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Abstract

The hazard ratio derived from the Cox model is a commonly used summary statistic to quantify a 

treatment effect with a time-to-event outcome. The proportional hazards assumption of the Cox 

model, however, is frequently violated in practice and many alternative models have been 

proposed in the statistical literature. Unfortunately, the regression coefficients obtained from 

different models are often not directly comparable. To overcome this problem, we propose a 

family of weighted hazard ratio measures that are based on the marginal survival curves or 

marginal hazard functions, and can be estimated using readily available output from various 

modeling approaches. The proposed transformation family includes the transformations 

considered by [18] as special cases. In addition, we propose a novel estimate of the weighted 

hazard ratio based on the maximum departure from the null hypothesis within the transformation 

family, and develop a Kolmogorov–Smirnov type of test statistic based on this estimate. 

Simulation studies show that when the hazard functions of two groups either converge or diverge, 

this new estimate yields a more powerful test than tests based on the individual transformations 

recommended in [18], with a similar magnitude of power loss when the hazards cross. The 

proposed estimates and test statistics are applied to a colorectal cancer clinical trial.

Keywords

Average hazard ratios; Crossing hazards; Non-proportional hazards; Survival analysis; Weighted 
estimation

HHS Public Access
Author manuscript
Lifetime Data Anal. Author manuscript; available in PMC 2016 April 01.

Published in final edited form as:
Lifetime Data Anal. 2015 April ; 21(2): 259–279. doi:10.1007/s10985-014-9301-0.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1 Introduction

Since its publication in 1972, the Cox proportional hazards regression model [4] has been 

widely used in practice for analyzing time-to-event data. Its key assumption is the 

proportional hazards assumption, which is often violated in practice when, for example, the 

effect of the treatment or a prognostic factor changes over time. Several modifications to the 

Cox model have been proposed to relax this assumption, including the stratified Cox model 

[20], the Cox model with artificial time-dependent covariates [20], or the Cox model with 

time-depedent effects based on spline functions [2, 22]. In particular, [7] used smoothing 

splines and allowed time-varying coefficients and some interaction terms; [8] introduced the 

varying-coefficient model, which allows one to fit an additive model with time-varying 

coefficients of the covariates; [9] used cubic spline functions to model the time-by-covariate 

interactions; and [11] used linear splines and their tensor products to estimate the conditional 

log-hazard function. When the proportional hazards assumption is violated, other 

alternatives include separate modeling for the different time periods, weighted estimation for 

Cox regression, or non-Cox type models including the accelerated failure time model, the 

proportional odds model, the parametric log-logistic model, or the generalized odds-rate 

hazards model, among many others [3, 14, 16, 17, 21]. We refer the reader to [18] for a 

detailed discussion and comparison of those approaches.

The problem of the aforementioned approaches is that the regression coefficients based on 

the different models are not always directly comparable. For example, [1] used the Cox 

proportional hazards model, the accelerated failure time model, the generalized Gamma 

regression model, and the log-logistic regression for the same breast cancer dataset. Since 

the estimates obtained from these various models are not directly comparable, the authors 

had to rely completely on p-values for comparisons of the treatment effects, although they 

could obtain the marginal survival curves for all their models. The lack of direct 

comparisons in the estimated regression coefficients is in fact one of the barriers in using 

models other than the Cox model in the medical literature. On the other hand, it is important 

to note that one should never build artificial models in order to force arbitrary comparisons 

of regression coefficients between models. There lies the more important goal of building 

models that are scientifically meaningful for the application at hand, are interpretable, and fit 

the data well. In this sense, the aforementioned models can be quite useful for inference. Our 

intention here is to build such a broad class of models with these primary goals in mind.

Another motivation for our methods comes from recent work on complex data with 

treatment switching and competing risk events [23]. Due to the complexity of the data, the 

method developed in [23] includes multiple modeling components in the estimation 

procedure where each component allows for different coefficients of the treatment effect. 

Therefore, the overall treatment effect cannot be summarized by an individual coefficient in 

any of the sub-models and has to be evaluated using marginal survival functions. In addition 

to the marginal survival functions, it is of interest to compute a hazard ratio estimate to 

summarize the treatment effect so that one can carry out sample size calculations for future 

studies and to compare the hazard ratio estimate to other studies using the same treatment. 

Such a methodology has not been developed or formally studied in the statistical literature. 

In particular, it is not at all clear how to define the concept of a hazard ratio for the purposes 
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of assessing a treatment effect in these situations. To address these needs, we propose a 

family of weighted estimates to quantify the average hazard ratio based on the marginal 

survival curves or marginal hazard functions. The proposed estimates are useful in situations 

when the marginal survival function or marginal hazard function is available from models 

other than the Cox model.

Using a different motivation, [18] proposed three types of average hazard ratios to 

appropriately deal with non-proportional hazards. The paper by [18] also serves as a 

motivation for our work. In this present paper, we define a general and novel class of 

transformations on the hazard ratio to obtain a general measure of the hazard ratio. We 

propose a family of weighted estimates that include the transformations considered by [18] 

as special cases and develop a novel test statistic based on the maximum departure from the 

null hypothesis within the transformation family to test the hypothesis of no association with 

the survial outcome. Note that unlike [18], who extended their transformed average hazard 

ratio measures to weighted estimation for Cox regression in order to adjust for additional 

covariates, we assume here that the marginal survival functions or marginal hazard functions 

used as the input information for our estimates have already been properly adjusted for 

potential confounders, and hence, we do not extend our proposed estimates to adjust for 

additional covariates. An example of this setting, the panitumumab study, is discussed in 

detail in section 4. The methods in [18] were proposed as a solution to extend the Cox 

proportional hazards model when the proportional hazards assumption is violated, while the 

estimates proposed in this paper are intended to bridge together and unify different survival 

modeling techniques.

The rest of this paper is organized as follows. In Section 2, we first introduce the one-

parameter transformation family of weighted estimates. In Section 2.1, we discuss its 

connections with the three types of average hazard ratios described in [18], and in Section 

2.2, we develop a new test statistic to test the hypothesis of no association based on the 

maximum departure from the null hypothesis. We state the assumptions needed for the 

inference procedure and establish asymptotic properties of the estimates in Section 2.3. In 

Section 3, we evaluate the proposed estimates through extensive simulation studies. We 

illustrate the proposed approach with a colorectal cancer clinical trial in Section 4. We 

conclude the paper in Section 5 with some comments and remarks. Proofs of the theorems 

are given in the Appendix.

2 Quantifying Time-Varying Hazards Ratios

2.1 Estimation and Inference

Let h1(t) and h0(t) denote the hazard functions in the treatment arm and control arm, 

respectively. A general methodology for quantifying the average of time-varying hazard 

ratios is given by the following family of transformations,

(1)
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where G(·) is a strictly increasing transformation and Ω(t) is a weight function so that ∫ 

Ω(t)dt = 1. In particular, we allow Ω(t) to depend on the underlying survival functions S1(t) 

and S0(t), and therefore, we write Ω(t) as Ω(t; S0(t), S1(t)).

An interesting one-parameter transformation family containing the three average hazard 

ratios considered in [18] as special cases is

(2)

where a is an unknown parameter. Since Ω(t) is a weight function, the transformation family 

can be written as

(3)

In particular, when a = –1, G(x; –1) = x – 2 yields the identity transformation with

(4)

when a = 0, G(x; 0) = log(x) yields the logarithmic transformation with

(5)

when a = 1, G(x; 1) = x/(1 + x) yields the ratio transformation with

(6)

where h(t) = h0(t) + h1(t).

Note that under the proportional hazards assumption, i.e., when h1(t) = h0(t)eβ, θa = θiden = 

θlog = θratio = eβ. We also note that the identity transformation with a = –1 yields what [18] 

called the ‘simple average hazard ratio’, the logarithmic transformation with a = 0 yields the 

‘geometric average hazard ratio’, and the ratio transformation with a = 1 yields the ‘average 

hazard ratio’, respectively. The ‘average hazard ratio’ estimate was originally defined in 

[10]. We note that the logarithmic and ratio transformations are the only two transformations 

among the one-parameter transformation family in (3) that are symmetric in h0(t) and h1(t). 

In other words, θa(h0/h1) = {θa(h1/h0)}–1 when a = 0 or a = 1.

When the marginal survival functions can be estimated using survival models other than the 

Cox model, for example, as in the context of [23], we can estimate h1(t) and h0(t) using the 

kernel estimates
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where Ŝk(t) is the estimated survival function in treatment arm k and 

for some non-negative and symmetric kernel function K(x) with an being a bandwidth. We 

also estimate Ω(t; S0(t), S1(t)) using Ω(t; Ŝ0(t), Ŝ1(t)). Thus, we obtain the estimator

(7)

We use the notation  to emphasize that this proposed estimator is valid for the general 

transformation G(·), but is not restricted to the one-parameter transformation in (2).

In the case when – log Ŝk(t) is obtained nonparametrically using the Breslow estimator, we 

obtain

where Nik(t) and Yik(t) denote the observed counting process and at-risk process for subject i 

in treatment arm k, respectively. However, in our motivating treatment switching example 

[23], whose details are given in Section 4.2, the Breslow estimator may not be appropriate 

due to the systematic differences in the drop-in patterns and disease susceptibility in the two 

treatment arms; instead, – log Ŝk(t) is obtained from the prediction using the model proposed 

in [23]. Estimation of the asymptotic variance of  is discussed in Section 3.2.

The choice of weight function, Ω(t), reflects the inferential goals in the study. In this paper, 

we focus on a weight function proportional to {S0(t)S1(t)}1/2. Recall that the comparison of 

two survival curves can be done using the log-rank test and its various extensions with 

different weight functions to emphasize the survival differences at early or late follow-up 

periods. In particular, the weight functions of the log-rank, Wilcoxon, Peto-Prentice, 

Fleming-Harrington, and Tarone-Ware tests are proportional to 1, R(t), S(t), S(t)p(1 – S(t))q, 

and , respectively, where R(t) is the number of patients at risk at time t, S(t) is the 

overall survival function at time t, and p and q are predetermined numbers in (0, 1). The 

choice of weight function is a broad research area and has been studied in many papers 

including [13,15,19] among others. Therefore, we only focus on the transformation family 

itself in this paper. However, we do emphasize that similar to the log-rank test and its 

various extensions, the inference may vary depending on the chosen weight, and sometimes 

inferences are sensitive to the choice of weights. To avoid this possible dilemma, the choice 

of weight function should be pre-specified based on the research goals at hand (cf., e.g. [14])

2.2 Testing the Hypothesis of No Association

In this section, we develop a hypothesis testing procedure for testing a value of a in [0,1]. 

We propose a novel estimate of θa based on the maximum departure from the null 

hypothesis. Since the proposed transformation class is monotonic for a in [0,1], we can also 

develop asymptotic theory for the estimate of θa, and hence obtain the asymptotic 

distribution of the test statistic. Recall that a = 0 corresponds to the logarithmic 
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transformation, and a = 1 corresponds to the ratio transformation. Although, a = –1 is an 

interesting and interpretable transformation, the theory given below does not cover this case.

We define the estimate based on the maximum departure from the null as , where

(8)

and

(9)

Another motivation for restricting the parameter a to be in [0, 1] is that estimates with a < 0 

tend to be numerically unstable and estimates with a > 1 impose large weights on local 

regions. The test statistic based on the estimate with maximum departure from the null is a 

Kolmogorov–Smirnov type test statistic, which is given by

(10)

Theoretical properties of the maximum departure-based estimate and its corresponding test 

statistic are established in Section 2.3. It is difficult to solve for the a that maximizes 

explicitly. To calculate  and Tsup, we recommend a grid search on a ∈ [0, 1]. Many 

resampling approaches, like the bootstrap, can be used to construct confidence intervals for 

 and also to compute p-values.

2.3 Asymptotic Results

Under the conditions given in the Appendix, we establish consistency of  and derive its 

asymptotic distribution. The following theorem states our main result regarding the 

asymptotic behavior of .

Theorem 1 Under Conditions (C.1)–(C.5),  is consistent and  converges in 

distribution to a mean-zero normal distribution N(0, σ2), where σ2 is defined in (11).

We let

and H = (G–1)′{∫ Q0(t)Q1(t)dt}. As shown in the Appendix,

(11)

where
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We can use expression (11) to estimate σ2 and to conduct inference on . First, we replace 

hk0 and Sk0 by their corresponding estimates to obtain Âk(t) and B̂
k(t). Then, the asymptotic 

variance of  can be estimated by the sample variance of

(12)

where  are resampled statistics for (Ŝ1, Ŝ0), for example, by using a bootstrap sample 

or other resampling techniques. The derivation of equation (12) is given in the Appendix. 

Since Âk and B̂
k are uniformly consistent for Ak and Bk, the consistency of this variance 

estimator follows if  actually converge to the true distribution. In other words, we 

assume condition (C.6).

An alternative procedure for obtaining the asymptotic variance of  is to adopt a bootstrap 

method and estimate θG directly in each bootstrap sample. The validity of using the 

bootstrap for variance estimation follows by the results of [12] Chapter 10. The full 

development of the asymptotic properties of the bootstrapped variance estimate will require 

a new paper and detract from the focus here. Therefore, we will investigate it in future work. 

Our experience shows that the bootstrap appears to be more accurate with small sample 

sizes and, therefore, will be used in the subsequent numerical studies.

For the class of transformation Ga(x) as defined in (2) with a ∈ [–1, 1]. Theorem 2 shows 

that the transformation that yields maximum local power is a = 1.

Theorem 2 Under Conditions (C.1)–(C.5), for the transformation family in (2) with a ∈ [–1, 

1],  achieves its maximum local power at a = 1, the ratio transformation, when the weight 

function Ω(t) is independent of S0(t) and S1(t).

Theorem 2 supports the recommendation made by [18] in using the ratio transformation, that 

is, the “average hazard ratio” estimator.

Theorem 3 Under Conditions (C.1)–(C.5) and the null hypothesis of equal hazards, 

converges in distribution to , where  is a Gaussian process with mean 0.

The proofs of the Lemma and the Theorems are given in the Appendix.
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3 Simulation Studies

3.1 Simulation Study I

We examine the numerical performance of the estimates including the estimate based on the 

maximum departure from the null and the estimates with the identity, logarithmic, and ratio 

transformations. These estimates were compared to the estimates of the Cox proportional 

hazards model. To do this, we carried out a simulation study assuming h0(t) = 1 and (a) h1(t) 

= h0(t) (identical hazards), (b) h1(t)=1·2h0(t) (proportional hazards), (c) h1(t)=0·25exp(2t)

(crossing hazards), (d) h1(t) = 0·5+0·9/(1+0·5t)}h0(t) (converging hazards), and (e) 

h1(t)=(1+0·45t)h0(t) (diverging hazards).· The true underlying hazard and survival functions 

of the aforementioned scenarios are plotted in Figure 1. The simulated survival data are then 

censored by τ=1·5, resulting in censoring rates of 24%, 21%, 18·6%, 21·3%, and 19·6%, 

respectively, for scenarios (a)-(e) in Figure 1. In the simulation and the application, we set 

the bandwidth to be , where  and IQR are the standard 

deviation and the inter-quartile range of the variable in the kernel estimation, respectively. 

More discussion on choosing the bandwidth can be found in [5] Chapter 5.

In simulation study I, we first consider the weight function Ω(t) ∝ {S0(t)S1(t)}1/2, and 

sample sizes of n = 800 and n = 400 with 1000 replicates. Bootstrap samples of 1000 are 

used to construct 95% confidence intervals for the weighted hazard ratio estimates and the 

maximum departure-based estimate. In particular, the 95% confidence intervals of the 

weighted hazard ratio estimates were based on the normal approximation according to 

Theorem 1. For the maximum departure-based estimate, the normal approximation is not 

valid and, therefore, we constructed the 95% confidence interval using the 2.5% and 97.5% 

quantiles of the bootstrap samples. For all the estimates, we show the true value calculated 

from the corresponding formulae, the average bias of the parameter estimates, the sample 

standard deviation of the estimates, the average of the standard errors, the coverage 

probability of the 95% confidence interval, the type I error under identical hazards, and the 

power to reject the null hypothesis of identical hazards under various alternatives. Since the 

calculation of the p-value for  involves resampling, to avoid intensive numerical 

computation, the grid search for a was conducted in the interval of [0, 1] with a step size of 

0·1 as in Table 1. We also conducted the simulation with a finer grid search and the 

differences in the results are negligible. The results in Table 1 with n = 800 and Table 2 with 

n = 400 show that all the methods provide estimates with small biases and 95% confidence 

intervals with nominal coverage rates. For the individual weighted estimates, when the 

alternative is crossing hazards, the ratio and logarithmic transformations yield substantial 

power gains compared to the identity transformation and the Cox model. For example, 86% 

and 82% verses 6% and 5%, respectively, for n = 800. When the alternatives are 

proportional but not unit, or converging/diverging hazards, the ratio and logarithmic 

transformations yield little loss of power compared to the identity transformation and the 

Cox model. For example, when n = 800, the biggest loss was observed for converging 

hazards where the powers of the ratio and logarithmic transformations are 58% and 57%, 

respectively, compared to 63% and 66% powers for the identity transformation and the Cox 

model. When comparing the maximum departure-based estimate to the weighted hazard 

ratio estimates based on individual transformations, the test based on the maximum 
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departure-based estimate is more powerful than the tests based on individual transformations 

when the hazard functions of the two groups either cross or diverge, with a similar 

magnitude of power loss when the hazards cross. The advantages of the maximum 

departure-based approach are in balance with its potential disadvantages and its properties 

depend on the shape of the underlying changes in the hazard ratio functions over time.

3.2 Simulation Study II

In the second simulation study, we consider n = 400 and take the weight function to be 

proportional to 1 in order to evaluate the influence of the weight function in comparing the 

maximum departure-based estimate to the estimates based on individual transformations. 

The rest of the simulation setup is the same as simulation study I. In comparing the results in 

Table 3 and Table 2, we see that the choice of weight functions has a great influence on the 

estimates as studied in [13, 15, 19]. For example, in Table 2, we were surprised to observe 

superior power of  over the standard Cox model under proportional hazards. This is no 

longer observed in Table 3 when the weight function is proportional to 1. Furthermore, for 

the weight function proportional to 1, comparisons with the Cox model, identity 

transformation, logarithmic transformation, and ratio transformation are not as clear as the 

weight ∝ {S0(t)S1(t)}1/2. However, when comparing the maximum departure-based estimate 

to the estimates based on the logarithmic and ratio transformations, the maximum departure-

based estimate outperforms the other two estimates in terms of power in all settings.

4 Panitumumab Study

As mentioned in Section 1, [23] presented a novel class of semi-parametric semi-competing 

risks transition survival models to accommodate partial treatment crossover at the 

progression time for assessing the treatment effect on overall survival in a phase III 

colorectal cancer clinical trial. In this phase III multi-center clinical trial, overall survival is 

the primary endpoint and the patients were randomized to receive panitumumab plus best 

supportive care or best supportive care alone. During the trial, the patients receiving best 

supportive care alone were allowed to switch to the experimental treatment if they 

experience disease progression. In order to properly adjust for treatment switching, [23] 

proposed a statistical model with four submodels: a logistic regression model for the 

distribution of the progression status, a proportional hazards model for time to death for the 

no-progression population, a proportional hazards model for time to progression in the 

progression population, and another proportional hazards model for time to death in the 

progression population.

To describe the model in detail, we need the following notation: U is a binary variable 

denoting the lifetime disease progression status of the subjects, with U = 1 indicating the 

subject has disease progression before death and 0 otherwise; TD denotes the time to death 

for the no-progression subjects with U = 0; for the other subjects with U = 1, TU denotes 

their time to disease progression and G denotes the time from disease progression to death. 

Let hD(t|·), hU(t|·), and hG(t|·) be the conditional hazard function of TD, TU, and TG, 

correspondingly, given the covariates. The following four sub-models are used to model the 

complex data:
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(13)

where R = 1 is the treatment indicator, X denotes the baseline covariates, V is the treatment 

switching indicator, Z contains the covariates collected at baseline and at disease 

progression, h0(t), h1(t), and h2(t) are the unknown baseline hazard functions, and α's, β's, 

and γ's are unknown regression coefficients. The marginal survival function 

, where  is the potential survival time when a subject receives 

treatment a and never switches treatment, can be written as

(14)

Therefore, Sa(t) can be expressed in terms of the parameters in sub-models (13) and the 

distributions of X and Z given (X, U = 1, R). Hence, by plugging the estimates of these 

parameters into the above expression, we can estimate Sa(t), and thus obtain the causal effect 

of treatment. We refer the reader to [23] for the detailed estimation algorithm and inference 

procedure for this complex model.

In this paper, we are interested in quantifying the hazard ratio for the subset of patients with 

the wild type K-Ras gene. In the panitumumab study, there are 238 patients with the wild 

type K-Ras gene, among which 35 patients died without disease progression, 177 had 

disease progression and died later, 19 had disease progression and censored without death, 

and 7 were censored without disease progression or death. In the submodels for the time of 

disease progression and time of death, we controlled for all the baseline covariates including 

age in years at screening, baseline performance status (0 or 1 versus ≥ 2), primary tumor 

diagnosis type (rectal versus colon), gender, and region at two levels (western Europe and 

the rest of the world). The covariates in the submodel for time from disease progression to 

death include progonostic factors for the switching decision in addition to the baseline 

covariates. The prognostic factors include progression time, best tumor response (partial 

response or stable disease versus progressive disease) according to tumor response 

assessments based on a central radiologist's review, last performance status, and grade 2 or 

above adverse events.

In order to estimate the hazard ratio of best supportive care alone versus panitumumab plus 

best supportive care, we applied the pre-specified weight function Ω(t) ∝ {S0(t)S1(t)}1/2 to 

the maximum departure-based estimate as well as the estimates with the logarithmic and 

ratio transformations. The marginal survival functions Sa(t) were used in the calculation. 

The estimates, standard errors, 95% confidence intervals, and p-values based on 1000 

bootstrap samples were reported in Table 4. Note that the bootstrap sampling procedure was 

conducted on the original dataset and the marginal survival curves were constructed for each 

bootstrap sample. Therefore, the reported 95% confidence intervals and p-values have 
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incorporated the variation associated with the estimation of the marginal survival functions. 

Furthermore, due to the complexity of the data, survival models such as the Cox 

proportional hazards model or weighted Cox proportional hazards model are no longer valid, 

and hence, were not included in Table 4. As shown in the table, when comparing the best 

supportive care to panitumub plus best supportive care, the hazard ratio estimates based on 

different transformations are very stable, ranging from 2.90 to 2.92, with highly significant 

p-values. Judging from the p-values, the ratio-transformed estimate and the maximum 

departure-based estimate are a little more powerful than the logarithm-transformed estimate, 

although the difference may be of limited practical relevance in this study (as both are 

highly significant).

5 Concluding Remarks

We have proposed a class of transformations to quantify the average hazard ratio and 

established asymptotic properties of their estimates. Our numerical studies results suggested 

that when the weight function is proportional to {S0(t)S1(t)}1/2, the ratio transformation 

tended to provide a large power in distinguishing between two treatment arms compared to 

the identity and logarithmic transformations. We also demonstrated in Theorem 2 that ratio 

transformation achieves the maximum local power within the transformation family with a 

∈ [–1, 1] when the weight function is independent of S0(t) and S1(t). Unfortunately, 

extending Theorem 2 to a general situation is challenging and will require much more 

development to fully investigate it. We will investigate this issue in the future. Note that 

ratio transformation estimator was also the recommendation of [18]. One direct implication 

is that when the hazard ratio is not expected to be constant, a powerful clinical trial design 

may be based on the ratio transformation of the hazard ratios. Furthermore, we have also 

developed a novel test statistic to test the hypothesis of no association based on the 

maximum departure from the null hypothesis within the transformation family. Simulation 

studies show that when the hazard functions of the two groups either converge or diverge, 

the proposed test statistic is more powerful than the test statistic based on the individual 

transformations recommended in [18], with a similar magnitude of power loss when the 

hazards cross, demonstrating the importance of correctly identifying the shape of the time-

varying hazard ratio function for estimation.

We have only presented a class of transformations for G(x), but clearly there are infinitely 

many choices of G(x). In practice, choosing G(x) should not only depend on the resulting 

statistical power under the alternative, but it also needs to yield a good interpretation of the 

parameters. For reasons of interpretability, we recommend using the ratio-transformed 

estimator when estimation is of primary interest, and to use the Kolmogorov-Smirnov type 

test statistic Tsup when hypothesis testing is of primary interest.

Although we considered a class of transformations to quantify the average hazard ratios, the 

same concept can be generalized to quantify many other time-varying comparison measures. 

These include time-varying intensities for recurrent events, time varying treatment effects 

over time, and time-sensitive diagnostic measures. Future work will investigate which 

transformations are appropriate for such comparison measures.
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Appendix

We state here the conditions needed to establish consistency of  and to derive its 

asymptotic distribution.

(C.1) G is thrice-continuously differentiable and is strictly increasing. Additionally, Ω(t; 

s, v) is twice-continuously differentiable in (t, s, v).

(C.2)  converges in distribution to a bivariate mean-zero 

Gaussian process, denoted by  in BV[0, τ] × BV[0, τ], where BV[0, τ] denotes 

the spaces consisting of functions that have finite total variation in [0, τ] and Sk0 is the 

true survival function in treatment arm k. Here, τ is the study duration.

(C.3) Sk0 is strictly decreasing and thrice-continuously differentiable in [0, τ]. 

Moreover, Sk0(τ) > 0.

(C.4) The kernel function K(x) is differentiable, symmetric with respect to 0, and has 

compact support on [–1, 1].

(C.5) The bandwidth an satisfies  and .

(C.6) Conditional on the data,  converges in distribution to 

 where  are resampled statistics for (Ŝ1, Ŝ0).

Condition (C.6) is an assumption regarding the consistency and asymptotic distribution of 

the estimates generated by the boostrap procedure. Chapter 20 of [12] validates this 

assumption for several survival modeling techniques including the Cox proportional hazards 

model.

Lemma 1 Under Conditions (C.1)–(C.5), supt∈[0,τ] |ĥk(t) – hk0(t)| → p 0, k = 0, 1, where hk0 

denotes the true hazard function in treatment arm k.

Proof (of Lemma 1) First, we note that . By carrying 

out an integration by parts, we can rewrite ĥk(t) as . 

Moreover, we can continuously extend defining Ŝk and Sk0 to [–an, τ + an] so that (C.2) still 

holds. Thus, (C.2) implies supt∈[–an, τ+an] |Ŝk(t) – Sk0(t)| = Op(n–1/2). (C.3) further gives 

supt∈[–an, τ+an] |log Ŝk(t) – Sk0(t)| = Op(n–1/2). Therefore,

goes to 0 by condition (C.5). This proves the lemma.

Proof (of Theorem 1) Using Lemma 1 and noting inft∈[0,τ] h0(t) > 0, we obtain that 

uniformly in t ∈ [0, τ], as n → ∞,  and Ω{t; Ŝ0(t), Ŝ1(t)}. →p Ω{t; 

S00(t), S10(t)}. Thus, it is clear that . This establishes consistency.
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To derive the asymptotic distribution of , by the mean-value theorem, we obtain

Using the mean-value theorem again, we have

where op(1) is a random element converging in probability to zero uniformly in t ∈ [0, τ].

For convenience, we denote , 

, and 

. Then, after combining the above results, we obtain

The last two terms on the right-hand side both take the form n1/2 ∫ [A(t) + op(1)](Ŝk(t) – 

Sk0(t))dt for some bounded function A(t) so that they converge to a normal distribution by 

condition (C.2). Thus, we only focus on the first two terms, namely (I) and (II), on the right-

hand side. Using the definition of ĥ1(t), we can rewrite the first term (I) as
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Since

and , (I) becomes

which is also equal to

However, since

it follows that

Similarly, we obtain

Thus, we have

(15)
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where , , 

B0(t) = HQ0(t)Q2(t), and B1(t) = HQ0(t)Q3(t). Hence, Theorem 1 follows from condition (C.

2).

Proof (of Theorem 2) Let the weight function Ω(t) be independent of S0(t) and S1(t) and 

satisfy ∫ Ω(t)dt = 1. We write the hazard function of the treatment arm as h1(t)/h0(t) = 

1+ελ(t), where λ(t) is a function of t. When h1(t) is in the neighborhood of the null 

hypothesis with h1(t) = h0(t), i.e., ε is close to zero, the Taylor's series expansion of θa is 

given by

Moreover, according to (15), the variance of  around the null hypothesis can be written as 

, where B is a positive value independent of a. Therefore, the local power of θa 

can be written as

For the transformation family in (2) with a ∈ [–1, 1], we can optimize the local power by 

maximizing  for a ∈ [–1, 1], resulting in an optimal value at 

a = 1.

When ∫ Ω(t)λ(t)dt = 0 for the crossing hazards case, we need a higher order Taylor's series 

expansion, given by
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In this case, the local power of θa is given by

where . Again, this local power is maximized at a = 1.

Proof (of Theorem 3) The proof is based on the same linearization given in equation (15) but 

on the right hand side of equation (15), expressions A1(t), A0(t), B1(t), and B0(t) are indexed 

by a ∈ [0, 1]. Additionally, op(1) on the right hand side of (15) converges in probability to 

zero uniformly in a. It is easy to check from the explicit expressions of A1, A0, B1, B0 that 

they all belong to a bounded set in BV[0, τ] for any a ∈ [0, 1]. Thus, condition (C.2) and the 

results in [6] yield that , as a stochastic process indexed by a ∈ [0, 1], 

converges weakly to a Gaussian process. Theorem 3 thus follows from the continuity 

theorem.
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Fig. 1. 
Survival and hazard functions of two treatments with five typical treatment effects. The 

curves in the first row are the true hazard functions and those in the second row are the true 

survival functions. In each panel, the solid curve is the true hazard/survival function in the 

control arm and the dashed curve is the true hazard/survival function in the treatment arm. 

The hazard function of the control arm is defined by a constant hazard h0(t) = 1 in each 

column. The hazard functions for the treatment arm are characterized by (a) h1(t) = h0(t) as 

identical hazards, by (b) h1(t) = 1 · 2h0(t) as proportional hazards, by (c) h1(t) = 0 · 25 

exp(2t)h0(t) as crossing hazards, by (d) h1(t) = {0 · 5 + 0 · 9/(1 + 0 · 5t)}h0(t) as converging 

hazards, and by (e) h1(t) = (1 + 0 · 45t)h0(t) as diverging hazards.
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Table 1

Simulation Study I with Ω(t) ∝ {S0(t)S1(t)}1/2 and sample size n = 800.

Method TRUE BIAS SD ESE CP% Type I

Figure 1 (a) Identical Hazards; CR=24%

Cox 1·00 5 8·2 8·2 95 5

Identity (a = –1) 1·00 15 8·4 8·7 96 4

Logarithm (a = 0) 1·00 5 8·3 8·5 96 4

Ratio (a = 1) 1·00 5 8·3 8·4 96 4

θ̂sup
1·00 5 8·3 8·5 95 5

Method TRUE BIAS SD ESE CP% Power

Figure 1 (b) Proportional Hazards; CR=21%

Cox 1·20 6 9·7 9·6 94 58

Identity (a = –1) 1·20 19 10·0 10·4 96 57

Logarithm (a = 0) 1·20 7 9·9 10·1 96 52

Ratio (a = 1) 1·20 6 9·8 10·0 96 52

θ̂sup
1·20 7 9·9 10·1 95 62

Figure 1 (c) Crossing Hazards; CR=18·6%

Cox 1·00 6 8·1 8·0 95 5

Identity (a = –1) 1·05 33 10·7 11·1 97 6

Logarithm (a = 0) 0·76 29 7·2 7·0 93 82

Ratio (a = 1) 0·77 25 6·4 6·2 94 86

θ̂sup
0·76 28 7·1 6·8 92 81

Figure 1 (d) Converging Hazards; CR=21·3%

Cox 1·21 21 9·9 9·8 95 66

Identity (a = –1) 1·22 15 10·2 10·5 96 63

Logarithm (a = 0) 1·22 3 10·1 10·4 96 57

Ratio (a = 1) 1·22 3 10·0 10·2 96 58

θ̂sup
1·22 4 10·1 10·4 95 65

Figure 1 (e) Diverging Hazards; CR=19·6%

Cox 1·24 5 10·0 9·9 94 72

Identity (a = –1) 1·25 24 10·4 10·9 96 73

Logarithm (a = 0) 1·23 12 10·0 10·3 96 68

Ratio (a = 1) 1·23 11 9·9 10·2 96 69

θ̂sup
1·23 13 10·0 10·4 95 75

“TRUE” is the true value of θa calculated from the corresponding formulae; “BIAS” (×1000) is the average bias of the parameter estimates; “SD” 

(×100) is the sample standard deviation of the estimates; “ESE” (×100) is the average of the standard error estimates; “CP%” is the coverage 
probability of the 95% confidence interval based on a normal approximation; “Type I” is the type I error under the null hypothesis of identical 
hazards; “Power”(×100) is the power to reject the null hypothesis of identical hazards; “CR” is the censoring rate.

Lifetime Data Anal. Author manuscript; available in PMC 2016 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

CHEN et al. Page 20

Table 2

Simulation Study I with Ω(t) ∝ {S0(t)S1(t)}1/2 and sample size n = 400. Notation is the same as Table 1.

Method TRUE BIAS SD ESE CP% Type I

Figure 1 (a) Identical Hazards; CR=24%

Cox 1·00 8 11·3 11·6 96 4

Identity (a = –1) 1·00 25 11·7 12·8 97 3

Logarithm (a = 0) 1·00 7 11·4 12·2 97 4

Ratio (a = 1) 1·00 7 11·3 12·0 97 4

θ̂sup
1·00 7 11·4 12·2 96 5

Method TRUE BIAS SD ESE CP% Power

Figure 1 (b) Proportional Hazards; CR=21%

Cox 1·20 10 13·4 13·7 96 27

Identity (a = –1) 1·20 30 13·7 15·3 97 23

Logarithm (a = 0) 1·20 8 13·4 14·5 97 21

Ratio (a = 1) 1·20 7 13·3 14·3 97 22

θ̂sup
1·20 9 13·4 14·5 97 33

Figure 1 (c) Crossing Hazards; CR=18·6%

Cox 1·00 13 11·5 11·4 95 5

Identity (a = –1) 1·05 62 15·4 17·5 97 3

Logarithm (a = 0) 0·75 43 10·0 10·1 95 52

Ratio (a = 1) 0·77 38 8·8 8·9 95 58

θ̂sup
0·76 41 9·8 10·0 93 49

Figure 1 (d) Converging Hazards; CR=21·3%

Cox 1·21 26 13·7 14·0 96 34

Identity (a = –1) 1·22 26 14·0 15·4 97 28

Logarithm (a = 0) 1·22 5 13·7 14·9 97 23

Ratio (a = 1) 1·22 3 13·5 14·6 97 25

θ̂sup
1·22 5 13·7 14·8 96 36

Figure 1 (e) Diverging Hazards; CR=19·6%

Cox 1·24 9 13·7 14·0 95 39

Identity (a = –1) 1·25 38 14·3 16·2 98 36

Logarithm (a = 0) 1·23 16 13·7 14·9 97 34

Ratio (a = 1) 1·23 14 13·5 14·5 97 34

θ̂sup
1·23 17 13·6 14·9 97 46
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Table 3

Simulation Study II with Ω(t) ∝ 1 and sample size n = 400. Notation is the same as Table 1.

Method TRUE BIAS SD ESE CP% Type I

Figure 1 (a) Identical Hazards; CR=24%

Cox 1·00 8 11·3 11·6 96 4

Identity (a = –1) 1·00 31 13·5 14·9 97 3

Logarithm (a = 0) 1·00 8 12·9 13·7 96 4

Ratio (a = 1) 1·00 7 12·7 13·3 95 5

θ̂sup
1·23 8 12·9 13·7 95 5

Method TRUE BIAS SD ESE CP% Power

Figure 1 (b) Proportional Hazards; CR=21%

Cox 1·20 10 13·4 13·7 96 27

Identity (a = –1) 1·20 37 16·2 18·3 98 12

Logarithm (a = 0) 1·20 9 15·5 16·7 96 14

Ratio (a = 1) 1·20 6 15·2 16·2 96 15

θ̂sup
1·20 9 15·5 16·7 96 25

Figure 1 (c) Crossing Hazards; CR=18·6%

Cox 1·00 13 11·5 11·4 95 5

Identity (a = –1) 1·59 79 31·4 36·4 97 44

Logarithm (a = 0) 1·12 48 14·3 15·2 97 12

Ratio (a = 1) 1·10 38 11·5 12·0 97 15

θ̂sup
1·12 50 14·3 15v2 95 22

Figure 1 (d) Converging Hazards; CR=21·3%

Cox 1·21 26 13·7 14·0 96 34

Identity (a = –1) 1·17 36 15·6 17·4 97 10

Logarithm (a = 0) 1·17 9 15·5 16·5 96 9

Ratio (a = 1) 1·17 8 15·3 16·0 95 10

θ̂sup
1·17 9 15·5 16·5 95 18

Figure 1 (e) Diverging Hazards; CR=19·6%

Cox 1·24 9 13·7 14·0 95 39

Identity (a = –1) 1·34 46 19·2 21·9 98 32

Logarithm (a = 0) 1·32 13 16·7 18·2 96 41

Ratio (a = 1) 1·32 8 16·0 17·4 96 44

θ̂sup
1·32 13 16·6 18·2 96 58
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Table 4

The estimates of θ(h0/h1; a) in the Panitumumab Study with the outcome of overall survival and weight 

function proportional to {S0(t)S1(t)}1/2.

Transformation Estimate SD 95% CI P-value

Logarithm 2·90 0·84 (1·48, 4·73) 0·008

Ratio 2·91 0·81 (1·61, 4·69) < 0·001

θ̂sup
2·92 0·84 (1·61, 4·80) < 0·001
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