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Abstract
Bivariate random effect models are currently one of the main methods recommended to synthesize
diagnostic test accuracy studies. However, only the logit-transformation on sensitivity and
specificity has been previously considered in the literature. In this paper, we consider a bivariate
generalized linear mixed model to jointly model the sensitivities and specificities, and discuss the
estimation of the summary receiver operating characteristic curve (ROC) and the area under the
ROC curve (AUC). As the special cases of this model, we discuss the commonly used logit, probit
and complementary log-log transformations. To evaluate the impact of misspecification of the link
functions on the estimation, we present two case studies and a set of simulation studies. Our study
suggests that point estimation of the median sensitivity and specificity, and AUC is relatively
robust to the misspecification of the link functions. However, the misspecification of link
functions has a noticeable impact on the standard error estimation and the 95% confidence interval
coverage, which emphasizes the importance of choosing an appropriate link function to make
statistical inference.
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1. Introduction
Accurate diagnosis of a disease condition such as tumor mutation is often the first step
toward its control and prevention. Performance of a diagnostic test is often measured by
paired indices, such as sensitivity and specificity, positive and negative predictive values, or
positive and negative diagnostic likelihood ratios [1,2]. Sensitivity and specificity are often
regarded as intrinsic properties of a diagnostic test. Sensitivity (Se), also referred to as the
true positive fraction (TPF), is defined as the conditional probability of testing positive in
diseased subjects, i.e., Pr(T = 1| D = 1) where T and D denote the binary test and disease
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status, respectively. Specificity (Sp), also known as the true negative fraction (TNF), is
defined as the conditional probability of test negative in non-diseased subjects, i.e., i.e., Pr(T
= 0| D = 0).

The rapid growth of evidence-based medicine has led to a dramatic increase in attention to
evidence-based diagnosis by meta-analysis of diagnostic test accuracy studies [3]. Meta-
analysis allows us to summarize the results from similar diagnostic test accuracy studies
quantitatively. In situations where studies compare a diagnostic test with its gold standard,
numerous methods are available to take the heterogeneity between studies into account [4–
14]. Such heterogeneity arises between studies due to the differences in disease prevalence,
study design as well as laboratory and other errors. Because of this heterogeneity, random
effects models including the hierarchical summary receiver operating characteristic model
[4] and bivariate random effects meta-analysis on sensitivities and specificities [6,8,10],
which are identical in some situations, have been recommended [11,12,15]. Furthermore,
Riley and others [16–18] suggested that bivariate random-effects meta-analysis offers
numerous advantages over separate univariate meta-analysis through extensive simulations.
Chu et al. [19] also discussed trivariate nonlinear random-effects models on jointly modeling
the disease prevalence, sensitivities and specificities, and an alternative parameterization on
jointly modeling the test prevalence and the predictive values. When the diagnostic test itself
and the reference test are both imperfect, Walter [20] and Chu et al. [21] discussed the latent
class random effects models for a meta-analysis of two diagnostic tests. Sutton et al. [22]
discussed the integration of meta-analysis and economic decision modeling for evaluating
diagnostic tests. Walter discussed the properties of the summary receiver operating
characteristic curve for diagnostic test data [23] and the partial area under the summary
ROC curve.

However, in situations where studies compare a diagnostic test with its gold standard
reference test, to our knowledge, only logit transformation has been used for the bivariate
random effects meta-analysis of sensitivity and specificity parameters (i.e., Sei and Spi) in
practice. The other transformations such as the probit and complementary log-log have not
been utilized in this setting. It is conceivable that some transformations may provide a better
goodness of fit than others for a particular meta-analysis, and in return may provide a better
statistical inference for the parameters of interest. For example, complementary log-log
models are frequently used when the probability of an event is very small or very large and
thus be more applicable for a diagnostic test with very high sensitivity and specificity.
Furthermore, unlike the logit and probit transformation, which are symmetrical, the
complementary log-log transformation is asymmetrical. This property implies that the
bivariate normal distribution assumption on (Sei, 1 − Spi), (Sei, Spi), (1 − Sei, Spi), or (1 −
Sei, 1 − Spi) in the transformed scale will provide the same goodness of fit and inference if
we use logit or probit transformation, but will generally provide different goodness of fit if
we use the complementary log-log transformation.

In this article, we focus on situations where the reference test can be considered as a gold
standard, and consider a bivariate generalized linear mixed effects model for meta-analysis
of diagnostic accuracy studies with logit, probit and complementary log-log transformation
as special cases. Specifically, in Section 2, we present the generalized bivariate random
effects model in this setting, and discuss the estimation of parameters and the summary
receiver operating characteristic curve (ROC). Furthermore, we discuss the estimation of the
area under the ROC curve (AUC) and the impact of misspecification of link functions on
parameter estimation, which has not been discussed in the literature. In Section 3, we
reanalyze two real data sets as illustrating examples. We present a simulation study in
Section 4, and a brief discussion in Section 5.
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2. Bivariate Random Effects Meta-regression Model Using Generalized
Linear Mixed Model

First, we discuss statistical methods focusing on the setting where each study presents the
number of true positive, true negative, false positive and false negative subjects without any
study-level or individual-level covariates. In the ith diagnostic studies from a meta-analysis,
let ni11, ni00, ni01, and ni10 be the number of true positive, true negative, false positive and
false negative subjects, respectively. Furthermore, let ni1+ = ni11 + ni10 and ni0+ = ni01 + ni00
be the number of diseased and non-diseased individuals. Conditional on the number of
diseased and non-diseased patients in each study, the bivariate random-effects meta-analysis
model first assumes that ni01 and ni11 are binomially distributed as Bin(ni0+, 1 − Spi) and
Bin(ni1+, Sei) respectively, where Spi and Sei are the specificity and sensitivity parameters
for the ith diagnostic studies. Although it is common in practice to transform the specificity
and sensitivity parameters Spi and Sei with the logit transformation, other transformations
such as the probit and complementary log-log can be used as well. In this article, we
consider a bivariate generalized linear mixed effects model as a general framework for the
meta-analysis of diagnostic tests when a gold standard reference test is available. When
using some transformations such as the complementary log-log transformation, the bivariate
normal distributional assumption of (Sei, 1 − Spi), (Sei, Spi), (1 − Sei, Spi) or (1 − Sei, 1−
Spi) in the transformed scale will generally provide different goodness of fit. To simplify our
discussion, we focus on a bivariate generalized linear mixed effects model assuming
bivariate normal distributional assumption of (Sei, 1 − Spi), which is specified as follows,

(1)

where g() is a monotone link function such as commonly used logit, probit and
complementary log-log transformation, the mean vector μ=(μ0, ν0)T, and the variance-

covariance matrix . The class of models in equation (1) can be
further extended to allow different transformations for sensitivity and specificity parameters,
e.g., g1(Sei) = μi, g2(1 − Spi) = νi. For simplicity and ease of discussion, we focus on using
the same transformation function for both sensitivity and specificity in this article. Based on
this model, the median sensitivity and specificity for the population is SeM = g−1(μ0) and
SpM = 1 − g−1(ν0). The mean sensitivity and specificity for the population can be estimated

as  and  where fμ(x) and fν(x) are
normal density functions with mean 0 and standard deviations of σμ and σν, respectively.

The summary receiver operating characteristic (ROC) curve can be obtained through a
characterization of the estimated bivariate normal distribution in (1) by a line. A
straightforward choice may be the regression line of g(Sei) on g(1 − Spi). Please refer to
Arends et al. [13] for other potential choices. Based on the bivariate normality assumption of
(μi, νi)T, the expected sensitivity for a chosen specificity in the transformed scale is given by

(2)

Let φ() be a standard Gaussian density function. The expected sensitivity for a given
specificity is given by
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(3)

which may be approximated by the median sensitivity for a given specificity as

(4)

Thus, the expected area under the summary operating characteristic (ROC) curve (AUC) can
be estimated as

(5)

which can be approximated by integration of the summary ROC based on the median
sensitivity for a given specificity as

(6)

To select a link function that can give a better goodness of fit, we used the Akaike’s
Information Criterion (AIC) as the guideline [24]. The smaller value of AIC, the better
goodness-of-fit. The bivariate generalized linear mixed effects model can be fitted using
commonly used statistical software such as SAS, SPLUS/R and STATA. We implement it
through the SAS NLMIXED procedure (SAS Institute Inc., Cary, NC), which uses an
adaptive Gaussian quadrature to approximate the likelihood integrated over the random
effects by dual quasi-Newton optimization techniques [25]. Furthermore, the NLMIXED
built-in delta method is used to compute the population estimates of the back-transformed
parameters of interest including the median sensitivity and specificity, the area under the
summary ROC curve by numerical integration with trapezoidal rule with 1,000 equal space
subintervals, and their confidence intervals based on a normal approximation. In this paper,
we will focus on inference about the median sensitivity, median specificity and AUCM.
Besides computational efficiency, we focus on the medians instead of the means because the
distributions of these parameters are generally skewed in this context.

3. Two Data Examples
To illustrate the bivariate generalized linear mixed effects model discussed in this article, we
apply them to two meta-analysis data sets as follows.

3.1 Example 1: Diagnostic accuracy of FDG-PET for malignant focal pulmonary lesions
Gould et al. [26] presented 40 studies estimating the diagnostic accuracy of positron
emission tomography (PET) with the glucose analog 18-fluorodexoxyglucose (FDG) of
pulmonary lesions to identify malignant focal pulmonary nodules and mass lesions. FDG-
PET is a noninvasive functional imaging test capitalized on the observation that malignant
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cells have increased rates of glucose metabolism. Among the 40 studies, six studies did not
report specificity and three studies examined FDG imaging with a modified gamma camera.
To illustrate and compare different models on sensitivity and specificity for FDG-PET, we
will exclude these nine studies. Table 1 shows the frequencies of the FDG-PET outcomes
based on the final diagnosis of malignant or benign pulmonary nodules or masses, i.e., the
number of true positives, false negatives, false positives, and true negatives subjects, for
these 31 studies.

We fitted the bivariate generalized linear mixed effects models as described in Section 2 on
the data of 31 studies on the diagnostic accuracy of FDG-PET of pulmonary nodules and
mass lesions. We assumed a bivariate normal distribution of (Sei, 1 − Spi) on the
transformed scale using the logit, probit, and complementary log-log transformation. Since
the complementary log-log transformation is asymmetrical, we also fitted the bivariate
generalized linear mixed effects models for the pairs of (Sei, Spi), (1 − Sei, 1 − Spi) and (1 −
Sei, Spi) using the complementary log-log transformation. Table 2 presents the parameter
estimates and their standard errors including the median sensitivity and specificity, and the
area under the summary operating characteristics curve (AUC), and the goodness of fit
measurement Akaike’s Information Criterion (AIC) resulting from the bivariate random
effects meta-analysis. From the Table 2, it is clear that the results of median sensitivity and
median specificity of different transformations are very similar. The median sensitivity
estimates of FDG-PET range from 0.974 to 0.976 and the median specificity estimates of
FDG-PET range from 0.780 to 0.787. The AUCM estimates for the logit, probit and
complementary log-log transformations are very similar. The AIC indicates that the model
with the best goodness of fit is modeling pair of (1 − Sei, 1 − Spi) using the complementary
log-log transformation link function. Comparing the best-fitted complementary log-log
transformation to the frequently used logit transformation, the AIC difference is 232.6 –
234.2 = −1.6, which suggests improvement in goodness-of-fit. Arguably, one may want to
add some extra penalty when comparing complementary log-log transformation to the other
two transformations to account for the fact that a best-out-of-four complementary log-log
transformation is used in the comparison. Figure 1a plots the summary receiver operating
characteristic curves (ROC) and the boundary of 95% prediction regions, which has a
probability of 95% to include the “true” sensitivity and specificity of a future study, based
on the logit, probit and best fitted complementary log-log (C-log-log) transformations. For
this case study, the ROC curves and the boundaries from three models are very similar.

3.2 Example 2: Diagnostic accuracy of semi-quantitative or quantitative catheter segment
culture for intravascular device-related bloodstream infection

To identify the most accurate methods for diagnosis of intravascular devices (IVD)-related
bloodstream infection, Safdar et al. [27] studied 8 diagnostic methods and presented 51
studies in a meta-analysis. Safdar et al. found out the most accurate catheter segment culture
test was quantitative culture followed by semi-quantitative culture from analyzing 14 studies
of quantitative catheter segment culture and 19 studies of semi-quantitative catheter segment
culture. To illustrate our methods, we will analyze these 33 studies of semi-quantitative or
quantitative catheter segment culture for the diagnosis of IVD-related bloodstream infection.
Table 3 shows the frequencies of the catheter segment culture test outcomes based on the
final diagnosis of bloodstream infection for these 33 studies where study 1–19 were semi-
quantitative catheter segment culture test outcomes and study 20–33 were quantitative
catheter segment culture test outcomes. This data example has a larger sample size (mean
sample size of 256) comparing to the first data example (mean sample size of 48).

We fitted the bivariate generalized linear mixed effects models as described in Section 2 on
the data of 33 studies on the diagnosis of IVD-related bloodstream infection. Similar to
Section 3.1, we assumed a bivariate normal distribution of (Sei, 1 − Spi) on the transformed
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scale using the logit, probit and complementary log-log transformation. Since the
complementary log-log transformation is asymmetrical, we also fitted the bivariate
generalized linear mixed effects models for pairs of (Sei, Spi), (1 − Sei, 1 − Spi) and (1 − Sei,
Spi) using the complementary log-log transformation. Since there is no statistically
significant difference of sensitivities and specificities between semi-quantitative and
quantitative catheter segment culture, and the estimates are very close (not presented), we
pool semi-quantitative and quantitative catheter segment culture together in this analysis.
Table 4 presents the parameter estimates and their standard errors including the median
sensitivity and specificity, and AUC, and AIC resulting from the bivariate random effects
meta-analysis. In this data example, the estimates of median sensitivity and median
specificity of different transformations are also similar. The median sensitivity estimates
range from 0.851 to 0.863 and the median specificity estimates range 0.858 to 0.873. The
AUCM estimates are also very similar with different transformations. The AIC indicated the
best goodness of fit model is modeling pair of (1−Sei, Spi) using the complementary log-log
transformation among the six models we studied. Comparing the best-fitted complementary
log-log transformation to the frequently used logit transformation, the AIC difference is
413.6 – 418.3 = − 4.7, suggesting significant improvement of goodness-of-fit. Figure 1b
plots the summary receiver operating characteristic curves (ROC) and the boundaries of
95% prediction region based on the logit, probit and best fitted complementary log-log (C-
log-log) transformations. For this case study, the ROC curves from three models are very
similar, while the boundaries of 95% prediction region are noticeably different, potentially
suggesting the importance of selecting an appropriate link function for prediction.

4. Simulation Studies
To study the impact of misspecification of link functions on the estimation of sensitivity,
specificity, and the area under the ROC curve (AUC), we performed three sets of
simulations with 5000 replicates each. For each replicate, we simulated 40 meta-studies with
100 cases and 100 non-cases per study. In these three sets of simulations, we assumed a
bivariate normal distribution for (Sei, 1 − Spi) in the logit scale, the probit scale, and the
complementary log-log scale, respectively, with medians of (Sei, 1 − Spi) = (0.8, 0.1), a
positive correlation coefficient ρ = 0.5, and standard deviations (σμ, σν) = (1.0, 1.0). It
corresponds to an expected sensitivity and specificity of (0.761, 0.866), (0.724, 0.818) and
(0.736, 0.812) for the logit, probit and complementatary log-log transformations,
respectively. The 2.5 and 97.5 percentiles of the distribution correspond to (0.360, 0.966)
and (0.015, 0.441) for (Sei, 1 − Spi) by the logit transformation; (0.249, 0.999) and (0.001,
0.751) by the probit transformation; and (0.203, 1.000) and (0.015, 0.527) by the
complementary log-log transformation. Figure 2 presents the true summary ROC curves that
are based on the joint distributions of (Sei, 1 − Spi) for the three link functions considered.
By equation (6), the true AUCM is 0.8990, 0.9076, and 0.9332 for the logit, the probit and
the complementary log-log transformations, respectively, with the complementary log-log
transformation achieving the largest AUCM. For each set of simulations, we fit the bivariate
generalized linear mixed effect model as described in Section 2 with all the three link
functions, and we estimated the back-transformed median sensitivity and median specificity
as well as the AUCM under each model. In addition, AIC was calculated to select among the
three random effect models. The 5000 replicates for each set of simulations provides a
reasonably small standard error of 0.0031 for the estimation of 95% confidence interval
coverage probability [28]. The results were averaged across the 5000 replicates.

Table 5 presents the empirical probabilities of selecting among the three candidate link
functions using AIC based on the 5000 replicates. It shows that the probability of the correct
selection is 0.59, 0.74, and 0.85 when the true link function is logit, probit, and
complementary log-log, respectively. Furthermore, Table 6 presents the empirical
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probabilities of pairwise incorrect selection using AIC based on the 5000 replicates. For
example, it shows that the probability of selecting a probit or a complementary log-log link
is 0.34 and 0.19 respectively if the true link function is logit. Based on the limited
simulations, it seems that misspecification resulting from AIC-based model selection is
more likely to occur when the logit link function is true than when the complementary log-
log link function is true. Table 7 presents the average estimates of AUCM, median
sensitivity and median specificity together with their standard errors and the 95% confidence
interval coverage probabilities across the 5000 replicates, when using the three link
functions. In summary, the estimated AUCM, and the median sensitivity and the median
specificity are nearly unbiased upon misspecification of link functions. It suggests that point
estimation of the three quantities is approximately robust to the choice of the link functions.
However, the misspecification of link functions has a noticeable impact on the standard
error estimation and the 95% confidence interval coverage. Although the confidence interval
coverage probabilities are slightly lower than the expected 95% even if the link function is
correctly specified, they generally perform well and range from 0.925 to 0.942. However, if
the link function is misspecified, a very low coverage probability of 0.67 is observed for
median sensitivity if we incorrectly specified a logit link function when the true link
function is complementary log-log. It emphasizes the importance to carefully choose an
appropriate link function to make statistical inference. On the other hand, when the
complementary log-log function is fit to data generated from a logit or probit function,
coverage probabilities of the 95% confidence interval for AUCM are still 0.941 and 0.958,
respectively. It suggests that the complementary log-log transformation may be more
flexible and robust to misspecification than the logit and probit transformations.

5. Discussion
Performance of a diagnostic test is often measured by paired indices, e.g. sensitivity and
specificity, rather than one single summary statistic. Sensitivity and specificity are often
jointly modeled in the meta-analysis using random effects models to synthesize the
diagnostic test across similar studies. In this article we proposed a bivariate generalized
linear mixed effects model for meta-analysis of diagnostic accuracy studies using a general
link function including logit transformation as a special case. We fitted the models using the
dual quasi-Newton optimization techniques with SAS NLMIXED procedure and provided
methods to estimate the median sensitivity, median specificity, to construct summary
operating characteristic curve (SROC) and to estimate the area under the SROC.

To our knowledge, only logit transformation has been used for the bivariate random effects
meta-analysis on the sensitivity and specificity in the literature. Our contribution in this
article has been to extend the transformation of the sensitivity and specificity to a general
link function including logit transformation as the special case and compare the performance
of parameter estimation and the goodness of fit for the proposed link functions of the
bivariate generalized linear mixed effects model. We discussed three link functions, the
commonly used logit transformation and two additional link functions of probit
transformation and complementary log-log transformation. We proposed to select a link
function that can give a better goodness of fit using the AIC. Our data examples illustrated
different link function provided different goodness of fit based on the AICs. Furthermore,
since the complementary log-log transformation is asymmetrical, it is more flexible than the
logit and probit transformations. Specifically, modeling pairs of (Sei, Spi), (Sei, 1 − Spi), (1
− Sei, Spi) or (1 − Sei, 1 − Spi) using complementary log-log transformation may provide
different goodness of fit. Our two data examples illustrated a better goodness of fit based on
one of the pairs using complementary log-log transformation.
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We evaluated the impact of the misspecification of the link functions on the parameter
estimation of the bivariate generalized linear mixed models through a simulation study. Our
simulation study indicated that the point estimation of the median sensitivity and specificity,
and the AUC were robust to the misspecification of the link functions. But both the standard
errors and the 95% confidence interval coverage probabilities were not robust to the
misspecification of link functions. We observed a low coverage probability of 67% for the
median sensitivity if we incorrectly specify a logit link when the true link function is
complementary log-log transformation. However, approximately 95% coverage probability
can still be obtained for AUCM if the complementary log-log link is incorrectly specified
when the true link is logit and probit. We also examined the performance of AIC on
selecting a candidate link function through a simulation study. Our simulations indicated
that the AIC method performed relatively well.

The bivariate generalized linear mixed models we proposed in this article do not include the
study-level or individual level covariates. Generalization of extending our models to include
such covariates is straightforward through the SAS NLMIXED procedure. An alternative
method is to fit those models using Bayesian approaches that can be easily fitted by some
free downloadable software such as WinBUGS.
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Figure 1.
Summary receiver operating characteristic curves and the boundaries of 95% prediction
region in the conventional ROC space based on the logit, probit and the best-fitted
complementary log-log bivariate generalized linear mixed models for two case studies.
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Figure 2.
The summary receiver operating characteristic curves in the conventional ROC space based
on the true parameters for the simulation studies.
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Table 1

Example 1: Data from a meta-analysis of studies on the accuracy of positron emission tomography for
diagnosis of pulmonary nodules and mass lesions [26].

Study True Positive False Negative False Positive True Negative

1 2 10 1 9

2 12 0 0 7

3 19 2 2 8

4 33 0 2 16

5 29 2 2 3

6 59 2 3 24

7 44 3 3 12

8 22 0 2 7

9 57 2 5 23

10 34 0 4 15

11 18 0 2 4

12 33 0 2 15

13 30 3 2 7

14 26 0 7 19

15 29 0 6 10

16 82 0 12 13

17 17 0 0 9

18 30 2 2 12

19 40 4 3 7

20 12 0 0 7

21 59 1 9 20

22 14 1 1 3

23 15 2 2 4

24 28 3 4 19

25 14 1 0 2

26 8 1 1 1

27 24 0 1 2

28 64 2 3 27

29 43 0 3 9

30 91 3 3 0

31 37 0 4 0
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Table 3

Example 2: Data from a meta-analysis of studies on semi-quantitative (the first nineteen studies) or
quantitative (the last fourteen studies) catheter segment culture for diagnosis of intravascular device-related
bloodstream infection [27].

Study True Positive False Negative False Positive True Negative

1 12 0 29 289

2 10 2 14 72

3 17 1 36 85

4 13 0 18 67

5 4 0 21 225

6 15 2 122 403

7 45 5 28 34

8 18 4 69 133

9 5 0 11 34

10 8 9 15 96

11 5 0 7 63

12 11 2 122 610

13 5 1 6 145

14 7 5 25 342

15 10 1 93 296

16 5 5 41 271

17 5 0 15 53

18 55 13 19 913

19 6 2 12 30

20 42 26 19 913

21 5 3 5 37

22 13 0 11 125

23 20 0 24 287

24 7 6 13 72

25 48 2 15 47

26 11 1 14 72

27 15 5 32 170

28 68 13 5 11

29 13 1 5 72

30 8 3 66 323

31 13 1 98 293

32 14 1 0 155

33 8 2 4 60
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Table 5

The empirical probability of selecting a candidate among the three candidate link functions using AIC based
on simulation studies with 5000 replicates. The bolded cells represent the probability of identifying the correct
model.

Selected Random Effects Model
True Random Effects Model

Logit Probit Complementary log-log

Logit 0.590 0.177 0.028

Probit 0.279 0.740 0.120

Complementary log-log 0.131 0.083 0.852
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Table 6

The empirical probability of pairwise incorrect selection using AIC based on simulation studies with 5000
replicates.

Selected Random Effects Model
True Random Effects Model

Logit Probit Complementary log-log

Logit — 0.188 0.069

Probit 0.344 — 0.142

Complementary log-log 0.189 0.092 —

Med Decis Making. Author manuscript; available in PMC 2011 July 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

CHU et al. Page 18

Ta
bl

e 
7

Th
e 

es
tim

at
io

n 
an

d 
co

ve
ra

ge
 p

er
fo

rm
an

ce
 o

f e
ac

h 
lin

k 
fu

nc
tio

n 
ba

se
d 

on
 si

m
ul

at
io

n 
st

ud
ie

s w
ith

 5
00

0 
re

pl
ic

at
es

. T
he

 b
ol

de
d 

ce
lls

 re
pr

es
en

t t
he

 c
or

re
ct

ly
ch

os
en

 m
od

el
.

Fi
tte

d 
R

an
do

m
 E

ffe
ct

s M
od

el

T
ru

e 
R

an
do

m
 E

ffe
ct

s M
od

el

L
og

it
Pr

ob
it

C
om

pl
em

en
ta

ry
 lo

g-
lo

g

A
U

C
 (0

.8
99

0)
Se

 (0
.8

0)
Sp

 (0
.9

0)
A

U
C

 (0
.9

07
6)

Se
 (0

.8
0)

Sp
 (0

.9
0)

A
U

C
 (0

.9
33

2)
Se

 (0
.8

0)
Sp

 (0
.9

0)

Lo
gi

t
M

ea
n

0.
89

50
0.

79
86

0.
89

89
0.

90
70

0.
81

43
0.

90
91

0.
93

43
0.

85
13

0.
89

61

St
an

da
rd

 E
rr

or
0.

02
06

0.
02

59
0.

01
51

0.
02

47
0.

04
33

0.
02

54
0.

01
69

0.
04

09
0.

01
69

95
%

 C
IC

P*
0.

92
45

0.
93

6
0.

94
21

0.
90

02
0.

88
03

0.
86

84
0.

87
36

0.
66

59
0.

95
05

Pr
ob

it
M

ea
n

0.
90

02
0.

79
13

0.
89

39
0.

90
26

0.
79

72
0.

89
72

0.
93

44
0.

83
27

0.
89

01

St
an

da
rd

 E
rr

or
0.

02
22

0.
02

62
0.

01
59

0.
02

73
0.

04
43

0.
02

86
0.

01
84

0.
04

35
0.

01
80

95
%

 C
IC

P*
0.

88
62

0.
93

43
0.

94
41

0.
92

85
0.

93
09

0.
93

07
0.

87
85

0.
81

51
0.

94
52

C
om

pl
em

en
ta

ry
 lo

g-
lo

g
M

ea
n

0.
89

10
0.

77
74

0.
90

10
0.

89
03

0.
75

85
0.

91
49

0.
92

59
0.

79
80

0.
89

89

St
an

da
rd

 E
rr

or
0.

02
70

0.
02

78
0.

01
45

0.
03

63
0.

05
17

0.
02

25
0.

02
32

0.
05

07
0.

01
59

95
%

 C
IC

P*
0.

94
12

0.
88

81
0.

93
25

0.
95

76
0.

89
86

0.
80

51
0.

93
93

0.
92

93
0.

94
15

* 95
%

 C
IC

P 
= 

95
%

 c
on

fid
en

ce
 in

te
rv

al
 c

ov
er

ag
e 

pr
ob

ab
ili

ty
 b

as
ed

 o
n 

no
rm

al
 a

ss
um

pt
io

n.

Med Decis Making. Author manuscript; available in PMC 2011 July 1.


