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Abstract
Motivated from a colorectal cancer study, we propose a class of frailty semi-competing risks
survival models to account for the dependence between disease progression time, survival time,
and treatment switching. Properties of the proposed models are examined and an efficient Gibbs
sampling algorithm using the collapsed Gibbs technique is developed. A Bayesian procedure for
assessing the treatment effect is also proposed. The Deviance Information Criterion (DIC) with an
appropriate deviance function and Logarithm of the Pseudomarginal Likelihood (LPML) are
constructed for model comparison. A simulation study is conducted to examine the empirical
performance of DIC and LPML and as well as the posterior estimates. The proposed method is
further applied to analyze data from a colorectal cancer study.
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1 Introduction
In chronic disease or cancer studies and clinical trials, it is very common to have both
terminating events and nonterminating events in the data. This type of situation is referred as
semi-competing risks, in which an event time can be censored by another event time but not
vice versa. A terminating event potentially censors a nonterminating event, but the
nonterminating event does not prevent subsequent observation of the terminating event. An
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example of this is the colorectal cancer clinical trial that we examine here, called the
panitumumab 408 study, which was conducted by Amgen Inc. (see Section 5). In this study,
disease progression is a nonterminating event, death is a terminating event, and disease
progression can be censored by death but not vice-versa. In addition to semi-competing
risks, treatment switching may also occur in clinical trials. In such trials, patients in the
control arm who experience an intermediate event, such as disease progression, may begin
taking the experimental treatment. In the panitumumab 408 study, there were a substantial
proportion of patients in the control arm who switched treatment after disease progression
(see Section 5). As discussed in Marcus and Gibbons (2001), an intent-to-treat (ITT)
analysis leads to attenuated treatment effect estimates, and thus one must properly model the
data accommodating this switching effect and then appropriately estimate the treatment
effect.

In semi-competing risks data, there are two major issues: dependent censoring and
identifiability. In order to deal with these issues, several modeling and inference approaches
have been developed. One major approach is to model the joint distribution of TD and TE,
where TD denotes the time to terminating event and TE denotes the time to nonterminating
event. Day and Bryant (1997) used frailty models for the joint survival function using a
relevant censoring process. Later, Fine et al. (2001) adopted this model and proposed a
novel estimator for the marginal distribution of TE based on a bivariate location-shift model
with a completely unspecified underlying distribution for TD and TE. Although this method
is appropriate for modeling one recurrent event taking into account dependent censoring, it
cannot be applied to more than two recurrent events. Furthermore, various types of copula
models have been applied for modeling the joint distribution of (TE, TD) (Wang, 2003;
Ghosh, 2006; Peng and Fine, 2007). Another approach is to model the gap time TG between
TD and TE (Mandel, 2010). Nonparametric estimation of the gap time distribution and
regression methods for gap time hazard functions have been developed. A third approach is
similar to the above gap time model. In addition to modeling TE and TG, another event time

 is introduced, which denotes the terminating event that happens without the
nonterminating event TE. Shen and Thall (1998) used such a model for obtaining the

marginal distributions of TE, TG and . They assumed that the distributions of TE and 
are mutually independent. For the bivariate distribution of TE and TG, they used a bivariate
generalized von Morgenstern distribution, which characterizes the positive or negative
association between these two times using a single parameter. A conditional model is also
developed (Zeng et al., 2012). Instead of modeling the joint distribution of TE and TG, a
conditional model of TG given TE is used. Multistate modeling is another approach for
survival data with semi-competing risks, in which no event, nonterminating event, and
terminating event can be viewed as the three states in a multistate process. The focus of
multistate modeling is mainly on the transition probabilities between different states. Aalen-
Johansen estimators (Aalen et al., 1978; Andersen et al., 1993) can be used to estimate these
transition probabilities. However, this approach does not provide much information on the
dependence structure between the time to nonterminating event and the time to terminating
event. Except for Zeng et al. (2012), most of the aforementioned articles do not directly deal
with both semi-competing risks and treatment switching.

In this paper, we introduce a Bayesian frailty model for survival data with semi-competing
risks in the presence of partial treatment switching (i.e., not every subject in the control arm
switched to active treatment). In the frequentist inference, the Monte Carlo EM (MCEM)
algorithm is often used to obtain the maximum likelihood estimates in the presence of the
unobserved frailty variables. However, the MCEM algorithm may fail to converge when
fitting a semi-competing risks frailty model with unknown parameters in the frailty
distribution since the estimates of these unknown parameters are unstable. To overcome this
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challenging computational issue, we develop an efficient Gibbs sampling algorithm via the
introduction of latent variables, reparameterization, and the collopsed Gibbs sampler. The
Bayesian framework also allows us to characterize the conditions for model identifiability
by examining posterior propriety. In addition, to appropriately estimate the treatment effect,
we extend the method of Zeng et al. (2012) to derive the predictive survival function with
partial treatment switching under the semi-competing risks frailty model and carry out
Bayesian inference on this quantity without resorting to asymptotics.

The rest of the paper is organized as follows. Section 2 presents a detailed development of
the semi-competing risks model via a gamma frailty including explicit expressions for the
likelihood function based on the observed data. In Section 3, we characterize posterior
propriety conditions under this complex model, provide the Bayesian formulation of the
predictive survival function with partial treatment switching, develop an efficient Gibbs
sampling algorithm, and introduce two Bayesian model comparison criteria. A simulation
study is carried out to examine the empirical performance of the posterior estimates and
Bayesian model criteria in Section 4, and a detailed analysis of a subset of the data from the
panitumumab 408 study is presented in Section 5. We conclude the paper with a brief
discussion in Section 6. The proofs of all theorems and detailed derivations of the
computational development are given in the Appendices.

2 The Semi-Competing Risks Frailty Models
2.1 Models

To introduce the proposed model, we use the following notation. As motivated from the
panitumumab 408 study, we consider disease progression as a nonterminating event.
However, the proposed model can be applied to any other type of nonterminating event. Let
E be a dichotomous variable to denote the disease progression status of subjects, where E =
1 if the subject is in the disease progression population, which include subjects who
eventually develop disease progression before death, and E = 0 if otherwise. Also let TD
denote the time from study entry to death for subjects with E = 0. For the disease
progression population (E = 1), we further let TE denote the time from study entry to disease
progression and let TG denote the time from disease progression to death. A graphical
illustration of these variables is shown in Fig. 1.

The proposed statistical model consists of the following three components. The first
component is to model the disease progression status E given the baseline covariates x and
the treatment indicator A (A = 1 if the subject is on the treatment arm and A = 0 if the subject
is on the placebo or control arm). To this end, we assume

(2.1)

where α0, α1, and α2 are unknown coefficients and . The second component
models the survival distribution of the non-progression population given x and A, which is
defined by

(2.2)

where hD(t|A, x, E = 0) is the conditional hazard function of TD given the covariates, h0(t) is
an unknown baseline hazard function, and (β0, γ0) are unknown regression coefficients.

As shown in Fig. 1, TE and TG are potentially dependent. To capture this dependence, we
assume the frailty model

Zhang et al. Page 3

Lifetime Data Anal. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(2.3)

where hE(t|A, x, E = 1, ω) is the conditional hazard function for TE, hG(t|A, z, E = 1, ω) is the
conditional hazard function for TG, both h1(t) and h2(t) are unknown baseline hazard
functions, and the β’s and γ’s are regression coefficients. Here, V is the treatment switching
indicator (1 = switching; 0 = no switching) and z reflects the covariates collected at baseline
or at disease progression, which could be prognostic factors for the treatment switching
decision. In (2.3), ω is a latent gamma-frailty, which is assumed to follow a Gamma
distribution, Gamma(1/τ, 1/τ ), with mean one, variance τ (τ > 0), and density given by

. Given ω, TE and TG are conditionally independent.
Unconditionally, TE and TG are dependent and, moreover, the local measure of dependence
(Oakes, 1989) between TE and TG is ϕFM = 1 + τ, indicating a positive association between
TE and TG. When τ → 0, ϕFM → 1 and TE and TG become independent. The model defined
by (2.1) – (2.3) is thus called the semi-competing risks frailty model abbreviated by FM. As
an alternative to (2.3), we may consider the following models for TE and TG:

(2.4)

where γ21 is the regression coefficient corresponding to TE and γ22 is the corresponding
vector of regression coefficients associated with z. The model defined by (2.1), (2.2), and
(2.4) is called the conditional semi-competing risks model, denoted by CM. After some
algebra, we can show that the local measure of dependence between TE and TG under CM is
given by ϕCM =[∫tE{exp[−H2(tG) exp{Aβ21 + V (1 − A)β22 + γ21u + z′γ22}]h1(u) exp(Aβ1 + x
′γ1) × exp{−H1(u) exp(Aβ1 + x′γ1)}}du exp(tE γ21)] × [∫tE {exp[−H2(tG) exp{Aβ21+V
(1−A)β22+γ21u+z′γ22}]h1(u) exp(Aβ1+x′γ1)×exp{−H1(u) exp(Aβ1+x′γ1)} exp(uγ21)}du]−1

for tE > 0 and tG > 0, where  for j = 1, 2. Unlike ϕFM, ϕCM depends on (tE,
tG). It is easy to see that ϕCM > 1 when γ21 < 0, ϕCM = 1 when γ21 = 0, and ϕCM < 1 when
γ21 > 0. This result implies that CM allows a positive or negative association between TE
and TG. As discussed in Zhao (2009), FM is a homogeneous Markov model when h2(t) is
constant while CM is a homogeneous semi-Markov model since the hazard function for TG
in (2.4) depends on the progression time TE. On the other hand, the marginal distributions of
TE and TG after integrating out the gamma frailty belong to the class of generalized odds-
rate hazards (GORH) models (see Banerjee et al, 2007). As the GORH model is a non-
proportional hazards model, FM is more robust to the proportional hazards assumption than
CM.

We further assume piecewise exponential models for the baseline hazard functions h0(t),
h1(t), and h2(t). For k = 0, 1, 2, let 0 < sk1 < sk2 < … < skJk be a finite partition of the time
axis. Thus, we have the Jk intervals: (0, sk1], (sk1, sk2], … (sk,Jk−1, skJk], where skJk = ∞. In
the jth interval, we assume a constant baseline hazard, hk(y|λk) = λkj for y ∈ (sk,j−1, skj].
Letting λk = (λk1, λk2, …λkJk)′, the cumulative baseline hazard function corresponding to
hk(t) is given by

(2.6)

for k = 0, 1, 2.
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2.2 Likelihood Function
Suppose we have n subjects. Let yi denote the observed death time or censoring time, xi is
the vector of baseline covariates, Ai is the treatment indicator, yEi is the observed disease
progression time, zi is the vector of covariates collected at baseline or at disease progression,
and Vi is the indicator for treatment switching for the ith subject for i = 1,…, n. Also let νi be
the censoring variable such that νi = 1 if yi is a death time and νi = 0 if yi is a right censoring
time, and let di be the indicator variable such that di = 1 if yEi is a disease progression time
and 0 if there is no disease progression for the ith individual. When di = 0, yEi is assumed to
be equal to infinity. Finally, we use Ei to denote the disease progression indicator such that
Ei = 1 if subject i is in the disease progression population and 0 otherwise. Let

, where β2 = (β21, β22)′ and ωi is a latent frailty for the ith subject. Based on the nature of the
semi-competing risks, the observations in the observed data can be classified into four
different cases. Under FM, the likelihoods for these four cases are derived as follows.

Case 1—Subject died at time yi and no disease progression was observed. Then we have Ei
= 0, di = 0 and νi = 1 and the observation is Di = (Ei = 0, yi, di = 0, νi = 1, xi, Ai). The
likelihood function is given as follows:

(2.5)

Case 2—Subject was observed to have disease progression at yEi and died at yi. Then we
have Ei = 1, di = 1, and νi = 1, and the observation is di = (Ei = 1, yEi, yGi = yi − yEi, di = 1, νi
= 1, xi, Ai, Vi (1−Ai), zi) with the likelihood function given by:

(2.6)

where P(Ei = 1|Ai, xi, α) = 1 − P(Ei = 0|Ai, xi, α).

Case 3—Subject was observed to have disease progression at yEi and right censored at yi.
Then we have Ei = 1, di = 1, and νi = 0, and the observation is Di = (Ei = 1, yEi, yGi = yi −
yEi, di = 1, νi = 0, xi, Ai, Vi(1 − Ai), zi) with the likelihood function given by

(2.7)

Case 4—Subject was only observed to be right censored at yi and no disease progression
occurred before yi. Then we have di = 0 and νi = 0 and the observation is Di = (yi, di = 0, νi =
0, xi, Ai) and for such a subject, it is possible that Ei = 1 or Ei = 0. The likelihood function is
given by
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(2.8)

Let Dobs = (Di, i = 1,…, n) denote the observed data, where Di is defined by (2.5) – (2.8).
Then, the observed-data likelihood function under FM is given by

(2.9)

where 1{B} denotes the indicator function such that 1{B} = 1 if B is true and 0 otherwise,
L1i(α, β0, γ0, λ0|Di) is defined by (2.5), L2i(α, β1, γ1,λ1, β2, γ2, λ2|Di) = P(Ei = 1|Ai, xi, α)[(1
+ τ) h1(yEi|λ1)

The likelihood under CM can be derived in a similar way. Specifically, under CM, P(Ei = 0|
Ai, xi, α), S0(yi|Ai, xi, β0, γ0,λ0), f0(yi|Ai, xi, β0, γ0,λ0), and (2.5) remain the same while (2.6)
– (2.8) are obtained using
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3 Posterior Inference and Computation
3.1 Prior and Posterior Distributions

Let  denote the vector of all the model parameters.
To carry out a Bayesian analysis, we need to specify a prior distribution for θ.We assume
that α, (β0, γ0), (β1, γ1), (β21, β22, γ2), λ0, λ1, λ2 and τ are independent, a priori, and the
following priors are specified for these parameters:

, and τ ~
IG(aτ, bτ), which is an inverse Gamma distribution with mean bτ/(aτ −1) and variance (bτ)2/
[(aτ − 1)2(aτ − 2)], where pa, p0, p1, and p2 are the dimensions corresponding to the
respective vectors of the model parameters, and Σa, Σ0, Σ1, Σ2, and (aτ, bτ ) are pre-
specified hyperparameters. Independently, we assume λkj ~ Gamma(akj, bkj) for j = 1,…, Jk
and k = 0, 1, 2. Let πa(α), π0 (β0, γ0), π1 (β1, γ1), π2 (β2, γ2), π(τ |aτ, bτ), π0λ(λ0), π1λ (λ1),
and π2λ(λ2) denote the above prior distributions, respectively. Then, the joint prior of θ is
given by π(θ) ∝ πa(α)π0(β0, γ0)π1(β1, γ1)π2(β2, γ2)π(τ |aτ, bτ) π0λ(λ0) π1λ(λ1)π2λ(λ2). In the
simulation study in Section 4 and the analysis of the real data from a colorectal cancer study
in Section 5, these hyperparameters were specified as Σa = 1000Ipa, Σ0 = 1000Ip0, Σ1 =
1000Ip1, Σ2 = 1000Ip2, aτ = bτ = 0.01, and akj = bkj = 0 for j = 1,…, Jk and k = 0, 1, 2, where
Ipa, Ip0, Ip1, and Ip2 are the identity matrices. Using (2.9) and π(θ), the posterior distribution
of θ given the observed data Dobs under FM is of the form

(3.1)

When π(θ) is proper, the posterior distribution π(θ|Dobs) is also proper. However, even when
π(θ) is improper, the posterior distribution can still be proper under certain mild conditions.
To formally establish posterior propriety in this case, let j denote the set which consists of
subjects who were in Case j and nj = | j|, which is the total number of subjects in Case j for

j = 1, …, 4, respectively. Write , which is an (n1 +n2 +n3)

×pa matrix with rows , where . Let δi0j = 1 if yi ∈ (s0,j−1, s0j]
and 0 otherwise for j = 1, 2, …J0 for i ∈ 𝒚1; δi1j = 1 if yEi ∈ (s1,j−1, s1j] and 0 otherwise for j
= 1, 2, …J1 and i ∈ 2∪ 3; and δi2j = 1 if yi−yEi ∈ (s2,j−1, s2j] and 0 otherwise for j = 1, 2,
…J2 and i ∈ 2 ∪ 3. Define X0 to be an n1 × (J0 + p0) matrix with rows

 for i ∈ 1, X1 an (n2 +n3) ×(J1 + p1) matrix with

rows( ) for i ∈ 2, ∪ 3 X2 an n2 × (J2 + p3) matrix with rows

 for i ∈ 2 We are led to the following theorem.

Theorem 1—Assume πa (α) ∝ 1, π0 (β0, γ0) ∝ 1, π1(β1, γ1) ∝ 1, π2(β2, γ2) ∝ 1, and akj =
bkj = 0 for j = 1, …, Jk and k = 0, 1, 2. If the following conditions are satisfied: (i) Xa is of
full rank; (ii) there exists a positive vector c = (c1, …, cn* )′ ∈ Rn1+n2+n3, i.e., each

component ci > 0, such that ; (iii) X0, X1, and X2 are of full rank; and (iv) aτ > 0 and
bτ > 0, then the joint posterior π(θ|Dobs) in (3.1) is proper, i.e., ∫ L(θ|Dobs)π(θ)dθ < ∞.

The proof of Theorem 1 is given in Appendix A. When akj = bkj = 0 for j = 1, …, Jk and k =

0, 1, 2, we specify improper (Jeffreys’s) priors for all the λjk’s, namely,  for
j= 1,… Jk and k = 0, 1, 2. Conditions (i) and (ii) ensure posterior propriety for α, Condition
(iii) leads to the posterior propriety of (λ0, β0, γ0) and Conditions (iii) and (iv) are required
for the posterior propriety of (λ1, β1, γ1, λ2, β2, γ2, τ ). Condition (iii) is quite mild and
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essentially requires that at least one event (death or disease progression) occurs in each
interval (sk,j−1, skj], and the corresponding covariate matrix is of full rank. These conditions
are easily satisfied in most applications and are quite easy-to-check.

3.2 The Predictive Survival Function with Partial Treatment Switching
An inferential research goal in this research is to compare the survival function of the death

time in the setting when no subjects have switched treatment. Let  (a) denote a potential
survival time when a subject receives treatment a at the time of randomization and stays on

the same treatment over the entire study duration. Let . Following
Zeng et al. (2012), we state the following two assumptions: (i) Treatment A is completely

randomized and  if a subject never switches treatment; and (ii) Given (A = 0, z,

TE = u) or (A = 1, z, TE = u), V is independent of the potential outcomes . We
note that these two assumptions are only used to compute Sa(t|θ). Similar to Zeng et al.
(2012), under Assumptions (i) and (ii), we have

(3.2)

where fX(x | A = a) is the conditional density of X given A = a, and fZ (z | A = a, x, E = 1) is
the conditional density of Z given A = a, x, and E = 1. When J0 = J1 = J2 = 1, after some
algebra, we obtain

Zhang et al. Page 8

Lifetime Data Anal. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(3.3)

A detailed derivation of (3.3) is given in Appendix B. We assume nonparametric
distributions for fX(x | A = a) and fZ(z | X, A = a, E = 1) as follows:

 and

. Since Sa(t|θ) is a
function of θ, the posterior estimates of Sa(t|θ) can be easily obtained using the MCMC
samples from the posterior distribution of θ.

3.3 Posterior Computation
Due to the complexity of the likelihood structure for the proposed frailty model, an
analytical evaluation of the posterior distribution is not possible. In order to carry out
posterior inference, we develop an efficient Gibbs sampling algorithm to sample θ from the
posterior distribution in (3.1). We first consider the transformation . The Jacobian of

this transformation is  for k = 1, 2. Write
. After the transformation, the posterior distribution

of θ* is given by

(3.4)

where L(α, β0, γ0, λ0, β1, γ1, λ1, β2, γ2, λ2, τ|Dobs) is defined in (2.9).

To facilitate the posterior computation, we introduce two sets of latent variables
 and w = (w1, w2, …, wn) so that the augmented posterior distribution of

(θ*,E*,w) is given by
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(3.5)

Where L1i(α, β0, γ0, λ0|di) is defined by (2.5),

. It can be shown that ∑E* ∫ π(θ*, w, E*|Dobs)dw = π(θ*|Dobs), which is given by (3.4). We
note that the latent variables (the wi’s) in (3.5) are different than those ωi’s in (2.6) – (2.8).

Let [A|B] denote the conditional distribution of A given B. To run the Gibbs sampling
algorithm, we sample from the following conditional distributions in turn: (i)

; (ii)
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; and (iii) [α|E*,Dobs]. For (ii), we use the
modified collapsed Gibbs technique (Liu, 1994; Chen et al., 2000). It is easy to show that

(3.6)

For (ii), following Chen et al. (2000) and using (3.6), we run a sub-Gibbs sampling
algorithm to draw from the following conditional distributions: (iia)

; (iib) ;
(iic) ; and (iid) . Next, we
will only discuss the properties of the conditional distribution

 and how to sample τ from this conditional distribution. All
other conditional distributions are discussed in detail in Appendix B. We first consider the
transformation τ* = 1/τ . Then, the conditional posterior density of τ* is given by

(3.7)

We are led to the following theorem.

Theorem 2—Assume that

 Then we have (i)
the conditional density of τ* given by (3.7) is log-concave; and (ii) the mode of (3.7) is
analytically available and given by

(3.8)
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where 

The proof of Theorem 2 is given in Appendix A. The assumption

 ensures the log-
concavity and the existence of the mode. This assumption is quite mild. As long as there are
more than three patients with disease progression, this assumption still holds even when the
improper priors with aτ = 0 and akj = 0 for all k and j are specified for τ and the λjk’s. With
the log-concavity property, τ* can be exactly drawn from the conditional distribution in
(3.7) using the adaptive rejection algorithm of Gilks and Wild (1992). After τ* is generated,
we let τ = 1/τ* and then the value of τ is a sample from the conditional distribution

 in (iic). With the analytical form of the mode, the
performance of the rejection algorithm can be improved substantially as the algorithm does
not need to search for the mode.

3.4 Model Comparison
To carry out Bayesian model comparison, we consider the deviance information criterion
(DIC) and the Logarithm of the PseudoMarginal Likelihood (LPML).We define the
deviance Dev(θ) = −2 log L(θ|Dobs), where L(θ|Dobs) is the observed-data likelihood defined

in (2.9). Let θ̄ and  denote the posterior mean of θ and Dev(θ),
respectively. According to Spiegelhalter et al. (2002), the DIC measure is defined as DIC =

Dev(θ̄) + 2pD, where  is the effective number of model parameters. The
smaller the DIC value, the better the model fits the data. LPML is another useful Bayesian
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measure of goodness-of-fit statistic, which is defined based on the Conditional Predictive
Ordinate (CPO). For the ith observation, we define CPO as CPOi = ∫ L(θ|Di)π(θ|D(−i))dθ,
where Di is the observed data defined in Section 2.2, L(θ|Di) is the observed likelihood for
the ith subject, which is the term inside the product in (2.9), D(−i) is the data with Di deleted,
and π(θ|D(−i)) is the posterior density of θ based on the data D(−i). According to Ibrahim et
al. (2001),  log (CPOi). The larger the LPML value, the better the model fits
the data.

4 A Simulation Study
To examine the empirical performance of the posterior estimates and DIC and LPML, we
carry out a simulation study. Five hundred simulated data sets with n = 500 as well as n = 1,
000 were generated. In the simulation study, the baseline treatment A was generated from a
Bernoulli(0.5), corresponding to a randomized trial with a 1:1 sample size allocation; two
baseline covariates X1 and X2 were independently generated from a U(−1, 1) and a
Bernoulli(0.6), respectively. Given A and (X1, X2), E was generated from model (2.1) with
the coefficients (including an intercept) being 1.6, −1.8, 1, and 0.1, respectively. When E =
0, we simulated TD from model (2.2) with H0(t) = t, β0 = −1 and (γ01, γ02) = (1, 0.2). For E =
1, we first generated ω from a Gamma(1/τ, 1/τ ) with τ = 1. Then, TE was generated from
model (2.3) with H1(t) = 5t, β1 = −0.5 and (γ11, γ12) = (1, 0) and an additional prognostic
factor Z at disease progression was generated from a U(0, 10) while the selection into
treatment switching (V ) for a subject in the control arm (A = 0) was from a Bernoulli(p),
where p = exp(−0.5 + 0.3TE + 0.2X1 + 0.5Z)/[1+exp(−0.5+0.3TE +0.2X1 +0.5Z)]. Moreover,
TG was generated from the model in (2.3) with H2(t) = t, β21 = −0.3, β22 = −0.5, and γ21 =
−0.5, γ22 = 0.5, γ23 = −0.4. Finally, the censoring time was generated from a U(1, 7) and the
study duration was τ* = 3. The latter yielded the average proportions of Cases 1 to 4 as 23%,
39%, 19%, and 18%.

For each simulated dataset, we fit the proposed FM with various values of (J0, J1, J2) and
computed DIC and LPML. The mean values of the DICs and LPMLs over the 500 simulated
datasets were 2986.22 and −1493.24 for (J0, J1, J2) = (1, 1, 1); 2998.05 and −1499.39 for
(J0, J1, J2) = (5, 5, 5); and 3013.21 and −1507.22 for (J0, J1, J2) = (10, 10, 10). We note that
the true value of (J0, J1, J2) is (1, 1, 1). Thus, both DIC and LPML correctly identified the
true model. Under the best combination of (J0, J1, J2), namely, (1, 1, 1), the average of the
posterior means (EST), and the average of the posterior standard deviations (SD), the
simulation standard error (SE), the root of the mean squared error (RMSE), and the coverage
probability (CP) of the 95% highest posterior density (HPD) intervals for each parameter as
well as Sa(t|θ) were computed. The results are given in Table 1. Table 1 shows excellent
empirical performance of the posterior estimates for all the parameters as well as the
survival probabilities for both n = 500 and n = 1000. In particular, the ESTs are nearly
identical to the true values, the SDs are very close to the SEs, and the CPs are very close to
95%. For each simulated dataset, we also fit CM as discussed in Section 2.1 and computed
the corresponding DIC and LPML for (J0, J1, J2) = (1, 1, 1). The box plots of the DIC and
LPML differences between CM and FM are shown in Fig. 2. From this figure, we see that
all of the DIC differences are above 0 and all LPML differences are below 0, indicating that
the frailty model fits the data better than the conditional model for all 500 simulated data
sets, which is expected since the data were generated from the frailty model. These results
further empirically confirm that FM is indeed quite different from CM, and DIC and LPML
are two effective Bayesian model comparison measures for identifying the true models.
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5 Analysis of the Panitumumab Study
We carry out here a detailed analysis of a subset of the data from the panitumumab study
(PMAB408) conducted by Amgen Inc. (van Cutsem et al., 2007 and Amado et al., 2008).
PMAB408 was an open label, randomized, phase III multicenter study designed to compare
the efficacy and safety of panitumumab plus best supportive care (P+BSC) versus BSC
alone in subjects with EGFr-expressing metastatic colorectal cancer who had documented
disease progression during or after prior standard treatment with fluoropyrimidine,
irinotecan, and oxaliplatin chemotherapy. Subjects were randomly assigned to receive P
+BSC (treatment) or BSC (control). The baseline covariates include initial treatment (P
+BSC versus BSC), age in years at screening, baseline Eastern Cooperative Oncology
Group (ECOG) score (score 0 or 1 versus ≥ 2 (bECOG01)), primary tumor diagnosis type
(rectal versus colon (Rectal)), gender, and region (western Europe (WesternEU), eastern and
central Europe (CenEstEU), and rest of the world). In the subset of the data, there were 223
and 231 patients in the control and treatment arms, respectively. There were 424 subjects
who died (208 and 207 in the control and treatment arms, respectively), 387 subjects (201
and 186 in the control and treatment arms, respectively) who developed disease progression,
and 59 subjects (18 and 41 in the control and treatment arms, respectively) who died without
disease progression. The median age was 62.5 years with interquartile range (55, 69) years.
There were 388 patients with ECOG score 0 or 1, 287 were males, 151 had rectal cancer,
352 were from Western Europe, 39 were from Eastern and Central Europe, and 63 were
from the rest of the world. The median follow-up time was 189.5 days and the interquartile
range of the follow-up time was (93, 334) days. Among those 387 patients who developed
disease progression, the median disease progression time is 53 days and the interquartile
range is (45, 84) days. Of these 201 patients who developed disease progression in the
control arm, 167 patients were switched to the treatment arm at the time of disease
progression.

The model for the time in months to disease progression includes all the baseline covariates.
Among the 387 patients who developed disease progression, the median age at the time of
disease progression was 62.1 years with interquartile range (55.0, 69.1), the numbers of
patients who had partial response, stable disease, and progressive disease were 19, 86, and
282, respectively. There were 348 patients with baseline ECOG score 0 or 1, 286 patients
had a last ECOG score on or prior to disease progression 0 or 1, and 180 patients had grade
2 or above adverse events. The covariates for the time in months from disease progression to
death include treatment, bECOG01, age at disease progression, best tumor response with
partial response (BTR PR) or stable disease (BTR SD) versus progressive disease according
to investigator assessment, last ECOG score on or prior to disease progression (score 0 or 1
versus ≥ 2 (LECOG01)), and adverse events (AE).

We fit both FM and CM with different values of J0, J1 and J2 to the panitumumab data. The
DIC and LPML values are given in Table 2. We see from Table 2 that (J0, J1, J2) = (1, 30, 5)
achieves the smallest DIC value and the largest LPML value among the 7 combinations of
(J0, J1, J2) considered here under both FM and CM and the best DIC and LPML values were
3475.27 and −1741.32 under FM and 3482.62 and −1746.76 under CM, respectively. We
also observe that for each of these seven combinations of (J0, J1, J2), FM consistently has a
smaller DIC value and a larger LPML value than CM, implying that FM fits the
panitumumab data better than CM.

Table 3 shows the posterior estimates of the model parameters under FM with (J0, J1, J2) =
(1, 30, 5). The 95% HPD intervals for treatment were (−1.753, −0.484) under the E model,
(−1.145, 0.175) under the TD model, (−1.733, −1.148) under the TE model, and (−1.479,
−0.441) under the TG model.
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These results imply that treatment is associated with E, TE, TG but not with TD. The other
important prognostic factors include bCOG01 under the E, TD, and TE model, LECOG01
under the TG model, age under the TE model, and AE under the TG model as their
corresponding 95% HPD intervals do not contain 0. The treatment switching variable, V, is
also associated with TG. The posterior mean and 95% HPD interval for τ were 0.322 and
(0.163, 0.490), which implies that there is a moderate dependence between TE and TG. We
also fit the best CM with (J0, J1, J2) = (1, 30, 5) to the panitumumab data and the posterior
mean and 95% HPD interval for γ21 in (2.4) were −0.083 and (−0.161, −0.008), which
implies that there is a positive association between TE and TG. Panel (a) in Figure 3 shows
the estimated differences of the survival probabilities and their pointwise 95% confidence
intervals (CIs) between the two treatment groups of P+BSC and BSC using the intent-to-
treat (ITT) Kaplan-Meier approach and Panel (b) plots the posterior estimates, E[S1(t|θ)
−S0(t|θ)|Dobs], where S0(t|θ) and S1(t|θ) are given in (3.2), and the corresponding pointwise
95% HPD intervals of S1(t|θ) − S0(t|θ) between these two treatment groups. From Panel (a)
of Figure 3, we see that the ITT approach yields no difference between two treatment groups
as all 95% CIs contain 0. In contrast, as shown in Panel (b) of Figure 3, all the posterior
estimates of S1(t|θ) − S0(t|θ) are above 0 and the corresponding 95% HPD intervals are
above 0 after 2.25 months. We note that the maximum estimated difference E[S1(t|θ) − S0(t|
θ)|Dobs] was attained at approximately 9 months and the corresponding posterior mean and
95% HPD interval were 0.165 and (0.110, 0.227). These posterior estimates indicate that P
+BSC does yield a higher survival probability than BSC.

In all of the Bayesian computations, we used 20,000 Gibbs samples after a burn-in of 1000
for each model to compute all the posterior estimates, including posterior means, posterior
standard deviations, and 95% HPD intervals. Codes were written for the FORTRAN 95
compiler using IMSL subroutines with double precision accuracy. The convergence of the
Gibbs sampler was checked using several diagnostic procedures discussed in Chen et al.
(2000). The autocorrelations for all model parameters disappeared before lag 10.

6 Discussion
In this paper, we have proposed a novel semi-competing risks Bayesian frailty model that
accommodates treatment switching and dependence between the progression time and
survival time. This type of scenario arises often in clinical trials in which, once a patient
experiences an event, such as progression, they immediately switch to the experimental
treatment. As a result of the switch, the model attempts to capture the treatment effect when
no subjects would have switched treatment. The innovation in the model lies in the fact that
the observed data likelihood is modeled and is based on four possible scenarios, and the
model itself has three components. This type of model is quite different from what has been
proposed in the literature. Another innovation here lies in the Bayesian approach to fit the
model. Efficient MCMC methods based on the collapsed Gibbs sampler facilitate a flexible
Bayesian model that is computationally feasible and identifiable. Such a model does not
appear computationally feasible from a frequentist perspective. As shown in the simulation
studies and real data analysis, our proposed model has several advantages over the
conditional model (CM) proposed by others in the literature. It appears to have better
performance under certain scenarios and produces a better model fit according to DIC and
LPML. The proposed model is useful for practitioners encountering treatment switching
studies in the presence of semi-competing risks where one is interested in assessing the
treatment effect on overall survival.
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Appendix A: Proofs of Theorems

Proof of Theorem 1
Using (3.1) with the prior distributions assumed in the theorem, we have

Using (2.9), it is easy to show that

where ,

(A.

1)

(A.

2)

and

(A.

3)

To prove propriety of the posterior, it is sufficient to show (a) ∫ La(α|Dobs)dα < ∞; (b)

 and (c)

. dβ1dγ1dλ1dβ21dβ22dγ2dλ2dτ < ∞.

Under Conditions (i) and (ii), Theorem 2.1 of Chen and Shao (2001) directly leads to (a).
Let ji be an index such that s0,ji−1 < yi ≤ s0ji. Then we have δi0j = 1 for j = ji and δi0j = 0 for j
≠ ji and
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(A.4)

where M1 > 0 is a constant. Consider the transformation ξ0j = log(λ0j), where  for
j = 1, …, J0. Under condition (iii), there exist J0 + p0 distinct i1, …, iJ0+p0 ∈ 1 such that

the (J0 + p0) × (J0+p0) matrix , which has rows ) for ℓ = 1, …,
J0+p0, is of full rank. Using (A.4), we have

(A.

5)

where M12 > 0 is a constant and ξ0 = (ξ01, …, ξ0J0 )′. Now, we take a one-to-one

transformation . Using (A.5), we have

(A.6)

where M13 > 0 is a constant, which completes the proof of (b).

For (c), we first rewrite (A.2) as follows:

where

(A.

7)

(A.

8)

and . Let ji denote the index such that s2,ji−1 < yGi
≤ s2,ji. Then, we have
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(A.

9)

Observing that  for all r > 0 and v > 0, we obtain

(A.

10)

Under condition (iii), X2 is of full rank. Therefore, there exist J2 + p2 distinct i1, …, iJ2+p2 ∈

2 such that the (J2 +p2)×(J2 +p2) matrix , which has rows ( ) for
ℓ = 1, …, J2 + p2, is of full rank. Let 21 = {i1, …, iJ2+p2} and 22 = 2 − 21. Using
(A.10), we have

(A.

11)

where M21 > 0 is a constant. Similar to (A.5) and (A.6), using (A.11), we can show that

(A.

12)

where M22 and M23 are two positive constants. Now, using (A.2), (A.3), (A.7), and (A.12),
we obtain

(A.

13)
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The right hand side of (A.13) is precisely the kernel of the posterior distribution of (β1, γ1,
λ1, τ ) under the GORH model of Banerjee et al. (2007). Thus, under conditions (iii) and
(iv), following the proof of Theorem 3.1 of Banerjee et al. (2007), we can show that the
integration of the right hand side of (A.13) over (β1, γ1,λ1, τ) is finite, which completes the
proof of Theorem 1.

Proof of Theorem 2
For the posterior conditional distribution, the first derivative of the log-likelihood function is
given by

. The second derivative is given by

.

Assuming that , we

will always have . Therefore, the conditional
density of τ* given by (3.7) is log-concave. Letting

, then we have , where B1,
B2 and B3 are defined in Theorem 2. After some algebra, the solution is given by

. The reasons are as follows: with bτ >

0, bkj > 0 and , it is obvious that B1 < 0; and with the previous assumption that

, then B2 > 0, so we
have (B1 + B2 +B3)2 −4B1B2 > 0. Therefore, the equation has two roots. Since τ* > 0, then
we only keep the positive solution τ̂* since the other root is negative. Since we just showed
that the conditional density of τ* given by (3.7) is log-concave, it follows that the mode of
(3.7) is analytically available and given by τ̂*.

Appendix B: Computational Development

B.1. Derivation of the Potential Survival Function
After some algebra, we obtain
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When J0 = J1 = J2 = 1, we obtain P(TD > t|A = a, x, E = 0, β0, γ0, λ0) = exp{−tλ0 exp(Aβ0 +
x′γ0)}, ∫ω P(TE>t | A = a, x, E = 1, β1, γ1, λ1, ω) f (ω | τ)dω = ∫ω exp[−ωt λ1 exp(Aβ1 + x

′γ1)]f(ω|τ) , and

.

For the more general case, where the values of J0, J1 and J2 are not specified, we have
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Before the next derivation, we need to align the partitions of the time axis for h1 and h2. Let
0 < s3,1 < s3,2 < … s3, J3 be the ordered distinct values of sk, Jk, where k = 1, 2. For a given
time point t, there exists jt such that t ∈ (s3, jt−1, s3,jt). In order to facilitate the computation,
let s3, J3+1 = s3, J3, s3, J3 = s3, J3−1, …, s3, jt = t. Then the corresponding constant hazards for
each interval are as follows: λ3kj = λkl if sk,l−1 ≤ s3, j−1 < s3, j ≤ skl for j ∈ (1, J3 + 1) and l ∈
(1, Jk), where k = 1, 2. Next let

and
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While u ∈ (s3,j−1, s3,j], we have (t − u) ∈ (t − s3,j, t − s3,j−1], then there exist jl and ju such
that (t − s3,j) ∈ (s3,jl−1, s3,jl] and (t − s3,j−1) ∈ (s3,ju−1, s3,ju]. Let r = ju − jl. Then the range of
r is from 0 to J3. Therefore, when r = 0, we have

Then
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When r ≥ 1, we have
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for which
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B.2. Sampling from the Conditional Posterior Distributions
In the posterior computation section, a series of conditional posterior distributions are listed.
Now we will show how to sample from these distributions.

(i) . It is easy to see that conditional on
(β0, γ0, β1, γ1, β2, γ2,w, E*, Dobs), ( ) are independent. Therefore, the
conditional distributions can be sampled separately. Let δikj = 1 if the ith subject
failed or was censored in the jth interval for j = 1, 2, …Jk and 0 otherwise. It can

be shown that (ia) [λ0j |β0, γ0, E*, Dobs] ~ Gamma( ), where

, and  exp

exp ; (ib)

; and (ic)  ~ Gamma ( ), where

 and 
exp

.

(ii) [ ].

(iia) [ ]. From the joint posterior
distribution, it is obvious that conditional on [ ], the
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parameters [β0, γ0], [β1, γ1], [β2, γ2] are independent. Therefore, we can sample
the following conditional posterior distributions separately.

(iiaa) [β0, γ0|λ0, E*, Dobs]. This density is proportional to

It is easy to show that this conditional distribution is log-concave
in each component of β0 and γ0.

(iiab) [ ]. This density is proportional to

It can also be shown that this conditional distribution is log-
concave in each component of β1 and γ1.

(iiac) [ ]. This density is proportional to

Similarly, this conditional distribution can be shown to be log-
concave in each component of β2 and γ2.

(iib) [ ]. This conditional posterior distribution is
given by

(iic) [ ]. This one is shown in Theorem 2.

(iid) . To sample from this conditional

distribution, we can sample  instead. It
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can be shown that [ ] ~ Gamma(aw, bw),

where 

(iii) [α|E*, Dobs]. This conditional posterior distribution is given by

It is easy to show that this density is log-concave in each component of α.
Therefore, we apply the adaptive rejection algorithm of Gilks and Wild (1992)
to draw α.
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Fig. 1.
A graphical illustration of key random variables in the semi-competing risks model.
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Fig. 2.
Box Plots of the DIC and LPML Differences between CM and FM.
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Fig. 3.
The estimated differences with 95% intervals of the survival curves between the treatment
and control arms.
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