing tumors can be simulated
by replacing the tumor source pointswith an empty set.

We initialize γ so that tumor and blood vessel regions have random probability of accumulating
contrast agent: γ(x, t = 0) = (0, 1) × (ptumor(x)+ pvessel(x)). The initialization using the random
variables (0, 1) drawn from the uniform probability in [0, 1] ensures that the reaction-diffusion
process is capable of generating complex patterns of enhancement. The probability that a
location x would appear highlighted in the contrast enhanced T1w image is the probability that
the structure in that location is either tumor or blood vessel and that it has accumulated contrast
agent,

(17)

Figure 6 shows an example of the generated contrast enhancement probabilities, while Figure
7 provides a comparison between real and synthetic contrast enhanced T1w MRI. The
enhancement probabilities are generated using the method discussed in this subsection, and
the synthetic MRI is generated using the method covered in the next subsection. The proposed
contrast agent model accounts for the fact that blood vessel and active tumor regions are
highlighted and that the necrotic regions are not highlighted. However, the model only accounts
for the deformation of healthy blood vessels and does not account for the fact that new blood
vessels can be formed inside and around the tumor regions (angiogenesis). The model does not
explicitly model the ingrowth of new vessels into the tumor, however it uses reaction-diffusion
to model the enhancing tumor regions. The proposed method only generates enhancement
patterns inside the tumor and existing blood vessels without an explicit angiogenesis model
for the formation of new blood vessels outside of the tumor.
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3.2 Texture Synthesis
Deterministic simulation of the image generation process in MR is difficult, particularly with
fuzzy tissue probabilities, so we have chosen to use a stochastic image generation model where
images are drawn from a probability distribution. We use a database of texture samples
(intensities within a neighborhood) from real tumor MR images to generate the intensity
patterns for the different anatomical structures following the texture synthesis algorithm
proposed by Wei and Levoy (Wei and Levoy, 2000). This approach only relies on samples
from actual tumor MRI scans and does not make restrictive assumptions on the intensity
distributions. The algorithm starts with an image that contains random noise (Matsumoto and
Nishimura, 1998) and then proceeds to modify the image by finding neighborhood matches in
the input texture. The neighborhood search is done deterministically across scales and is made
efficient by clustering the texture neighborhood features. Rather than performing the search
by comparing a random neighborhood with all the data samples, their method uses the Tree
Structured Vector Quantization (TSVQ) technique to efficiently limit the search to the relevant
clusters by constructing and making use of a tree structure that represents the texture samples.

The synthetic MR images are generated by linearly combining the texture synthesis results for
each structure. To simulate partial voluming and the ambiguity in the boundary, the textures
are weighed by the soft/fuzzy class probabilities. For a modality k, the synthetic MR intensity
for each location x is

(18)

where c indexes the NCk different classes for the modality k. For the T1w and T2w modality,
the set of brain structure classes is composed of white matter, gray matter, csf, tumor, and
edema. For the contrast enhanced T1w modality, the set of brain structure classes is composed
of white matter, gray matter, non-enhancing tumor, edema, and the class for all contrast
enhanced structures. The contrast between different classes is adjusted via the user-specified
coefficients mc, k, which are chosen to generate realistic-appearing MRI. As an example, a
higher value of m1, k is chosen for white matter (e.g., 1.2) and a lower value of m2, k is chosen
for gray matter (e.g., 0.7) when generating T1w images with good white-gray matter difference.
The probabilities from the pathological ground truth are represented by pc. The images Tc, k
are generated using texture synthesis from actual tumor MRI samples. Noise in the image data
is simulated using 0,σk, which is randomly generated from a normal distribution with zero
mean and standard deviation σk that is voxelwise independent.

4 Results
We generated five synthetic MR datasets with varying tumor location, tumor count, levels of
tumor expansion, and extent of edema. Figures 8 and 9 show MR images of observed clinical
cases that demonstrate the true variations of tumor appearance. The five synthetic brain tumor
MRI datasets with similar variations are shown in Figures 10 and 11. SimTumor001 shows a
tumor with significant mass effect and large surrounding edema. SimTumor002 shows a tumor
that displaces the right ventricle from below and a moderate extent of edema. SimTumor003
shows a large tumor that compresses the left ventricle. SimTumor004 shows two tumors that
displace the left ventricle from the internal regions. SimTumor005 shows a small tumor in the
anterior region with no contrast enhancement, which is shown most clearly in the T2w image.
In both the real and synthetic MRI there are deformations of the surrounding healthy tissue
due to tumor and there are ambiguities in the definition of the boundaries between tumor and
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the surrounding structure (edema or tissue). In all cases, tumor deforms other structures and
edema infiltrates brain tissue. The contrast enhanced T1w images for SimTumor001,
SimTumor002, and SimTumor004 show complex patterns of highlighted intensities; contrast
enhancement occurs mainly at active tumor regions in the tumor periphery and the blood vessel
regions. We also simulate other patterns of enhancement for tumor, as shown in SimTumor003
with a nearly uniform pattern of enhancement and in SimTumor005 with no enhancement. The
blood vessels appear higlighted in all simulated cases, similar to images typically observed in
the clinic.

The simulated images for SimTumor001, SimTumor003, SimTumor004, and SimTumor005
are generated using relatively spherical seed regions with radius ranging from 2 – 5 mm. The
large, elongated tumor in SimTumor002 is generated using a block seed with dimensions that
are roughly 10×10×30 mm. For all the cases, we use pressure values that range from 2 – 5
kPa for simulating the mass effect at each iteration.

The associated ground truth for all cases is shown in Figures 12 and 13. The ground truth is
represented as a set of spatial probability maps for tissue and pathology. This provides
advantage over binary data or class membership data since this allows the validation to use
probabilistic statistical analysis rather than simple volume comparison.

Qualitative comparisons between the real tumor MR images and the simulated MR images
demonstrate that the images present similar segmentation challenges. In order to verify that
the synthetic MR images and the synthetic ground truth match human perception and high level
knowledge, we performed a limited quantitative comparison of the simulated tumor volumes.

A human rater segments the tumor from the simulated tumor MRI manually via slice-by-slice
painting, and a second rater segments the tumor using a user guided semi-automatic
segmentation method based on level set evolution (Ho et al., 2002; Yushkevich et al., 2006)
2. Following standard practice, the segmentations were primarily driven by the contrast
enhanced T1w images. An exception is the segmentation for the small non-enhancing tumor
in SimTumor005, which is done by outlining the tumor boundary in the T2w image. The
segmented tumor volumes from both human raters are then compared against the computed
ground truth for each case. The measures used for comparison are the volume overlap metric
and the average surface distances, generated using the VALMET validation tool (Gerig et al.,
2001). The volume overlap metric we use is the Dice similarity coefficient (DSC) (Dice,
1945). For a given pair of segmentation volumes A and B, the measured overlap is 2(A ∩ B)/
(|A| + |B|). The volumetric values for tumor and edema are shown in Table 1. Volumes are
measured as the integral of the spatial probabilities of the relevant structure. Table 2 shows the
quantitative comparison results between the synthetic ground truth and the manually drawn
segmentations, while Table 3 shows the quantitative comparison results between the synthetic
ground truth and the semi automated segmentations. The inter-rater variability for the human
raters are shown in Table 4. The surface distances typically differ less than 1 mm, for both the
comparison against the manual drawings and against the semi-automatic method. Manual
segmentation of the small non-enhancing tumor in SimTumor005 has the worst performance,
which is expected since segmentation of small structures require fine details that are difficult
to obtain using slice-by-slice painting. The difference between the user-guided segmentation
results and the synthetic ground truth is mainly in the definition of the extent of tumor
boundaries. The definition of tumor extent is generally ambiguous due to surrounding edema.
Compared to the manual segmentation results, the semi-automatic segmentation results more
closely resemble the simulated ground truth as the level set evolution generates more detailed

2ITK-SNAP: http://www.itksnap.org
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tumor contours in full 3D. The comparisons of the human segmentations show that the
computed ground truth matches the definition of tumors perceived by the human raters.

5 Discussion and Conclusions
We presented a new method for generating modified ground truth with tumor and edema from
a normal brain ground truth, along with a method for generating synthetic multi-modal MR
images that present similar segmentation challenges as real tumor MRI. The process for
generating a synthetic brain tumor dataset is summarized in Figure 14. Our proposed simulation
scheme introduces a tensor model for the warping and desctruction of white matter fibers
(demyelination). The scheme also introduces a contrast enhancement simulation using vascular
information that can simulate different patterns of enhancement that are typically observed in
real tumor MRI (ring enhancement, uniform enhancement, and no enhancement).

We have performed a limited validation by comparing the synthetic ground truth with the tumor
segmentations done by human raters. The results verify that there is a satisfactory level of
agreement between the tumors perceived within the synthetic MRI and the synthetic ground
truth. The synthetic brain tumor MRI along with the associated ground truth provide the means
for performing objective validation of different brain tumor MRI segmentation frameworks.
Objective evaluation of different segmentation methods can be done by using a set of synthetic
images with variations of tumor size, location, extent of surrounding edema, and contrast
enhanced regions. Given a segmentation framework for brain tumor MRI, it can be tested using
the synthetic multimodal brain tumor MRI as input images. A user can then measure its
performance by comparing the segmentation results and the synthetic ground truth. Compared
to validation against manual segmentations, this approach has the advantage of having
consistent, known ground truth for the whole brain, which includes white matter, gray matter,
csf, and edema. This capability is novel as most validations done so far were focused on tumor
only and not performed on the infiltrated and deformed healthy tissue.

It is important to note that our goal is to generate sufficiently realistic MR images that are
challenging to segment. The accurate modeling of tumor growth and MR image synthesis are
beyond the scope of our current work. Accurate tumor modeling would require the formulation
of the complex interactions between the deformation process, the infiltration process, the
nutrient and chemical interactions, along with blood vessel formations. For example, Zheng et
al. (Zheng et al., 2005) proposed a more detailed model for 2D data. However, a full 3D
implementation of their model for the whole brain would be a significant challenge. The
generation of MR images involves complex modeling of MR pulse sequences and nuclear
magnetic resonance properties of different structures. These are significant challenges as
healthy tissue, tumor, and edema are modeled as fuzzy probabilistic quantities that can have
intricate interactions. In this paper, we focus on the generation of test images that empirically
exhibits pathology seen in real images, with the main purpose to use the simulated images and
ground truth for validation and cross-comparison of different image segmentation methods.
Our synthetic brain tumor MR images are not designed to deceive neuroradiologists and
neurosurgeons, and we do not claim that improved segmentation procedures resulting from
such simulations would finally result in improved outcome of tumor treatment. These images
are designed to be used as a standard benchmark for a variety of tumor segmentation methods,
similar to the way the BrainWeb data are used for comparing healthy brain segmentations.
While the BrainWeb images and our simulated brain tumor images do not appear completely
realistic, we believe that they can function as good performance benchmarks because they
provide practical segmentation challenges. To our knowledge, a public database for
segmentation benchmarks is currently not available for brain tumor MR images.
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Brain tumor growth is a very complex process and it is extremely challenging to account for
all the variables that govern the process. One possible extension to the method proposed in this
paper is the simulation of the formation of new blood vessels (angiogenesis). Tumor cells are
known to generate biological signals that induce formation of blood vessels to supply additional
energy for the increased metabolism. Bullitt et al. (Bullitt et al., 2003) also observed that vessels
in and around the tumor tend to have larger variability in the curve angles and become more
tortuous. Simulating blood vessel formation and shape changes will allow for the generation
of more realistic mass effect and infiltration models and improve the appearance of the synthetic
contrast enhanced T1w image. The simulation of the deformation due to tumor mass effect
could be improved by using more complex computational model such as the biphasic models
proposed by Miga et al. (Miga et al., 1999a,b) and Nagashima et al. (Nagashima et al.,
1990b). Another possible extension is a more detailed modeling of the changes in csf volume
and flow. If the intracranial pressure is high, there tends to be a loss of csf volume (which may
not be restricted to the ventricles). If brain tumor blocks ventricular outflow, the csf volume
can increase.

The method described in this paper can also be extended to other cases that deviate from normal
adult MRI. One direct extension is in the simulation of lesions in cases of vascular strokes and
multiple sclerosis. These cases typically present multiple regions with tissue infiltration and
small scale deformation that can be generated using our method. Other possible extensions are
developments of new growth models for the validation of segmentations in age related studies,
where there is a lack of well defined ground truth in the very young (newborn infants) and the
elderly age groups (older than 70 years). In both age groups, there is very low differentiation
between white matter and gray matter. In the case of newborn infants, the white matter
undergoes a growth process called myelination which is mainly an infiltrative process. The
lack of reliable ground truth for this age group makes validation difficult, and a typical solution
is to restrict the validation to only a part of the 3D volume (Prastawa et al., 2005). In elderly
subjects, the ventricles are typically enlarged. However, the increase of ventricular volume
may be governed by the loss of tissue integrity (i.e., a change in tissue elasticity) and not by
an increased ventricular pressure, so a biomechanical model with expansion due to ventricular
pressure similar to the one described in this paper may not be appropriate.

The methodology for generating synthesized tumor MRI could be further developed into web-
accessible system where a user could interactively select locality, size, shape, and type of
tumors by setting some variables (similar to the BrainWeb interface (Cocosco et al., 1997)).
Image datasets generated by the tool might find use in validation of segmentation methods,
comparison of different segmentation and registration strategies, and training and teaching.
For example, the effect of voxel size and slice thickness on tumor volume estimates might be
studied systematically. Moreover, a series of images with embedded tumors of various size
and shape might be used to evaluate well-established standards for tumor size measurements
like the one-dimensional RECIST (Response Evaluation Criteria in Solid Tumors) (Therasse
et al., 1999) criterion, which uses the maximum diameter of the structure measured only in
axial cross-sections. Systematic studies and evaluations would eventually lead to improved
assessment metrics.

The simulation software for generating synthetic brain tumor MR images and example datasets
are available for download at http://www.ucnia.org under “Software and Data”. We are aiming
to make available a range of real clinical brain tumor MR images, with annotated tumor regions,
available on the web in the near future. A database of real brain tumor images would be
complementary to our proposed method. However, this database has some limitations
compared to the synthetic database. The segmentations were done primarily by one human
expert and lack objective ground truth, and they are limited to the tumor regions. Thus, any
analysis performed using this database of real brain tumor MR images, as opposed to the
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synthetic database, will be biased and subjective. A range of healthy brain MR images that was
acquired in a similar fashion is already publically available at http://hdl.handle.net/1926/594.
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Appendix A: Mesh Generation
The tetrahedral mesh is generated using the method proposed by Persson and Strang (Persson
and Strang, 2004). The advantage of this method is that the implementation is relatively simple
and can be generalized to any number of dimensions, provided a corresponding Delaunay
tessellation implementation. The results presented in this paper uses the Qhull software
package (Barber et al., 1996). The mesh generation process is composed of three steps:
selection of points, tessellation of the points, and adjustment of the point locations. After the
tessellation process, the points are adjusted so that edge lengths are optimal and that edge
lengths do not cross the external boundary or the internal structural boundaries. The edge
lengths in the 3D tetrahedral mesh are optimal when they match a distribution function. For
an edge that connects two points x and y, the ideal edge length is proportional to the distribution
function evaluated at the edge midpoint . We have chosen to use the following function,

(.1)

Where ψ(z) is the distance from z to the closest structural boundary. Assuming that the distance
functions ψc for each structural class c is defined to be positive inside the relevant structure
and zero otherwise, ψ(z) = mincψc(z). Using this function results in smaller tetrahedra near
structural boundaries and larger tetrahedra in the internal regions. This behavior is desirable
since brain structures typically have complex and detailed shapes at the boundaries that can be
better interpolated using small-sized tetrahedra. In order to avoid mesh distortions when
computing the deformations, we recompute the Delaunay triangulation for the mesh at each
deformation iteration.

Appendix B: Inversion of Displacement Fields
In order to generate realistic tumor MRI, we simulate the expansion process. However, the
inverse of the expansive deformation is required to resample the probability images and the
average DT image. A true inverse may not exist since the expansive deformation may not be
smooth and invertible, so we estimate inverse of the deformation field using an iterative
process. Given a displacement field u that maps x to y, y = x + u(x), we compute u−1 where x
= y + u−1(y). This is done by estimating the inverse mapping for y, denoted by x̂. The vector
x̂ must minimize the residual difference

(.2)

which expresses the distance between the forward map of the inverse estimate and the current
location. The ideal value of x̂ is computed by doing iterative minimizations (e.g., by Newton’s
method) at each location y in the target image. For an ideal inverse mapping, d(x̂, y) should be
close to zero at any given y. The inverse displacement field u−1 is obtained directly from the
x̂ estimate, u−1(y) = x̂ − y.
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Fig. 1.
Overview of the generation of validation data. A well defined ground truth for normal brains
is modified following a tumor and edema generation model that includes deformation and
infiltration of normal tissue. The normal brain ground truth contains the probabilities for white
matter, gray matter, and csf drawn from the BrainWeb data. The healthy tissue probabilities
are modified to take into account mass effect and infiltration and new pathological probabilities
are added (tumor and edema). The modified ground truth is then used to create the synthetic
multi-modal MR images. The pathological simulation is described in Figure 2 and the MRI
simulation is described in Figure 5.
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Fig. 2.
Overview of the simplified tumor and edema growth model. The model is composed of four
sequential processes, where we simulate the deformation due to tumor expansion, the
modification of DT-MRI due to the deformation, the infiltration of brain tissue by tumor cells
and edema, and the displacements due to the infiltrating cells.
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Fig. 3.
Axial views of subject 04 from the BrainWeb dataset of twenty normals, which provides a
standard for validation of normal brain MRI segmentation. From left to right: the T1w image
and the spatial probabilities for white matter, gray matter, csf, and blood vessels.
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Fig. 4.
Visualization of diffusion tensor MRI by axial views of 3D Mean Diffusivity (MD) and
Fractional Anisotropy (FA) scalar images. The modified DT-MRI has higher MD and lower
FA in the regions surrounding tumor, which models the destruction of the fibers. The MD
image shows that the ventricle near the tumor is slightly deformed. The FA image shows that
the white matter fibers near the tumor region are pushed away.
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Fig. 5.
Generation of a synthetic contrast enhanced T1w image. The modified ground truth (the
probabilities for white matter, gray matter, csf, tumor, and edema) is first used to determine
where contrast agent is likely to accumulate. This is then followed by a combination of
synthesized textures modulated by the spatial probabilities. In this figure we only show the
probabilities and textures for white matter, non-highlighted tumor, and highlighted tumor and
blood vessel regions. For generating the T1w and T2w modalities without contrast
enhancement, the contrast agent accumulation is not simulated and the texture combination is
done directly using the simulated ground truth.
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Fig. 6.
Example probabilities generated for simulating contrast enhancement (axial view). Left:
probability for highlighted blood vessel or tumor. Center: probability for non-highlighted
tumor. Right: probability for white matter, included for anatomical context. Tumor periphery
and blood vessel regions are the regions most likely to appear highlighted in the contrast
enhanced T1w modality.
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Fig. 7.
Sagittal view of the contrast enhanced T1w MRI for a real tumor (left) and a synthetic tumor
(right) generated using the new method described in this paper. Both images show contrast
enhancement in the superior sagittal sinus and the anterior cerebral artery. The tumor is located
in the right posterior region and is not visible in this sagittal view.
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Fig. 8.
Axial views of real MR images with varying brain tumor appearances. From top to bottom:
Tumor020, Tumor031, Tumor049, Tumor087, Tumor033. From left to right: contrast
enhanced T1w, T1w, and T2w images.
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Fig. 9.
Coronal views of real MR images with varying brain tumor appearances. From top to bottom:
Tumor020, Tumor031, Tumor049, Tumor087, Tumor033. From left to right: contrast
enhanced T1w, T1w, and T2w images.
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Fig. 10.
Axial views of the MR images of the synthetic dataset. From top to bottom: SimTumor001,
SimTumor002, SimTumor003, SimTumor004, and SimTumor005 MRI datasets. From left to
right: contrast enhanced T1w, T1w, and T2w images.
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Fig. 11.
Coronal views of the MR images of the synthetic dataset. From top to bottom: SimTumor001,
SimTumor002, SimTumor003, SimTumor004, and SimTumor005 MRI datasets. From left to
right: contrast enhanced T1w, T1w, and T2w images.
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Fig. 12.
Axial views of the ground truth for the 3D synthetic brain tumor MRI data sets. From top to
bottom: spatial probabilities for SimTumor001, SimTumor002, SimTumor003,
SimTumor004, and SimTumor005 datasets. From left to right: class probabilities for white
matter, gray matter, csf, edema, and tumor.
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Fig. 13.
Coronal views of the ground truth for the 3D synthetic brain tumor MRI data sets. From top
to bottom: spatial probabilities for SimTumor001, SimTumor002, SimTumor003,
SimTumor004, and SimTumor005 datasets. From left to right: class probabilities for white
matter, gray matter, csf, edema, and tumor.
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Fig. 14.
Summary of the generation of synthetic brain tumor ground truth together with the associated
brain tumor MRI (here only the contrast enhanced T1 image is shown).
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Table 1
Volumes of the tumor and edema structures in the synthetic datasets.

Dataset Tumor Volume (mm3) Edema Volume (mm3)

SimTumor001 32015.514 121811.878

SimTumor002 98575.875 28258.482

SimTumor003 18806.871 42037.153

SimTumor004 101698.173 124429.275

SimTumor005 15578.792 490.047
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Table 2
Comparison of the synthetic ground truth to the segmentations drawn by a human expert for the simulated brain tumor
MRI datasets.

Dataset DSC (%) Average surface distance (mm)

SimTumor001 0.922 0.691

SimTumor002 0.940 0.717

SimTumor003 0.908 0.661

SimTumor004 0.915 0.824

SimTumor005 0.776 1.460
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Table 3
Comparison of the synthetic ground truth to semi-automatic segmentations for the simulated brain tumor MRI datasets.

Dataset DSC (%) Average surface distance (mm)

SimTumor001 0.965 0.324

SimTumor002 0.956 0.623

SimTumor003 0.929 0.573

SimTumor004 0.933 0.823

SimTumor005 0.876 0.941
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Table 4
Comparison of the semi-automatic segmentations to the segmentations drawn manually by a human expert for the
simulated brain tumor MRI datasets, indicating the inter-rater variability.

Dataset DSC (%) Average surface distance (mm)

SimTumor001 0.917 0.738

SimTumor002 0.928 0.873

SimTumor003 0.886 0.815

SimTumor004 0.906 0.957

SimTumor005 0.820 1.151
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