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Abstract
Self-healing polymeric materials are systems that after damage can revert to their original state
with full or partial recovery of mechanical strength. Using scaling theory we study a simple model
of autonomic self-healing of unentangled polymer networks. In this model one of the two end
monomers of each polymer chain is fixed in space mimicking dangling chains attachment to a
polymer network, while the sticky monomer at the other end of each chain can form pairwise
reversible bond with the sticky end of another chain. We study the reaction kinetics of reversible
bonds in this simple model and analyze the different stages in the self-repair process. The
formation of bridges and the recovery of the material strength across the fractured interface during
the healing period occur appreciably faster after shorter waiting time, during which the fractured
surfaces are kept apart. We observe the slowest formation of bridges for self-adhesion after
bringing into contact two bare surfaces with equilibrium (very low) density of open stickers in
comparison with self-healing. The primary role of anomalous diffusion in material self-repair for
short waiting times is established, while at long waiting times the recovery of bonds across
fractured interface is due to hopping diffusion of stickers between different bonded partners.
Acceleration in bridge formation for self-healing compared to self-adhesion is due to excess non-
equilibrium concentration of open stickers. Full recovery of reversible bonds across fractured
interface (formation of bridges) occurs after appreciably longer time than the equilibration time of
the concentration of reversible bonds in the bulk.
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1. Introduction
The development of self-healing polymeric materials1–9 is inspired by biological systems
where damage initiates an autonomous healing process without external intervention. Self-
healing polymeric materials are defined as systems that after damage can revert to their
original state with full or partial recovery of mechanical strength. These materials can be
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categorized into stimuli-induced and autonomic classes. Examples of self-healing based on
stimuli-induced formation of bonds10–18 include reactions induced by heat treatment19–21 or
irradiation22, 23.

The key feature of autonomic self-healing is that material repairs by itself without external
intervention. The structure repair is accomplished through either healing agents embedded
into a polymer matrix or the formation of reversible bonds. The concept of embedded
healing agents was developed by Dry and collaborators24 in 1990’s and later extended by
White et al.25 In this approach, chemicals are encapsulated and embedded into polymer
matrix, while catalyst is dispersed in the polymer outside the capsules. Upon damage, the
capsules are ruptured by propagating cracks, resulting in the release of the chemicals into the
cracks. Subsequent reaction between the chemicals with the aid of the dispersed catalyst
heals the material. Typical types of capsules are micro-hollow-particles,24–27 hollow
fibers,28–31 and three dimensional vascular networks.32, 33 There are also two physical
approaches to autonomic self-healing. One is to use encapsulated solvent, which facilitates
local polymer chain mobility and thus results in the formation of entanglements across a
crack.34, 35 Another approach is to use nano-particles that migrate through a composite
material to a crack and impede its growth.36–38

Parallel to the development of embedded healing agents for hard thermosets a significant
progress has been made for elastomers and gels. Contrarily to thermosets, elastomers and
gels function above their glass transition temperature Tg and healing of elastomers is
facilitated by chain segments of high mobility and by possibilities of achieving fast
reversible associations or chemical reactions at ambient conditions. It was reported for
example that fractured surfaces of elastomers heal autonomically for elastomers near the gel
point.39 This effect was explained by the formation of entanglements between dangling
chains across the interface. Networks with non-covalent associations,40–47 such as multiplets
in ionomers, associations due to metal-ligand coordination, or hydrogen bonds, have been
shown to have self-healing properties. Quite often, however, a thermal, optical or pH
triggers have to be used to achieve self-healing. A typical example are materials based on
reversible ionic associations, e.g., poly(ethylene-co-methacrylic acid) copolymer.40–43 Such
ionomer films are not autonomic self-healing systems since their self-repair is achieved after
projectile puncture. The penetration of these films by a projectile causes localized heating
near the puncture and thus the ionomer material heals as a result of multiplet formation at
higher temperatures in the melt state.40, 41 Both experimental48 and simulation works43 are
conducted to understand the self-healing mechanism of ionomers. Interestingly, the same
type of reversible associations can be used to make materials with autonomic or triggered
self-healing properties. For example, metal-ligand coordinated supramolecular polymer
melts required optical trigger to repair,46 but covalently cross-linked gels containing metal
coordinative cross-links were self-healing when damaged without the need of an additional
trigger.44

Recently, self-healing systems based on dynamic covalent chemistry have been
developed.16, 17, 19, 49–55 High glass transition temperature systems on Diels-Alder reactions
require thermal trigger to self-heal,19,50 whereas low Tg self-healing systems often behave
like viscoelastic melts.16 Similarly systems employing degenerative disulfide exchanges2, 3

are viscoelastic, and so are those involving radical reshufflings of trithiocarbonates56 or
metathesis exchange reactions.4, 57

An entirely different type of autonomic self-healing system based on reversible hydrogen
bonds was reported by Leibler’s group.45, 58–65 It consisted of branched oligomers equipped
with large number of supramolecular self-complementary and complementary functional
groups. During damage, supramolecular rather than covalent bonds break and this creates a
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very non-equilibrium situation near fractured surfaces. Indeed, the concept relies on the fact
that the concentration of dissociated groups near a freshly fractured surface is much higher
than the equilibrium concentration. These dissociated groups tend to associate, forming
bridges and thus repair damage. The principle of design relies on the high density of
associating (bonding groups) and on long-lived associations and branched structure to
achieve a very long mechanical relaxation time. Remarkably, the local concentration of
dissociated groups remains high even after significant waiting time. When two fractured
surfaces are brought into contact, the reversible associations (bridges) between these groups
are formed across the interface, resulting in the self-repair of the sample. It is important to
stress that self-repair was observed only across fractured surfaces, while other surfaces
remain non-sticky because of very low equilibrium concentration of dissociated groups.
Although this amazing discovery initiated active experimental search for materials with even
better self-healing properties, the progress is hindered by the lack of molecular theory. The
theory should answer the key question: how can the local concentration of dissociated
groups and their lifetime be increased during the waiting period, while keeping a high rate
of bond formation during the healing period and a low equilibrium concentration of
disassociated groups away from fractured surfaces. Thus, there is a need for a microscopic
theory that could provide a qualitative explanation of the difference between self-healing
and self-adhesion. In the present paper we propose a simple theory of self-healing polymer
network modeled by chains fixed in space at one end and with reversible pairwise
associating stickers at the other end.

The rest of the manuscript is organized as follows. The model is described in Section 2.
Section 3 focuses on the scaling theory for the equilibration kinetics of reversible polymer
networks. Subsection 3.1 discusses the equilibrium state in polymer networks with
reversible bonding. Subsection 3.2 introduces the relevant time scales determining the
binding and bond scission events, as well as the time scales characterizing diffusion-
controlled equilibration process and defines the stress relaxation time in a reversible
polymer network. The kinetics of equilibration process from a state with high number
density of open stickers is described in Section 4. In this section two regimes are identified:
1) anomalous diffusion regime and 2) hopping diffusion of open stickers. Based on the
results of Section 4, we discuss the kinetics of self-adhesion and self-healing in Sections 5
and 6, respectively. Concluding remarks are presented in Section 7. A list of symbols is at
the end of the paper and the simulation results of self-healing reversible polymer networks
are presented and discussed in the Appendix.

2. Minimal model of self-healing hybrid networks: Reversible bonds formed
by dangling chains of a permanent network

Our simple model (Figure 1) consists of chemically cross-linked (small black circles)
polymers (grey lines) that form a permanent network well above the gel point. A large
number of dangling chains (black lines) is attached to this network.66 The volume fraction
of dangling chains is taken to be higher than that of the network. The dangling chains carry
associating groups (stickers, large green and red circles) at free ends.

We assume that stickers can associate with each other by forming pairwise reversible bonds
(green pairs of circles in Figure 1). The protocol for “ideal” fracture and healing consists of
three stages:

i. A fracture surface is introduced in the polymer network (Figure 1b) and all the
bridges that have attachment points on the opposite sides of this surface are cut at
the reversible bonds. This cutting process creates an excess of open stickers (above
the equilibrium concentration) in the vicinity (within the chain size) of the cut.
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Please note that cutting also breaks some covalent bonds in the permanent network.
These bonds are not repaired during healing process.

ii. The two parts of the sample are kept apart (Figure 1b). The local density of open
stickers of the fractured sample decreases with time as loops are formed by some of
the dangling chains with open stickers created by the cut.

iii. After a certain waiting time, τw, the two parts of the sample are brought together
and a healing process begins (Figure 1c). This healing process consists of the
formation of bridges that link the cut networks together.

Self-healing is different from self-adhesion where two equilibrated surfaces are brought in
contact. In self-adhesion the number of bridges across the interface grows slowly because of
low concentrations of open stickers at unfractured (equilibrated) surfaces. However, cutting
a sample creates a situation very far from equilibrium since many pairs of linked stickers are
separated.

In the following we quantify the difference between bridge formations in cases far from
equilibrium (healing process) and close to equilibrium (self-adhesion process). The
maximum strength of the interface after a very long self-healing or self-adhesion should be
the same but weaker than the bulk strength, because of the lack of permanent network
bridges through the healed interface.

3. Kinetics of bond formation and breaking in reversible polymer networks
3.1 Bond equilibrium and concentration of open stickers

If the equilibrium between open (A) and closed, i.e., paired (A2), states of stickers is
established

(1)

the equilibrium number density of open stickers  is the function of the bond
strength ε, and the total concentration of sticky groups ct = ceq(A) + 2ceq(A2). Considering
the detailed balance in equilibrium between the species A and A2 one obtains the relation
between the equilibrium concentrations of open and closed stickers:

(2)

in which

(3)

is the equilibrium constant for the reaction (1). Here the coefficient

(4)

is related to the change of the entropy upon formation of a dimer from a pair of open stickers
and b is the molecular size. Solving eq. (2) one obtains the equilibrium number density of

open stickers 

Stukalin et al. Page 4

Macromolecules. Author manuscript; available in PMC 2014 September 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(5)

In our minimal model the total concentration ct of sticky groups is one per volume of a
dangling chain with N monomers of size b:

(6)

If the bond is weak, ε ≪ kBT ln N (equilibrium constant Keq ≪ 1/ct), most of the stickers

are open ( , eq. (5)) and thus associations between stickers are not important. We
therefore limit our consideration to the case of relatively strong associations with bond
strength ε > kBT ln N. In this case the total sticker concentration satisfies ctKeq ≫ 1, and

therefore, the equilibrium number density of open stickers (eq. (5)) is low ( ) and
can be approximated as

(7)

Note that the “effective energy” of an open sticker is ε/2 (see eq. (7)) because two stickers
form one bond with energy ε. Also note that concentration of open stickers is proportional to
the square root of the total concentration of stickers ct since the bond formation can be
described by the pairwise association reaction (eq. (1)).

The bond strength ε and the dangling chain length N determine the number density of open
stickers as well as the average distance between them at equilibrium. Clearly if the bond
strength ε is high the open stickers are far apart and two open stickers cannot easily
recombine without reorganization of reversible network because their fluctuations in space
are limited to the volume pervaded by a dangling chain near the anchoring point. The
pervaded volume of a dangling chain with N monomers of size b is about:

(8)

From eq. (7) one can define a crossover bond strength at which there is one open sticker per
pervaded volume of a chain:

(9)

Thus, two situations have to be distinguished. The first one is for the intermediate bond
strength ln N < ε/kBT < 2 ln N, in which there are many open stickers in the volume
pervaded by a dangling chain (Figure 2a). The dynamics of bonding in this case is controlled
by anomalous sub-diffusive Rouse motion of stickers. In the opposite case of high bond
strength ε/kBT > 2 ln N (Figure 2b) the open stickers are far apart and more complex
processes, called hopping (partner exchange), are required for two open stickers to
recombine (see Section 4.2)
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3.2 Lifetime of an open sticker and renormalized bond lifetime
Let us look at the fate of a pair of stickers that are bound at time t = 0. They attempt to
separate but only a small fraction of the attempts is successful because the stickers are in a
potential well with energy ε. We call τb the average time two stickers spend in a bonded
state before a successful separation on molecular distance, monomer length, b. This time
scale increases exponentially with the bond strength

(10)

with τ0 being the time it takes for a monomer to diffuse the molecular distance b in the
absence of any attraction between stickers. Here τ0 depends on the monomeric friction
coefficient, which is related to the difference between sample temperature T and the glass
transition temperature Tg.

If the attempt to separate is successful, each open sticker moves by Rouse sub-diffusive
motion because it is connected to a dangling chain.67 The mean-square displacement of a
monomer 〈Δ2(t)〉 increases as the square root of time t (instead of linear with time for a
Brownian diffusion)

(11)

where

(12)

is the Rouse time of the dangling chain. For the segmental dynamics of Rouse chains in
three dimensions the volume explored by an open sticker grows slower than linear with time
t

(13)

This sub-diffusive process belongs to the class of compact space exploration68 due to
multiple returns of the sticker to the same elementary volume b3. The number of returns to
the same elementary volume can be estimated as the ratio of the total number of elementary
steps, t/τ0, to the number of elementary volumes, Vexpl(t)/b3, “explored” during time t.
Because the space exploration is a compact one, most excursions end up by two stickers
encountering each other and forming a bond again.

When we look at a given sticker, most of the time it is bonded to another sticker. Most of the
bond-breaking events are short-lived because the sticker again forms the bond with the same
partner after a very short walk. Still there are very rare excursions of open stickers that are
very long. These long excursions dominate the average lifetime in an open, non-linked state.
More precisely, the average time the sticker is open is the time of anomalous diffusion over
average distance ropen between neighboring open stickers:

(14)
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This average lifetime of open stickers is estimated from eqs. (11) and (14):

(15)

For stress relaxation and other dynamic processes the important time is the time it takes a
sticker to recombine with a new partner instead of returning to the old one. We define
renormalized bond lifetime  as the average time from the first formation of a bond
between a particular pair of partners until the formation of a bond with a new open partner.
This time is the sum of the total time J(τopen)τb two stickers stay bonded during J(τopen)
multiple returns (or multiple close times) of average duration τb each and the time τopen they
diffuse to a new sticker:

(16)

To calculate the average number of returns J to the old partner before bonding to a new one
we have to consider a compact trajectory of an open sticker with respect to its partner. For a
Rouse compact exploration, the mean square displacement of a sticker with respect to its
partner is proportional to square root of the number of steps of size b (see eq. (11)):

(17)

The average number of returns to the old partner during a walk of n steps is equal to

(18)

where 〈Δr2〉3/2/b3 is the average number of sites in the explored volume. Hence the average
number of returns at time τopen is J(τopen) ≈ ropen/b (eq. (17)) and the renormalized bond
lifetime (eq. (16)) equals to

(19)

This scaling relation (eq. (19)) can be rewritten in terms of the equilibrium concentration of

open stickers  at higher bond strength ε > kBT ln N (see eq. (7)) using

(20)

with the total concentration of stickers ct ≈ 1/(b3N) and with α ≈ b3. In this case most of the
stickers are bonded to each other and the renormalized bond lifetime is dominated by
multiple close times

(21)
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Thus, the interesting situation corresponds to the intermediate bond strength kBT ln N < ε <
2kBT ln N for which τopen is smaller than J(τopen)τb and the new sticker can be reached by
Rouse anomalous sub-diffusion (see Figure 2a). For ε > 2kBT ln N the average distance
between open stickers is larger than end-to-end distance of dangling chains (see Figure 2b)
and τb > τR ≈ τ0N2 (eqs. 9 and 11). It should be stressed that at equilibrium

(22)

which is consistent with the law of mass action.

Unlike the bare bond lifetime τb the renormalized bond lifetime  for the intermediate
bond strength kBT ln N < ε < 2kBT ln N depends on the total sticker concentration

 (see eq. (21)). The effective exponent for the dependence of the
renormalized bond lifetime  on the bond strength ε is also different from that for the
bare bond lifetime τb (7/6 vs. 1; c.f. eq. (10) and eq. (21)).

4. Kinetics of equilibration for reversible bonds
In order to understand the self-healing phenomena, we need to describe the kinetics of the
equilibration process from a state with high number density of open stickers. The
equilibrium concentration of open stickers depends on the value of bond strength ε for a
given degree of polymerization N of dangling chains. Below we describe the kinetics of free
sticker recombination following a sudden change of a bond strength (called energy (ε)-
jump) from low εi to high value of εf. Note that three situations can occur:

1. In both initial εi and final εj states there are a lot of open stickers in the volume
spanned by a dangling chain, i.e., the concentration of open stickers in the final

state , in which  corresponds to one open sticker per
pervaded volume of a chain with size R0 ≈ bN1/2(see eq. (9)).

2. In the initial state with bond energy εi there are many open stickers in the volume

 of a dangling chain (see Figure 2a) but near the final state εj hopping process is
necessary for equilibration (see Figure 2b), i.e., the concentration of open stickers

in the initial state exceeds , while the concentration of open stickers in the final

state is smaller than crossover concentration .

3. Recombination in both initial and final state requires hopping to equilibrate the

system  (see Figure 2b).

In the regimes described in items (2) and (3) the kinetics are controlled by the combination
of chain dynamics and thermally activated de-bonding which slows down the equilibration
process.

4.1 Anomalous diffusion regime

Let us consider the situation of an ε-jump with  (equivalent to jump from
temperature Ti to Tf < Ti). The excess of open stickers decreases with time as the system
evolves towards equilibrium. The particular feature of compact diffusion is that after time t
each open sticker visits each elementary volume b3 within exploration volume Vexpl(t) (see
eq. (13)) many (on average J(t)) times. Therefore it would recombine with any open sticker
present within this volume. This implies that all excess stickers have recombined and the
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remaining ones are at distance from each other on the order of the radius of the exploration

volume (see dotted circles for the case of  in Figure 3). The effect of randomness of
locations of these volumes is discussed in Appendix AII (see Figure A2).

Thus, at time t the concentration of open stickers is (Figure 4, thick line)

(23)

where  corresponds to the time at which the exploration volumes (eq. (13)) of initial

open stickers start to overlap: , which gives

(24)

Once copen(t) reaches  the system equilibrates. The equilibration time τeq for anomalous
diffusion regime corresponds to open sticker lifetime in the state with final equilibrium
concentration of open stickers (see eq. (15)).

(25)

Using eq. (7) we obtain the scaling relation for equilibration time τeq in the anomalous
diffusion regime as function of chain length N and bond strength ε

(26)

It is important to stress that in practice there will be two crossover regimes: one at short

times  (see eq. (24)) and the other near the equilibration time τeq in the anomalous
diffusion regime (see eq. (25)). Equation (27) below gives a convenient interpolation

formula from initial condition  through the power law dependence

(eq. (23)) to the final concentration  at t ≫ τeq (eq. (26))

(27)

This prediction has been verified by our hybrid molecular dynamics – Monte Carlo
simulation (see Appendix A.II and Figure A1) from which the adjustable parameter C = 3.2
± 0.1 was determined.

4.2 Hopping diffusion of open stickers: partner exchange regime
For short dangling chains and/or high bond strength the equilibrium concentration of open

stickers can be smaller than one sticker per pervaded volume of the chain ( ). In
this case open stickers cannot bond by anomalous diffusion. We expect that another
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mechanism, which we call hopping, or partner exchange, governs the mobility of open
stickers (see Figure 5) at time scales longer than the Rouse time of a dangling chain.

Below we show that in the partner exchange regime the dynamics of open stickers at time
scales t > τR can be described as the non-compact Brownian-like diffusion with the effective
diffusion coefficient for hopping

(28)

The hopping event corresponds to a displacement of an open sticker over the distance
comparable to the chain size R0 and the hopping time is expected to be proportional to the
bare bond lifetime τb as explained below. Indeed, the number of potential partners for

“exchange” reactions is equal to the number of bonded pairs in the volume  and thus is

proportional to N1/2. For a given bonded pair, in order to explore the volume  and thus be
able to exchange one of its stickers with the open sticker, N2 steps of size b during
temporary separation are required (see eq. (13)). During these N2 steps the two stickers will
recombine J ≈ (N2)1/4 = N1/2 times (see eq. (18)). As a result the exchange time with the
given pair takes an average time N1/2τb. Thus, it takes on average time (N1/2τb)/N1/2, i.e., τb,
for an open sticker to exchange with any of N1/2 potential candidates.

Consider the concentration of open stickers copen(t) at time t after the ε -jump. This
concentration is on the order of one open sticker per exploration volume copen(t) ≈ 1/
Vexpl(t), as for the anomalous diffusion regime (see eq. (23)). But in the case of hopping
diffusion the volume explored by an open sticker Vexpl(t) grows linearly with time (non-
compact space exploration) on time scale longer than partner exchange time τb.

(29)

Therefore, the concentration of open stickers decreases with time as

(30)

until equilibration of open sticker concentration  (see the last segment of the
thick line in Figure 6) that occurs at equilibration time τeq for high bond strength

(31)

If the initial concentration of open stickers exceeds  while the final concentration is

smaller than crossover density , we expect the two regimes of
bond formation (anomalous diffusion and partner exchange) separated by a plateau (τR < t <

τb) with the transient concentration of open stickers , shown by the thick line in
Figure 6. The plateau exists because the open stickers cannot easily recombine by
anomalous diffusion anymore and almost no open stickers are available for the partner

exchanges within the plateau regime (second plateau at  in Figure 6).
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The scaling relations for τeq in anomalous diffusion and partner exchange regimes (eqs. (26)
and (31)) predict the non-monotonic dependence of equilibration time on the chain length N
for a given bond strength ε, shown in Figure 7. The equilibration of the system with short
dangling chains requires partner exchanges, while for long chains the equilibrium is reached
by anomalous diffusion. The equilibration time τeq in the partner exchange regime decreases
with the chain length N while in the anomalous diffusion regime it increases as chains
become longer. The equilibration time τeq in each regime is on the order of open sticker
lifetime at equilibrium. The average distance between open stickers scales with the number

of monomers N in dangling chains as . The equilibration time, τeq,
in the anomalous diffusion regime increases with the average distance ropen < R0 between

open stickers (at equilibrium) as  (see Figure 7), where N*

is the crossover degree of polymerization. The equilibration time τeq in the partner exchange
regime ropen > R0 is inversely proportional to the effective diffusion coefficient for hopping

 (see eq. (28)), since the volume per open sticker 
(see eq. (20)) and effective “capture” radius R0 for hopping have the same N1/2 chain length
dependences. Thus, the hopping motion of open stickers in the polymer network slows down
as dangling chains become shorter. There is a crossover between these two kinetic regimes
that corresponds to N* ≈ exp[ε/(2kBT)] with the shortest open sticker equilibration time τeq
(see Figure 7).

5. Kinetics of self-adhesion
We consider two equilibrated pieces of the material which are brought in contact at time t =
0. We assume that there is no excess of open or closed stickers at their surfaces and that the
contact is perfect. Reorganization of reversible bonds will lead to adhesion of the two pieces
to each other. By adhesion here we mean formation of bridges across the contact interface.
Of course at the end of the process of bridge formation the interface will be weaker than the
bulk because we do not recreate permanent links across the interface. The surface density of
bridges at equilibrium for relatively high bond strength is

(32)

As discussed in Section 4, depending on the strength of reversible bonds and the length of
the dangling chains two situations have to be distinguished. We start the discussion with the
case of very strong bonds ε > 2kBT ln N, for which the equilibrium concentration of open

stickers is below the overlap value, , and the average distance between
them is larger than the dangling chain size R0. In such a case new bond formation requires
reorganization of temporary network because two dangling stickers are too far to recombine
directly.

Free sticker diffusion is possible by the hopping mechanism as described in Section 4.2.
Hence, for bridge formation two processes can be envisaged.

i. To form a bridge a sticker that is attached to network A has to diffuse across the
interface and bind to a free sticker linked to network B. The sticker to which it
binds could be an open sticker that is far from any other open stickers in sample B
and we call this process direct bonding, shown in Figure 8a. The probability of

finding such a sticker is small ( ) because the bond energy
is high.
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ii. The more frequent event is for free sticker to bond to a sticker which has just left a
partner for a very short excursion as discussed in Section 4.2. We call this event
partner exchange. As illustrated in Figure 8b, the partner exchange is optimal for
bridge formation because not only a bridge across the interface is formed but the
resulted new open sticker is close to the interface and can readily form another
bond by crossing the interface back from B to A. We call this bridging mechanism
– stitching process.

5.1 Direct Bonding
For short adhesion times t < τR the direct recombination process dominates because hopping
diffusion requires longer time steps. The time dependence of bridge formation process can
be described by

(33)

where Vexpl(t) (see eq. (13)) is the exploration volume of an open sticker by anomalous

diffusion and  is the thickness of the interface layer from which an open
sticker can reach the opposite side of the interface during time t. Vexpl(t)copen is the
probability of finding an open sticker for recombination. Using eqs. (4), (9), (10), and (13)
one can rewrite eq. (33) as

(34)

The surface density of bridges formed by direct recombination process saturates at Rouse
time τR and is equal to

(35)

This value is much smaller than the equilibrium surface density of bridges  (see eq. (32))

and even smaller than  because .

5.2 Stitching Process
For times longer than the Rouse time τR, the number of bridges saturates at the value σb(τR)
(eq. (35)) until the time at which partner exchange mechanism becomes effective. The
surface density of bridges formed by partner exchange process is given by

(36)

where W(t) is the width of the layer from which open stickers can cross the interface during

time t by the hopping process with diffusion coefficient  (see eq. (28)):

(37)
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and n(t) in eq. (36) is the average number of times an open sticker within this zone crosses
the interface. It is essential to stress that almost every time an open sticker crosses the
interface it builds a bridge (see Figure 8b). In this process, called “stitching”, the identity of
the open stickers changes (see Figure 8b with an open sticker on a black chain becoming an
open sticker on a blue chain). The number of crossings n(t) can be obtained by considering
the transient diffusion of open stickers in the direction perpendicular to the interface, which
is effectively a one-dimensional random walk. Therefore, the number of crossings equals to
the square root of the total number of steps:

(38)

Hence, the surface density of bridges formed by partner exchanges grows linearly with time

(39)

where τeq (see eq. (31)) is the bulk equilibration time after an excess of open stickers has

been created and  corresponds to the equilibrium concentration of open stickers (eq.
(30))

(40)

Note that the partner exchange dominates over the direct bonding at times t > τRτeq/τb – see
the end of thick plateau in Figure 9.

The linear time dependence of σb (eq. (39)) suggests a simple interpretation: in the hopping
regime the number of bridges formed is given by the flux due to diffusion of open stickers
by hopping across the interface. Indeed, the flux of open stickers per unit area per unit time
is:

(41)

Figure 9 summarizes both direct bonding and stitching regimes. In practice, to get a

significant density of bridges (a bridge per area ) one needs to wait time on the order of
τeq (eq. (31)). As shown by the last sections of the thick line in Figure 9, the truly
equilibrated interface for the case of high bond strength ε > 2kBT ln N is formed after an
even longer time

(42)
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5.3 Self-adhesion by anomalous diffusion for intermediate bond energies
In the situation of smaller binding energies ε < 2kBT ln N the direct recombination plays a
more important role. The surface density of bridges is given by eq. (33) and increases
linearly with time up to adhesion time τadh (see eq. (34))

(43)

and then saturates at  (see eq. (32) and thin line in Figure 9). The adhesion time at which
the interface is fully reconstructed for intermediate bond strength is

(44)

We should stress that the linear time dependence of σb(t) is obtained for t < τopen despite the
fact that the recombination involves anomalous diffusion. In general the exploration volume
Vexpl(t) ∝ t3/dw, where dw is walk dimension of the open sticker trajectory. Hence, in general
the surface density of bridges is (see eq. (33))

(45)

For the anomalous Rouse diffusion dw = 4 and therefore we get σb(t) ∝ t. For adhesion times
longer than τopen (see eq. (15)) the bonds form and break with the rate per unit area

 starting with diffusion time of open stickers τopen corresponding

to average distance  between open stickers. This will also be the rate of bridge
formation due to detailed balance between bond breaking and bond formation in
equilibrium. Please note that for t < τopen and t > τopen the bridge formation rate is the same,
though the mechanisms are quite different.

6. Kinetics of self-healing
Cutting networks with reversible bonds creates many open stickers in the cut surface layers
of each piece, and therefore, creates a situation far from equilibrium. When the healing
process is not initiated immediately, but only after some waiting time τw, both pieces tend to
partially equilibrate the open sticker concentration by forming loops. This process of
decrease of number of open stickers is analogous to that discussed for energy-jump in
Section 4 except that it occurs only in the layers adjacent to the cut surface.

6.1. Decrease of excess open stickers with waiting time
The initial local concentration of open stickers in the interface zone within distance R0 of the

fresh cut is proportional to the total concentration of stickers: . Chains
in this layer could be initially strongly deformed and the rates of associations during the first
waiting stage (t < τR) may depend on this deformation. For simplicity, we ignore this
complication.

For times shorter than the Rouse time τR of dangling chains, the anomalous diffusion of
stickers at the ends of dangling chains governs the disappearance of open stickers in the
near-cut surface layers. The “onset” time for anomalous diffusion regime at which the
exploration volumes of the open stickers start to overlap is (see eq. (24)):
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(46)

Hence, for , the decrease of the excess number of open stickers per
unit area in the fractured layers, σopen(τw), is analogous to that described by eq. (23):

(47)

where Vexpl(τw) is the volume explored by an open sticker at waiting time τw by the
anomalous Rouse diffusion (see eq. (13)) as depicted in Figure 10.

Associations between open stickers during waiting time τR < τw < τb slow down since there
are no available partners easily reachable by the remaining open stickers. This plateau level

 is reached at the end of anomalous diffusion regime τw ≈

τR and corresponds to one open sticker per chain area  (see eq. (9)) as shown by the
horizontal line in Figure 10.

For times τw > τb the hopping recombination becomes possible and the number of excess
open stickers will further decrease. However, it should be stressed that the open stickers
diffuse further away from the cut surfaces into the bulk of the samples. Therefore, the
concentration of open stickers in the surface layer decreases due to both recombination and
diffusion away from the surface layers. The later process leads to the widening of the
surface layer, which contains excess of open stickers. We account for this by introducing a
time-dependent layer containing excess of open stickers. The width of this layer increases
with waiting time τw (see eq. (37))

(48)

since open stickers diffuse out of the initial “cut” zone of width R0 by the hopping with the
diffusion coefficient DH given by eq. (28). The decrease of the number density of open
stickers per unit area during this stage of the waiting regime is

(49)

where  is the volume explored by hopping diffusion during waiting
period τw (see eq. (29)).

Figure 10 summarizes the decrease of excess surface number density of open stickers σopen
with waiting time τw. Note, however, the reciprocal square root time dependence of
σopen(τw) in eq. (49) instead of reciprocal time dependence of copen(τw) in eq. (30) in partner
exchange regime due to the widening of the surface layer width W(τw) with excess open
sticker concentration (see eq. (48)).

6.2. Formation of bridges
We discuss below how the excess of open stickers remaining after some waiting time
controls the healing efficiency. Indeed, the presence of the excess open stickers near the
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surface makes healing more efficient than self-adhesion of equilibrated samples. Still,
microscopic mechanisms described for self-adhesion—direct recombination and stitching
partner exchange—operate as well. In particular, the situations for intermediate and strong
binding have to be distinguished and different regimes are shown in Figure 11. In addition,
the healing and adhesion processes are distinguished by the extent of waiting time. If the
waiting time, τw, is larger than the equilibration time of excess open stickers, τeq, the repair
process is called self-adhesion. The thick line in Figure 11 separates adhesion and healing
repair regimes.

Intermediate binding energy—For intermediate binding energies kBT ln N < ε < 2kBT ln
N the equilibration time τeq separating healing and adhesion is τopen (eqs. (15) and (26)). In
this case with long waiting time τw > τeq, shown by regime I in Figure 11, the formation of
bridges proceeds by adhesion process. The building of bridges by anomalous diffusion of
open stickers in self-adhesion was discussed in detail in Section 5.

For short waiting time τw < τeq the healing regime (regime II in Figure 11) dominated by
anomalous diffusion of open stickers, in which the initial rate of bridge formation is high.
Indeed, in analogy with eq. (33), we have

(50)

in which copen(τw) ≈ 1/Vexpl(τw) (see eq. (23)) corresponds to the concentration of excess
open stickers left after waiting time τw. Therefore using eq. (23) for copen(τw) and for
Vexpl(t) we can rewrite eq. (50) as

(51)

This linear increase of surface density of bridges slows down at healing time of about τw.
This is because at such time scale the concentration of open stickers in the surface layer
starts to effectively decrease towards equilibrium value due to the formation of loops.

The recombination of open stickers due to loop formation occurs in the whole surface layer
that is thicker than the actual layer in which bridges can be formed. This results in the
decrease of the rate of bridge formation not only because the quantity of open stickers is
lower, but also because most stickers form loops before they have a chance to reach the
interface. Hence, after healing time t of about τw the number of bridges reaches the plateau
value of about

(52)

and only few additional bridges are formed up to the healing time τeq ≈ τopen, at which
point the concentration of open stickers in the surface layer reaches its equilibrium value
(see the plateau in Figure 12).

Actually some bridges are still formed at times between τw and τeq due to rare open stickers
reaching the interface from places further away from the interface without recombining with
other open stickers from the same side of the interface (loop formation). The rate of bridge
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formation in this time regime is 1/[tVexpl
2/3(t)]. The surface density of bridges formed during

this interval t > τw thus will slowly increase with time as

(53)

We propose a convenient interpolation formula that covers the whole time range

(54)

Still, at healing times t ≈ τeq the surface density of bridges σb(t = τeq) is smaller than σb(t =
τadh), meaning that the stucture of the interface is not completely equilibrated. The bridge
formation at times longer than τeq proceeds by exactly the same process as we discussed for
self-adhesion (see eq. (43) and thin line in Figure 9), as shown by the third section of the
thick line in Figure 12 that coincides with the thin line corresponding to self-adhesion
(regime I).

High Binding Energy—For high binding energy ε > 2kBT ln N the dependence of healing
performance on waiting time τw is more involved.

For short waiting time τw < τR (regime III in Figure 11), initial concentration  of open

stickers is above  (see eq. (9)), which is much higher than the equilibrium
value. The process of bridge formation during initial healing stage is controlled by
anomalous diffusion similar to regime II – see red line in Figure 13. At short time scales (t <
τw) the formation of bridges is dominated by anomalous diffusion (eq. (51)), whereas at
longer times scales (τw < t < τR) it slows down due to the formation of loops (eqs (53)).

(55)

At healing times (t > τb) longer than Rouse time τR additional bridge formation is
contributed from partner exchange process and has the same kinetics as that for self-
adhesion (eq. (39) and the third section of the thick line in Figure 9) – see red line in Figure
13

(56)

Note that in this case the partner exchange process starts to dominate at later times than in
self-adhesion, as the significant fraction of bridges are recovered by the anomalous diffusion
at early stages of healing (eq. (55)).

For waiting time τR < τw < τb the initial concentration of open stickers in the surface layer is

 (regime IV in Figure 11). In this case the initial healing process is controlled
by anomalous diffusion (eq. (51) with τw replaced by τR)
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(57)

and saturates at Rouse time, τR, at the surface density of bridges  (see blue line
in Figure 13). The rest of bridge formation proceeds by partner exchange process similar to
that for regime V that will be described below.

In the case of longer waiting time τb < τw < τeq (regime V in Figure 11) the initial

concentration of stickers in the surface layer is below , but still it is higher than ceq. For
healing times shorter than τw (t < τw) the bridge formation obeys the same law as for

adhesion (see eqs. (33) – (35), and (39)), but with  (eq. (59)) instead of copen as the
current “quasi-equilibrium” concentration of open stickers. The self-healing process,
sketched by the green line in Figure 13, follows direct bonding process (eqs. (33) – (34) at

short times, saturates at Rouse time at  (eq. (35)), and then proceeds by
stitching process (eq. (39))

(58)

where we’ve used the expression for the concentration of open stickers at the end of waiting
regime (see eq. (30))

(59)

Next we consider the healing process in regimes IV and V with long healing time exceeding
the partner exchange time (t > τb) and also longer than the waiting time (t > τw) (see blue
and green lines in Figure 13). The concentration of open stickers in the surface layer σopen(t)
decreases due to both their recombination and diffusion of excess open stickers towards the
bulk. The surface density of excess open stickers decreases with time following the t−1/2 law
(eq. (49)). Such a decrease slows down bridge formation. The rate of bridge formation is

(60)

where dn/dt is the average rate of hops of a given sticker across the interface that leads to
bridge formation

(61)

just as discussed for the self-adhesion process (Section 5). Hence,

(62)
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The surface density of formed bridges is proportional to the product of the time dependent
density of open stickers per unit area and the number of times each open stickers hops across
the interface and forms a bridge. Integrating eq. (62) one obtains the logarithmic increase of
the surface number density of bridges with healing time t in this regime (see slowly
increasing blue and green lines in Figure 13)

(63)

This logarithmically slow increase of the surface number density of bridges (eq. (63)) is
because at long time scales the density of open stickers near the interfaces becomes very
low. To form additional bridges, stickers far from the interface have to migrate towards the
interface through a relatively slow hopping diffusion. At very long time scales the

concentration of excess open stickers decays to the equilibrium value  and the
additional bridge formation proceeds by self-adhesion-like partner exchange process (see
eqs. (39) and (57); the last sections of blue and green curves in Figure 13).

If waiting time τw is longer than τeq (regime VI in Figure 11) the concentration of open
stickers near fractured surfaces equilibrates and bridge formation proceeds at the same rate
as for the self-adhesion case (see Section 5 and thin black line in Figure 13).

Here we briefly summarize the results for kinetics of self-healing. The mechanisms of
bridge formation across the interface between two fractured surfaces of the material involve
different regimes depending on the waiting time τw before they are brought into contact. For
waiting times shorter than equilibration time τeq of open sticker concentration in the bulk,
the acceleration in bridge formation for self-healing compared to self-adhesion is due to
excess non-equilibrium concentration of open stickers near the fractured surface. For
waiting times shorter than the longest relaxation time of a dangling chain (regimes II and III
in Figure 11), the excess of open stickers near the fractured surfaces is higher than the

crossover concentration  (one open sticker per pervaded volume of a dangling
chain). The bridge formation first proceeds through the anomalous diffusion and then (for
regime III in Figure 11) through the partner exchange process (line II in Figure 12 and line
III in Figure 13). If the waiting time is longer than the Rouse time of a dangling chain, the
excess of open stickers near the fractured surfaces is lower than the crossover concentration

. The bridge formation in this case is contributed by multiple partner exchanges – the
stitching mechanism (regimes IV and V in Figure 11 – see blue and green lines IV and V in
Figure 13). For very long waiting times at which the system is equilibrated, the healing
process between the two fractured surfaces is similar to that for self-adhesion (regimes I and
VI in Figure 11 and lines I in Figure 12 and VI in Figure 13).

7. Conclusions
We develop scaling theory of the self-healing process in hybrid reversible/permanent
polymer networks. The hybrid network is modeled by a system consisting of dangling
chains with reversible stickers at one end attached to a permanently cross-linked network at
the other end. These stickers can form reversible bonds with each other enabling self-healing
process. We introduced different time scales to characterize the lifetime of an open sticker in
the hybrid networks. We demonstrate that the renormalized bond lifetime for a reversible
bond to break and for one of the resultant open stickers to find a new partner is much longer
that the bare bond lifetime due to multiple returns of newly-formed open stickers to their old
“partners”. The renormalized bond lifetime determined by the partner exchange process is
the relevant time scale for description of the stress relaxation in reversible networks. The
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anomalous diffusion and partner exchange kinetic regimes are identified as the relaxation
processes in the bulk system after bond strength energy (ε)-jumps.

We analyze two different stages of the self-repair process for two damaged surfaces with
initial excess of open stickers: 1) during waiting period while the broken parts of the
material are kept apart from each other; 2) the kinetics of bridge formation after two broken
pieces of the sample are brought back into contact. The excess of open stickers near the
fractured surfaces decays with waiting time by recombination of these open stickers initially
through their anomalous diffusion and later by hopping diffusion process (partner exchange
between pairs of stickers). If the waiting period is very long, the density of open stickers
near the fractured surfaces is close to that of equilibrium value. Under this situation, the
recovery process of two fractured surfaces is similar to that of two equilibrated (un-
damaged) surfaces, and therefore, termed self-adhesion. The self-healing process applies to
the relatively short waiting period at which most open stickers have not yet found their
partners. Therefore, there is still considerable amount of open stickers near the fractured
surfaces at the moment they are brought into contact. Some of these open stickers that are in
close proximity of fractured surfaces quickly form bridges across the interface through
direct bonding (Figure 14a). After this quick process, the rate of bridge formation slows
down and continues successively through bond partner exchange mechanism (Figure 14b).
The full recovery of bridges will be reached at time τadh much longer than the equilibration
time τeq of open sticker concentration.

We should point out that the “long time-scales” for our modeled networks to equilibrate are
still “very short” compared to those observed in experiments on self-healing supramolecular
rubbers45. Other mechanisms such as connectivity of chains with associative groups
combined with mesoscopic organization45, 58–63 could be of importance in affecting the rate
of self-healing process. Yet, our model captures the molecular picture of self-healing
reversible networks and sheds some light on the mechanism of self-healing process. We
expect that our model can be extended to other self-healing materials with reversible bonds,
such as mesoscopically organized or entangled polymers45, 58–63, as well as to reversible
networks formed by ionic bonds40–47 such as in polyanion/polycation coacervates and in
polyampholyte gels69.
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Appendix: Comparison of Theory with Computer Simulations
Below we describe the hybrid molecular dynamics (MD) – Monte Carlo (MC) simulation
method of a simplified model of dangling chains with reversible bonds at the ends and
compare the simulation results with predictions of our scaling theory.

AI. Hybrid MD/MC simulation method
The simulation protocol is built on the framework of the Kremer-Grest bead-spring model of
N-mers.70 We represent sticky dangling chains attached to a polymer network by effective
chains fixed in space at one end and containing associating groups (stickers) at the other
end. Stickers can form pairwise saturated reversible bonds with open partners – other
stickers. Each dangling chain is a linear polymer containing N monomers. Systems consist
of M chains, so the total number of monomers in a simulation box is M×N. Periodic
boundary conditions are applied in all three directions. All monomers interact via the purely
repulsive truncated and shifted Lennard-Jones (LJ) potential

(A1)

with the cut-off radius rc = 21/6σLJ. Bonds between adjacent monomers on a chain are
modeled using the finitely extensible nonlinear elastic (FENE) potential,

(A2)

with RFENE = 1.5σLJ and .70 This choice of parameters gives an average bond
length b0 ≈ 0.96σLJ corresponding to the minimum of the potential ULJ(r) + UFENE(r). We
express all quantities in units of the LJ bead diameter σLJ, inter-monomer energy εLJ, and
the LJ time,

(A3)

where m is the mass of a monomer. All systems have fixed monomer density 
and temperature in this study is T = 1.0εLJ/kB.

Sticky monomers are identical to regular monomers, except that they can form reversible
bonds. If two sticky monomers are bonded, they interact via the “sticky bond” potential

(A4)

which is a modified form of the standard covalent FENE potential. The only difference
between the sticky and covalent bond potentials is the constant offset UFENE(b0) + ε.71 The
sticky bond potential USB describes the saturated pairwise interaction between sticky
monomers, i.e. a given sticky monomer can form a bond with only one other sticky
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monomer at once. The distance-independent energy offset UFENE(b0) + ε (eq. A4) is used to
control the fraction of close bonds in simulations.

Hybrid MD/MC simulations are performed with this model using an enhanced version of
DL_POLY 2.12 software package.72 Newton’s equations of motion are integrated using the
velocity Verlet method with a time step δtMD = 0.01τLJ. A Langevin thermostat73 is used to
maintain the desired temperature with the damping time τLang = 10 τLJ. All spatial motion of
particles proceeds following the molecular dynamics protocol. Formation and breaking of
sticky bonds is performed using Metropolis Monte Carlo.74 At each MC step, we randomly
select pairs of sticky monomers from all available pairs with the distance between sticky
monomers less than RFENE. If a randomly selected pair is bonded, an attempt is made to
break the bond using the Metropolis criterion. If the energy of the un-bonded state is lower
than the energy of the bonded state (USB > 0) the bond is broken. If USB < 0, the bond is
broken with probability exp[USB(r, ε)/kBT] and is not broken with probability 1 − exp[USB(r,
ε)/kBT]. If the randomly selected pair is unbonded, the bond is formed using Metropolis
criterion. If USB(r, ε) < 0 the bond is always formed and if USB(r, ε) > 0 the bond is formed
with probability exp[−USB(r, ε)/kBT] and is not formed with probability 1 − exp[USB(r, ε)/
kBT]. The process is repeated for all randomly selected pairs. A previously randomly
selected pair (both reacted and unreacted) is not excluded from the list for future MC
updates within the same MC cycle. (Note that in ref. 70 the previously selected pair is
excluded from the list.) If one of the stickers of a randomly selected pair is bonded with
another partner then the pair is left unmodified. Each pair is chosen with frequency ω = 1/
τMC, where τMC is the time interval between two successive MC steps, i.e., on average a
randomly selected pair is chosen once during each MC step. In our simulation, we use τMC =
τLJ.71

The simulation protocol for the self-healing process consists of five steps:

1. Equilibration of the melt and dangling chain attachment. After the equilibration of

the melt (density ) of M linear N-mers in a box with periodic boundary
conditions, one end of each chain is fixed at its current location.

2. Equilibration of the reversible network. The free ends of all chains become sticky –
they are allowed to form reversible bonds with energy ε (eq. A4) and the system is
re-equilibrated.

3. Ideal cut. An “ideal cut” is introduced along the xy-plane through the middle of the
simulation box (see Figure 1). The “ideal cut” breaks associations between the
temporary bonded pairs of dangling chains, called bridges, which are attached at
the opposite sides of the cut surface. Simultaneously the “ideal cut” pushes the
dangling chains and loops to their respective halves using the confining potential
along the z-direction, perpendicular to the plane of the cut

(A5)

with −Lz/2 ≤ z ≤ Lz/2, where Lz is the size of the simulation box in z direction.
During the “ideal cut” the MC updates for the whole system are not carried out.

4. Waiting period. After the “ideal cut” MC updates of sticky bonds are switched on,
but during the waiting period no reversible bonds are allowed to form across this
fracture plane and the confining potential (eq. A5) is kept on.
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5. Healing period. After some waiting time, fractured sections are shifted with respect
to each other by half of the simulation box length along the fracture plane in x-
direction. MC updates for the whole system are switched off during this shift. After
the shift, the confining potential is turned off, the MC updates of reversible bonds
are switched on, and the chains are allowed to interpenetrate and to form sticky
bonds (bridges) across the fractured interface.

The simulation results presented below are obtained by averaging the data for systems with
M = 2000 dangling chains of N = 10 monomers and M = 1000 dangling dimers with N = 2
monomers over 60 trajectories starting from three different initial configurations of
randomly anchored chains formed from an equilibrated melt.

AII. Bond formation in the anomalous diffusion regime
Figure A1 shows the simulation results for energy (ε)-jumps from two different initial states
with bond energies εi = 0 (solid red line) and εi = 4kBT (solid green line) to the same final
state with bond energy εf = 12kBT. The number of monomers per dangling chain is N = 10.
The transient concentration of open stickers in the intermediate and later stages of
equilibration is predicted by our scaling model to be independent of the initial concentration
(see eq. (23)). This prediction is verified by our simulation; as shown in Figure A1, the time
dependence of the concentration of open stickers copen can be fitted by eq. (27):

(A6)

The initial concentrations of open stickers are calculated based on the equilibrated systems

before the energy jumps: for εi = 0kBT, ; for εi = 4kBT,

. The two-parameter fit of eq. (A6) with the final concentration of

open stickers  and constant C = 3.2 ± 0.1 as fitting parameters (dashed
lines in Figure A1) exhibits excellent agreement with simulation data (red and green lines).

One may estimate the value of the constant C by rewriting eq. (A6) in terms of exploration
volume Vexpl

(A7)

in which A describes the fraction of the total volume of the system explored by unreacted
open stickers. If A = 1, the unreacted open stickers explore all the volume of the system;
whereas A < 1 indicates that the open stickers explore only part of the total volume and leave
a fraction 1 − A of the volume unexplored (or explored by other stickers that formed bonds
at earlier time and are no longer open).

The time dependence of the exploration volume is

(A8)
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in which B = 0.3 as determined by separate simulations (not shown). From eqs. (A6), (A7),
and (A8), one obtains the coefficient A = B/C ≈ 0.1, suggesting that only about 10% of the
total system volume is explored by currently open stickers.

This low fraction of the explored volume can be understood by considering reactions
between open stickers that are attached to dangling chains. Each open sticker can be
effectively represented by a sphere growing with time and with radius determined by the
anomalous diffusion of open stickers. Once two spheres touch, they are taken out of the
consideration as they represent a reacted pair. The number of remaining “un-reacted”
spheres decreases with time (with increasing radii r of spheres). The open stickers are
randomly distributed in space, resulting in loose packing of the “currently unreacted”
spheres (Figure A2). Therefore, the ratio A of the explored volume to the total volume is
much smaller than unity. In fact, our simulations (not shown) give A ≈ 0.12 by counting the
density of remaining spheres. This independently estimated value is in reasonable agreement
with the value of 0.1 obtained above (see Figure A1).

AIII. Hopping regime of equilibration for short dangling chains
Simulation results for the bond equilibration between stickers at ends of short dangling
chains (N = 2) following ε-jump from the initial state with no bonds (εi = 0) to the final state
with strong bonds εf = 10kBT are presented in Figure A3. We identify two regimes of bond
formation in this figure: (1) an early regime that does not involve the breakings of already
formed bonds (for 0 < t/τLJ < 50); (2) the second regime (t/τLJ > 50) in which the
recombination of the remaining open stickers requires the breaking of initially formed bonds
and the successive hopping diffusion of open stickers between different bond partners
(Figures 6 & A3).

This “partner exchange” regime starts around the crossover concentration of open stickers

, at which there is one open sticker per pervaded volume of a dangling bond. In the
“partner exchange” regime, the concentration of open stickers decays with time because the
remaining open stickers diffuse to find each other by hopping. The transition of

concentration of open stickers from  to final equilibrated concentration  can be
described by an interpolation formula similar to eq. (27)

(A9)

in which the final concentration of open stickers  is determined
by the simulation data at long times t/τLJ > 2×105. The effective rate constant for hopping

 and the crossover concentration of open stickers

 are determined by the fit of eq. (A9) to data in Figure A3 for t/τLJ >

100 (dashed red line). This value of  can be rationalized by eq. (A7) using the values

A=0.12 and  resulting in  in reasonable agreement
with the fit value.

Since we have mapped the hopping process onto the diffusion-controlled bimolecular
reaction between open stickers (non-compact space exploration in 3D) with capture radius
for this reaction R0 equal to the size of dimers, we may rationalize the rate constant using the

expression from Smoluchowski theory which in our case . Here, we used eq.
(28) for DH and assumed that the scaling factor in it is equal to unity. The capture radius for
dimers N = 2 is equal to average bond length R0 = 1 σLJ. The bare bond lifetime τb =
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3200τLJ is determined from separate numerical simulation at ε = 10kBT (not shown). Using
the values of these parameters one obtains the rate constant for hopping

, which is close to the effective hopping rate constant

 obtained from the fit of eq. (A9) to our simulation data.

AIV. Bond equilibration during the waiting period
The time dependence of the number density of open stickers per unit area, σopen(t), during
the waiting period after the cut is shown in Figure A4 for the dangling chains with N = 10
monomers. The number density of open stickers per unit area of the cut surface is defined as
σopen = Nopen/L2, where L = 28.65σLJ is the size of simulation box, Nopen is the number of
open stickers in the “cut zone” with the width that is equal to the end-to-end distance of
dangling chains: w = R0 = 3.6σLJ for N = 10, which corresponds to the size of the reaction
zone in the anomalous diffusion regime, and L2 is the area of the cut surface.

The time dependence for the number density of open stickers suggests that the excess open
stickers associate within the anomalous diffusion regime. From eqs. (27) and (47) the decay
of open stickers can be described by a crossover formula

(A10)

in which  corresponds to the initial concentration of open stickers
before direct bonding and is determined by our simulation data at time zero. Using eq. (A10)
to fit the data in Figure A4 one obtains two fitting parameters: the final equilibrium surface

density of open stickers  and Cw = 1.6 ± 0.1. Note that this constant
Cw compares favorably with C = 3.2 obtained from eq. (A6). The difference in values of
parameters C and Cw obtained using eqs. (A6) and (A10) might be because our fitting did
not take into account the fast initial decay of open stickers due to direct bonding.

Thus, our hybrid MD/MC simulation verifies some of our scaling predictions presented in
this paper. More systematic computer simulations to test other predictions of the model are
needed.
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Figure A1.
Decay of the concentration of open stickers at the ends of dangling chains with N = 10
monomers following an ε-jump. The concentration of open stickers copen as a function of
time t for equilibration of reversible polymer network from the states with no sticky bonds εi
= 0 (red line), or with lower bond strength 4kBT (green line) to the state with higher bond
strength at εf = 12kBT. The black dashed lines are fits using eq. (A6) with the same two

adjustable parameters: the final concentration of open stickers  and
constant C = 3.2 ± 0.1 for both fits.

Figure A2.
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Reaction between anomalously diffusing open stickers is modeled by growing effective
spheres. (a) Initially the open stickers are not evenly distributed in space; (b) the exploration
volume of open stickers increases with time and the size of the corresponding effective
spheres grows. As spheres contact each other they are considered as pairs of stickers that
form closed bonds and are removed from the consideration; (c) the actual exploration
volume of remaining open stickers is much smaller than the total volume of the system
(~10%).

Figure A3.
Time dependence of the concentration of open stickers at the ends of dangling anchored
dimers equilibrating from the state with all open stickers at bond strength εi = 0 kBT (no
bonds in this state) to the state with low concentrations of open stickers εf = 10kBT (green
line). The dashed red line is the fit of the kinetic profile for εf = 10kBT by the crossover eq.
(A9) in the hopping regime (t > 100τLJ). The fitting parameters are rate constant for

hopping  and crossover density of open stickers

.
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Figure A4.
Decrease of the surface density of open stickers during a waiting period. The time
dependence of number density per unit area of open stickers in the “cut zone” with width R0
= 3.6σLJ after “ideal” cut for N = 10 and ε = 12 kBT (blue line). Red dashed line is the fit of
eq. (A10) to the simulation data with two fitting parameters: the final equilibrium surface

density of open stickers in the “cut zone”  and CW = 1.6 ± 0.1.
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Figure 1.
Polymer network capable of autonomous self-repair. (a) The ends of dangling chains (black
lines) carry groups (green and red circles) that form reversible pairwise associations. (b)
After the material is broken there are many reactive groups (red circles) near the fractured
surfaces. Significant fraction of these groups survives after extensive waiting time. (c) Many
bonds (blue pairs of circles) are formed across the interface as the two fractured surfaces are
brought into contact. Thin grey lines represent permanently cross-linked strands of the
polymer network.
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Figure 2.
Schematic representation of the polymer network. The end monomers of dangling chains are
sticky. (a) For intermediate bond strength kBT ln N < ε < 2kBT ln N there are many open
stickers (red circles) in the volumes (shown as dotted circles) pervaded by dangling chains.
For clarity only several dangling chains with open stickers (red circles) are depicted by
black lines with the rest of dangling chains with open (red) and closed (green) stickers
shown by grey lines. (b) For high bond strength ε > 2kBT ln N there is on average less than
one open sticker in the pervaded volume (depicted by red circles at the ends of black
dangling chains). The closed stickers at the ends of dangling chains (sketched by grey lines)
are shown by green circles. The dim thin grey lines represent permanently cross-linked
network strands.
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Figure 3.
Anomalous diffusion regime for bond formation following an energy (ε)-jump up from a

state with higher concentration of open stickers  to a state with lower concentration

 of open stickers . The red circles are anomalously diffusing open
stickers that form bonds, shown as pairs of green circles as soon as their exploration
volumes (depicted as dotted circles) overlap. The transient “snapshots” of open stickers in

the polymer network are shown at different times t, while  (eq. (24)) and  (eq. (25))
denote the open sticker lifetimes for initial and final equilibrium states. The grey lines
represent dangling chains. The dim thin grey lines depict chemically cross-linked network
chains.
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Figure 4.
Relaxation of open sticker concentration copen(t) in the anomalous diffusion regime of bond
formation in hybrid polymer network (thick lines) following an energy (ε)-jump up of the
bond strength from the state with high initial concentration of open stickers

 to the states with lower final concentrations of open stickers  still

above . The thin line corresponds to equilibration at higher final concentration of open

stickers  and takes shorter time  to equilibrate.
Logarithmic axes.
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Figure 5.
Effective diffusion of open stickers by the partner exchange process. The open sticker at the
end of dangling orange chain “waits” until there is a broken pair of stickers within its
exploration volume and binds with one of them (at the end of blue chain), while the
remaining partner (at the end of black chain) of the former pair becomes the new open
sticker (red circle) but with a shifted center of fluctuations.
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Figure 6.
Kinetic regimes for bond formation in reversible polymer network following an increase of
bond strength. Thick line: from the state with relatively high initial to low final

concentrations of open stickers ; thin line: from the state with relatively
low initial concentration of open stickers to the state with even lower final concentration of

open stickers . The equilibration from initial concentration of open

stickers  to the final concentration of open stickers  corresponds to
the formation of bonds in the mixed regime (thick line): for t < τR by anomalous diffusion
while at longer times t > τb the remaining bonds form in the partner exchange regime.
Logarithmic axes.
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Figure 7.
Equilibration time τeq for the open sticker concentration in the polymer network with
reversible bonding as a function of chain length N for two different bond strength ε1 and ε2
(ε1 < ε2).  and  are the two crossover chain lengths corresponding to different bond
strength ε1 and ε2. The scaling relation between the crossover chain length and the bond
strength N* ≈ exp[ε/(2kBT)] is shown by the dashed line. The hybrid network equilibrates
within anomalous diffusion regime for longer chains N > N* (red lines) with equilibration
time τeq increasing with N. For shorter chains N < N* (green lines) equilibration is in the
hopping regime with equilibration time τeq of open stickers decreasing with N. Logarithmic
axes.
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Figure 8.

Formation of bridges at low concentration of open stickers . (a) Direct
bonding of two open stickers (red circles) across the interface. (b) An open sticker (depicted
by a red circle) hops across the interface (from black to blue chain) by partner exchange,
converting a loop into a bridge, while keeping the number of open stickers unchanged.
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Figure 9.
Bond formation in self-adhesion with high (εh > 2kBT ln N; thick line) and intermediate (kBT
ln N < εl < 2kBT ln N; thin line) bond strength. Both axes are logarithmic.
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Figure 10.
Decrease of the surface number density of open stickers near the cut surface during the
waiting period for high bond strength ε > 2kBT ln N. Both axes are logarithmic.

Stukalin et al. Page 40

Macromolecules. Author manuscript; available in PMC 2014 September 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 11.
The diagram of kinetic regimes for healing processes depending on the waiting time τw after
cut and bond strength ε, which determines the equilibrium number density of open stickers

 (see eq. (9)). The thick solid line represents the bulk equilibration time τeq as function
of bond strength (eq. (26) for kBT ln N < ε < 2kBT ln N and eq. (31) for ε > 2kBT ln N),
whereas the dashed line corresponds to the bond lifetime τb as a function the bond strength
(eq. (10)). Thin solid lines correspond to the boundaries between different regimes. Vertical
axis is logarithmic while the horizontal axis is linear.
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Figure 12.
The recovery of the surface density of bridges with intermediate binding energy kBT ln N < ε
< 2kBT ln N for self-healing process corresponding to regime II in Figure 11 (τw < τeq < τR)
is shown by thick line. The self-healing after long waiting time (τw > τeq) corresponding to
regime I in Figure 11 is similar to self-adhesion and depicted by thin line. Both axes are
logarithmic.
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Figure 13.
Kinetics of bridge formation in self-healing with high binding energy ε > 2kBT ln N. The
thickest red line – regime III in Figure 11 with short waiting time τw,III < τR; thick blue line
– regime IV in Figure 11 with intermediate waiting time τR < τw,IV < τb; green intermediate-
thick line – regime V in Figure 11 with long waiting time τb < τw,V < τeq. Self-adhesion
processes with extremely long waiting time τw < τeq (regime VI in Figure 11) is depicted by
thin black line. The relevant times scales and kinetic regimes are explained in the text. Both
axes are logarithmic.
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Figure 14.
Formation of bridges (pairs of green circles) due to (a) direct bonding of two open stickers
(red circles) across the interface; (b) hopping (partner exchange) of an open sticker (depicted
by a red circle) across the interface by converting a loop into a bridge, while keeping the
number of open stickers unchanged.
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NOTATIONS

Symbols Explanation

b Monomer size

N Number of monomers per dangling chain

copen Concentration (number density) of open stickers

σopen Number of open stickers per unit area in the fractured layers

Equilibrium concentration of open stickers, eqs. 22 and 40

ct Total concentration of sticky groups

ceq(A2) Equilibrium concentration of pairs of sticky groups

Crossover concentration of open stickers

Initial concentration of open stickers

Final concentration of open stickers

Keq Equilibrium constant for reaction

ε Bond strength

εi Initial bond strength

εf Final bond strength

τ0 Monomer relaxation time

τb Bond lifetime, average time two stickers spend in a bonded sate before a successful separation on molecular distance, eq. 10

τR Rouse relaxation time of a dangling chain

τw Waiting time before two fractured surfaces are brought into contact

τopen Average lifetime of open stickers, eq. 15

Time at which the open stickers arrive final equilibrium concentration

Onset time for open stickers start to overlap, eqs. 24 and 46

Renormalized bond lifetime, eq. 16

τadh Adhesion time for high bond strength, eqs. 42 and 44

〈Δr2〉 Mean-square displacement, eqs. 11 and 17

ropen Distance between neighboring open stickers, eq. 14

Vexpl Exploration volume via anomalous diffusion, eqs. 13 and 29

J Average number of returns, eq.18

DH Hopping diffusion coefficient, eq. 28

N* Crossover chain length between anomalous diffusion and hopping regimes

Surface density of bridges at equilibrium, eq. 32
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Symbols Explanation

σb Surface density of bridges, eqs. 33, 34, 35, 36, 39, 43, 45, 50, 51, 53, 54, 55, 56,57, and 58

Plateau density of bridges at the end of anomalous diffusion regime (at healing time t = τw), eq. 52

Rate of bridge formation, eqs. 60 and 62

W Width of the surface layer containing excess of open stickers, eqs. 37 and 48

n Number of crossings across the interface, eq. 38

Average rate of hops of a given sticker across the interface that leads to bridge formation, eq. 61
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