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Abstract
Recurrent event data are often encountered in biomedical research, for example, recurrent
infections or recurrent hospitalizations for patients after renal transplant. In many studies, there are
more than one type of events of interest. Cai and Schaubel (2004) advocated a proportional
marginal rate model for multiple type recurrent event data. In this paper, we propose a general
additive marginal rate regression model. Estimating equations approach is used to obtain the
estimators of regression coefficients and baseline rate function. We prove the consistency and
asymptotic normality of the proposed estimators. The finite sample properties of our estimators
are demonstrated by simulations. The proposed methods are applied to the India renal transplant
study to examine risk factors for bacterial, fungal and viral infections.
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1. Introduction
In biomedical research, the events of interest can occur multiple times on the same subject.
This kind of events are termed as recurrent events in the literature. Examples of recurrent
events include repeated opportunistic infections among HIV patients, recurrent seizures in
epileptic patients, multiple hospitalizations among organ transplant recipients and so on.

Developing statistical methods for the analysis of recurrent events has received much
attention during the last two decades. Methods for the regression analysis of recurrent events
can be classified into two categories: the conditional methods and the marginal methods.
The conditional methods are based on modeling the intensity or hazard functions (Prentice et
al., 1981; Andersen and Gill, 1982), while the marginal methods model the mean or rate
function (Pepe and Cai, 1993; Lawless and Nadeau, 1995; Lin et al., 2000; Schaubel et al.,
2006). Compared with the conditional methods, the marginal methods have the advantage
that the mean number of the recurrent events is easier to interpret than the event intensity.
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For the recurrent event data, Lin et al. (2000) established the rigorous theory for both the
parameter estimation and model checking for the multiplicative rate model. As noted by
Schaubel et al. (2006), the popularity of multiplicative rate model derives not only from
their utility and wide applicability, but also from convention and the availability of statistical
software. The additive rate model is an useful alternative to the multiplicative rate model
when absolute rate differences is of interest. Schaubel et al. (2006) proposed a
semiparametric additive rate model to analyze the recurrent event data. Liu et al. (2010)
generalized this model to allow for the additive effects and the multiplicative effects
simultaneously. Zeng and Cai (2010) proposed an additive rate model for the recurrent
events with an informative terminal event.

All the aforementioned methods are for the analysis of recurrent events of a single type.
Frequently, in many studies, the recurrent events of interest are of multiple types. Our
motivating problem concerns end-stage renal disease patients from India. End-stage renal
disease patients receive different types of immunosuppressions and being so, they are more
susceptible to opportunistic infections. In our study, infections are ascribed to one of the
three types: bacterial, fungal and viral origin. It has been established that exposure to
infective agents and net state of immunosuppression are important determinants of infection
risk in transplantation. Though in the developing countries, the immunosuppresive protocols
are similar to that of developed countries, pandemicity of infective agents and other
environmental factors increase the risk of infections in these patients to many folds. Hence,
the main objective of the study is to investigate the risk factors for recurrent infections and
to examine the absolute rate of bacterial, fungal and viral infections. Of primary interest is to
study the role of immunosuppression on different types of infections which is very useful
information to nephrologist in care for the renal transplant patients.

Statistical methods for handling multiple type recurrent events are relatively limited.
Prentice et al. (1981) firstly suggested extending their conditional intensity model for
recurrent event data to model multiple type infections classified as bacterial, fungal and viral
origin. Abu-Libdeh et al. (1990) studied the relation of the nutritional supplement of
selenium and the recurrence of several kinds of skin cancers. A joint regression model for
cumulative mean functions arising from bivariate point process was studied by Ng and Cook
(1999). Lawless et al. (2001) studying failures of surgically implanted shunts in children
with hydrocephalus under gap times models discussed the possibility of extension to
multiple type recurrent events and the problem of terminal events. Cai and Schaubel (2004)
modeled physician office visitis and hospitalizations attributable to asthma using
proportional marginal rate model. Chen et al. (2005) developed joint models for multiple
types recurrent events under interval censored data setup and described Gibbs sampling
algorithms for fitting mixed Poisson models with piecewise constant baselines and
multivariate lognormal random effects. Schaubel and Cai (2006a; 2006b) considered the
analysis of multiple types recurrent event data with missing event types using estimating
equations and multiple imputation approaches. Chen et al. (2009) described a likelihood
approach based on the joint models for the multiple type recurrent events with partially
missing event types. In this article, we propose a general additive marginal rate model for
the multiple type recurrent events. We consider the estimating equations approach (Liang
and Zeger, 1986) for obtaining the estimators of regression coefficients and baseline rate
function.

The remainder of this article is organized as follows. In Section 2, we set up the necessary
notations and describe the proposed semiparametric additive marginal regression model for
the multiple type recurrent events along with the inference procedure. The asymptotic
properties of the proposed estimators are stated in Section 3, the proofs of which are
provided in the Appendix. In Section 4, we give a goodness-of-fit test. We report the
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simulation studies in Section 5 and illustrate the method by applying it to the India renal
transplant infection data in Section 6. Finally, we provide some concluding remarks in
Section 7.

2. Model and Inference method
Assume that there are K different types of events of interest, i.e., every subject in the

population may experience K different types of events. Let  denote the number of
events of type k during the time [0, t] for subject i. Similarly, let Ci,k be the censoring time
for the recurrent events of type k for subject i. Usually the censoring times for the K
different recurrent events are equal, i.e., Ci,k = Ci. Let Zi,k(t) denote the p × 1 covariate
vector for the recurrent events of type k. The covariate Zi,k(t) is possibly time-dependent and
external (Kalbfleisch and Prentice, 2002). Let the at risk process be Yi,k(t) = I(Ci,k ≥ t).
Subject to right censoring, the kth observed recurrent event process is

The rate function for the kth recurrent event process is

In this article, we consider the following semiparametric additive rate model:

(1)

where μ0,k(t) is true baseline mean function, β0 is the true regression coefficient and g is a
prespecified link function satisfying some regularity conditions given in Section 3. For the
censoring mechanism, we assume that

which is referred to as independent censoring in the literature.

Model (1) specifies a very large class of models. For example, it can accommodate event-
type specific effects. different regression coefficients for different event types can be
obtained by introducing event-type specific covariates in the covariate Zi,k. Event-type

specific effects can be obtained by defining  and

, where 0s are zero vectors. This
is illustrated in Section 5. Note that the baseline rate function is explicitly event specific.

Define . It is easy to see
that Mi,k(t, β0) is a zero-mean stochastic process under the proposed model and the
assumption of independent censoring. Throughout the paper, we use Mi,k(t) to denote Mi,k(t,
β0). Following the idea of generalized estimating equations (Liang and Zeger, 1986), we
specify the following estimating equations:
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(2)

(3)

where g(1)(·) is the first order derivative of g(·) and τ is a prespecified study ending time
satisfying P(Yi,k(τ) = 1) > 0 for k = 1, …, K and i = 1, …, n. For fixed β, based on (2), after
some algebraic manipulations, we can obtain that

(4)

for k = 1, …, K. Substituting (4) into (3), again followed by some algebraic manipulations,
leads to the following estimating equation:

For the simplicity of expression, we introduce some notations. Let

 for d = 0, 1, 2, where g(0)(x) = 1,
g(d)(x) is the dth-order derivative of g(x) for d = 1, 2, and for a vector a, a⊗0 = 1, a⊗1 = a,

a⊗2 = aaT. Define . The limits of  and Ek(t, β) are

 and ek(t, β) respectively for k = 1, …, K and d = 0, 1, 2.

Using the above notations, we get the following estimating equation:

(5)

which can also be expressed as

(6)

Different methods, such as Newton-Raphson algorithm, can be used to solve the above
estimating equation when the equation does not have an explicit solution. As a specifical
case, for function g(x) = x, we can obtain an explicit expression of the solution for (5),
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Once we get a solution of the above estimating equation, denoted by , we can estimate the
baseline mean function of the kth recurrent event by the Breslow-Aalen type estimator

(7)

for 1 ≤ k ≤ K.

3. Asymptotic results
In this section, we present the asymptotic results for the proposed estimators. Similar to Cai
and Schaubel (2004) and Liu et al. (2010), we assume the following regularity conditions:

(a) , are independent and identically distributed.

(b) P(Ci,k ≥ τ) > 0, for k = 1, …, K, i = 1, …, n.

(c) Ni,k(τ) are bounded by a constant for k = 1, …, K, i = 1, …, n.

(d) Zi,k(·), i = 1, …, n, have bounded total variations, i.e., 
for all j = 1, …, p, k = 1, …, K, i = 1, …, n, where Zj,i,k(t) is the jth component of Zi,k(t) and
0 < H < ∞. g(1)(βT Zi,k(t))Zi,k(t) has bounded total variation, uniformly in β.

(e) The matrix A is nonsingular, where

(f) g is twice continuous differentiable; {g(·), g(1)(·), g(2)(·)} are uniformly continuous and
bounded.

In the Appendix, we have derive the asymptotic properties of the estimated regression
coefficients. Special results are listed in the following theorem.

Theorem 1

Under the regularity conditions (a) to (f),  converges almost surely to β0. Furthermore,

 converges to a normal distribution with mean zero and covariance matrix Σ0 =
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A−1Σ1(A−1)T, where A is defined in Condition (e) and

.

The covariance matrix can be consistently estimated by , where

(8)

and

with

(9)

To study the asymptotic properties of estimators for the K different baseline mean functions,
we have to define a new metric space (Spiekerman and Lin, 1998; Cai et al., 2004). Let D[0,
τ] be the space of cadlag functions on [0, τ]. Set f(t) = [f1(t), …, fK(t)]T, fk(t) ∈ D[0, τ] for k
= 1, …, K. Define D[0, τ]K to be the space consisting of such functions with the metric ρ(f,
g) = maxk{supt∈[0,τ]∣fk(t) – gk(t)∣} for any f, g ∈ D[0, τ]K. Define Wn(t) = [W1,n(t), …,

WK,n(t)]T where  for k = 1, …, K. The asymptotic results
for the estimated baseline mean functions are given in the following theorem.

Theorem 2

Under the regularity conditions (a) to (f),  converges almost surely to μ0,k(t),
uniformly in t ∈ [0, τ]. Furthermore, Wn(t) converges to a zero-mean Gaussian field in D[0,
τ]K, with covariance function ψk,l(s, t) = E[ϕ1,k(s)ϕ1,l(t)] where

The covariance function can be consistently estimated by

, where

with  and  as defined in (8), (9) and
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Pointwise confidence interval for μ0,k(t) can be constructed according to Theorem 2. To
construct simultaneous confidence band for μ0,k(t) over a time interval, we need to obtain

the distribution of the supremum of the process , which is difficult
analytically. Alternatively, we adapt the idea in Lin et al. (2000) to our situation and
summarize the result in the following theorem.

Theorem 3
Assume that G1, …, Gn are independent standard normal variables which are independent of

, i = 1, …, n. Then under the conditions (a) to (f),

has the same limit distribution as Wk,n(t).

The proof of Theorem 3 is similar to that of Lin et al. (2000) and we will not repeat it here.
Using the result in Theorem 3, to approximate the distribution of Wk,n(t), we can obtain a

large number of realizations from  by repeatedly generating the standard normal

random sample G1, …, Gn while fixing the data . We
then can have the approximation of the distribution of the supremum of the process of
Wk,n(t) over the interval of interest and construct the simultaneous confidence bands. It is
noted that the confidence intervals or bands constructed by the above method can not
guarantee the confidence intervals or bands to be positive. As Lin et al. (1994) and Lin et al.
(1998), to avoid this issue, the log transformation can be used in the constructed of the
confidence intervals or bands. Also this method can also improve the coverage probability in
small samples. We omit the details about the special procedure. Interested readers can
consult Lin et al. (1994) and Lin et al. (1998).

4. Goodness-of-fit test
In order to examine whether the fitted model is adequate, we consider a goodness-of-fit test
statistics. We consider this problem under the situation when the covariates are time-

independent. Define . Following the idea of Lin et al. (1993) and Lin et
al. (2000), we define the following test statistics:

where (Zi,k ≤ z) denotes the situation that every component of Zi,k is no larger than that of z.
For the null distribution of V(t, z), we have the following theorem.
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Theorem 4
Under the regularity conditions listed in Section 3, the null distribution of V (t, z) converges
weakly to a zero-mean Gaussian process with covariance function E{ζi(t1, z1)ζi(t2, z2)} at
(t1, z1) and (t2, z2), where

with

and

From the proof of Theorem 4, we can see that the null distribution of V (t, z) can be
approximated by the zero-mean Gaussian process

(10)

where

and

It is difficult to obtain the analytical expression of the covariance function. Thus we can
utilize the method of resampling to get the asymptotic null distribution of V (t, z).
Specifically, define
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(11)

where Gi, i = 1, …, n are i.i.d. standard normal distribution random variates, which are

independent of , i = 1, …, n. It is easy to show that the null

distribution of V (t, z) can be approximated by the conditional distribution of . Hence
to obtain the asymptotic null distribution of V (t, z), we can get a large number of

realizations of  by repeatedly generating random numbers Gi, i = 1, …, n, from

standard normal distribution, while fixing the , i = 1, …, n, at their
observed values. To assess the goodness-of-fit of the proposed model, we could plot a few

number of realizations of  and compare them with V (t, z) to see if there are some

unusual patterns. But it is noted that plotting  versus t and z involves high-
dimensional graphics. And this is difficult now. Alternatively, we can use the supremum test
supt,z∣V (t, z)∣ to obtain the p-value of the test, which could be used to judge the adequacy of
the model. The p-value can be obtained by comparing the observed value of supt,z∣V (t, z)∣

to a large number of realizations from .

5. Simulation Studies
We conducted extensive simulation studies to examine the finite sample properties of our
proposed estimators in this section.

Specially, we simulated two different types of recurrent events with the sample size being n
= 50, 100 and 200. Firstly, we considered the model with the same regression coefficients
and covariates for the two types of recurrent events. The dimension of the covariates Zi is 2.
The first component of Zi follows the uniform distribution on (0, 1), while the second
follows Bernoulli distribution with success probability 0.5. Let β0 = (0, 0.5)T. For the same
subject, we introduced a frailty variable to induce positive correlation for the within-subject
events. We assume that the frailty variable, Qi,k ≡ Qi, followed a Gamma distribution with
expectation 0.25 and the variance σ2 with σ2 = 0, 0.25, 0.5 and 1. To avoid too large frailty
variable, which will induce too many recurrent events for one subject, we took

. For the two different baseline mean functions, we considered μ0,1(t) =
γ0,1 · t = 0.25t and μ0,2(t) = γ0,2 · t = 0.5t respectively. Then the kth type recurrent events
were generated from the Poisson process with intensity function

Under the above setups, the marginal additive rate model was

for k = 1, 2. The censoring time was generated from U(0, τ) with τ = 5. Under the above
settings, the average number of events for the first type of recurrent events is
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approximatively 1.8 per subject, while that of the second type of recurrent events is
approximatively 2.5 per subject.

As advised by one reviewer, secondly, we consider the model with different regression
coefficients for different types of recurrent events. The covariate Zi,1 and Zi,2 are
independent and identically distributed as the Bernoulli distribution with the success
probability 0.5, where Zi,1 is the covariate for the first type of the recurrent events and Zi,2 is
the covariate for the second type of the recurrent events. The regression coefficient for Zi,1
was set to be 0.5, while that for Zi,2 was 0.3. Following the descriptions in Section 2, we

defined β0 = (0.5, 0.3)T, , and . The other design elements
were the same as the model with the same regression coefficients and the same covariates.
Under these design elements, the kth type recurrent events were generated from the Poisson
process with intensity function

Then the marginal additive rate model was

for k = 1, 2. In this situation, the average number of events for the first type of recurrent
events is about 1.8 per subject, while that of the second type of recurrent events is about 2
per subject.

The summaries of our simulation results are presented in Tables 1 and 2. All the results are
based on 1000 replicates. It can be seen from the results in Tables 1 and 2 that our methods
works well. The biases of the estimated regression coefficients are approximately 0s. The
asymptotic standard errors (ASEs) are very close to the empirical standard errors (ESEs).
The empirical coverage probabilities are very close to their nominal level, 0.95. As the
sample size n increases, the biases, ASEs and ESEs decrease while the CPs are closer to the
nominal level in general. For the fixed sample size, the estimated regression coefficients
with σ2 = 0 have smallest biases, ASEs and ESEs in general. But because of the truncation
for the frailty variable, the ASEs and ESEs of the estimated regression coefficients become
larger firstly and then smaller as the σ2 increases.

6. Analysis of the India Renal Transplant Data
We now apply the proposed methods to a cohort of renal transplant patients who had
acquired opportunistic infections during the post transplantation follow-up. Patients who
received primary renal transplantation at a tertiary care teaching hospital in Southern India
between 1994 and 2007 were studied. We considered a subset of 991 transplant patients for
this illustration. Patients were followed to the end of 2008. The median follow-up time was
75.2 months (range: 0 to 179.5 months).

Data were collected prospectively on the transplant patients, which included date of
transplantation, information on the subsequent infections that are ascribed to one of the three
organism types: bacterial, systemic mycoses (fungal) and viral. A total of 829 infection
episodes were observed among these patients. The average number of infections per patient
observed was 2(sd=1.2). Nearly 43% had at least one infection and 22% (n=219) had
multiple infections of either the same type or of different types. Of those who had multiple
infections, 40% acquired infections of the same type, while 52% had two out of three
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infection types and 8% acquired all three infection types. Table 3 summarizes the
distribution of infections across patients and types of infections. The primary clinical
objective of the investigation is to find the risk factors associated with the multiple type
infections especially the role of immunosuppression. Risk factors of interest include type of
immunosuppression, role of pre-transplant (pre Tx DM) or post-transplant diabetes (post Tx
DM) mellitus, acute rejection, age of patient and gender of patient. Patients received
different combination of primary immunosuppression and we grouped them into three major
regimens: (i) a combination of prednisolone (Pred), azathiaprine (AZA) and calcineurin
inhibitor (CNI) (PAC), (ii) combination of prednisolone, CNI and mycophenolate mofetil
(MMF) or mycophenolate sodium (MPA) (PCM), and (iii) a group consisting of drugs that
are non-CNI based regimens. We centered the age of the patient to 34 years (Age-34).

We considered the following model:

with event-specific effect for immunosuppression and common effect for other covariates
with

where βB, βF and βV denote the bacterial, fungal and viral infection specific parameters,
respectively.

Table 4 presents the parameter estimates, standard error of the estimates, and the associated
Wald test and p values. The values presented in the table are 103 times the original values.
Interestingly, the effect of immunosuppression is different for different type of infections.
For bacterial infections, patients in the PCM group have 7.2 more infections per 1,000
patients per month compared to those in the non-CNI regimen. While, for fungal infection,
patients in the PCM group have 1 less infection per 1,000 patients per month than those in
the non-CNI immunosuppression group. Similarly decreased effect were observed for viral
infection in the PAC group and the PCM group compared to the non-CNI group, however, it
was not statistically significant.

Post transplant diabetes mellitus (Risk Difference (RD)=0.95) and post transplant episodes
of acute rejections (RD=1.26) are associated with increased rate of infections. Though the
presence of pre-transplant hyperglycemia showed an elevated rate of infection (RD=1.17)
compared to those without diabetes mellitus, it was not statistically significant. Older
patients tend to have more frequent infection while male patients tend to have a decreased
infections rate compared to females, although none of these effects were statistically
significant.

7. Discussion
In this paper, we proposed a semiparametric additive marginal rate model for the analysis of
multiple type recurrent event data, which is an useful alternative model to the
semiparametric multiplicative marginal rate model suggested by Cai and Schaubel (2004).
The class of the link function g is very rich. Many conventional functions, such as g(x) = ex,
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belong to this class. If we choose g(x) = x, we can obtain an explicit expression of estimators
of the true regression parameters. In this article, we used the estimating equations approach
to make inference. The consistency and asymptotic normality of the proposed estimator
were established. Extensive simulation studies demonstrated the validity of the asymptotic
approximation in finite samples.

Schaubel and Cai (2006a, 2006b) considered the analysis of multiple type recurrent event
data with possibly missing event type under the semiparametric multiplicative rate model.
For the additive rate model, our method can be similarly extended to incorporate such
missing event type recurrent event data. Another complication arises when recurrent events
are stopped by a terminal event such as death. Methods for a single type of recurrent events
with a terminal event have been proposed in the literature, for example, Ghosh and Lin
(2000), Ghosh and Lin (2002), Liu et al. (2004), Zeng and Cai (2010), among others.
However, terminal event has not been dealt with for the multiple type recurrent events. This
is a topic meriting further research.
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Appendix: Sketch proofs of the main results

Proof of Theorem 1

Firstly, we prove the strong consistency. Define . After some
algebraic computations, we can obtain

(A.

1)

Under Conditions (d) and (f), we can find a δ > 0 such that  is sufficiently close to

 whenever ‖β – β0‖ ≤ δ, uniformly in n. On the other hand, we can write

(A.

2)

Through repeated applications of the Strong Law of Large Numbers (Sen and Singer, 1993),
the second term of a(β0) can be proven to converge almost surely to 0. By the Strong Law of
Large Numbers (Sen and Singer, 1993), the first term of a(β0) can be shown to converge
almost surely to A, which is defined in Condition (e). Similarly, we can prove that b(β0) and

c(β0) converges almost surely to 0. Therefore, we get that  converges to A almost
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surely if  converges to β0 almost surely. The consistency of  can be proven using similar
arguments as in Theorem 1 in Liu et al. (2010).

Secondly, we prove the asymptotic normality of . By Taylor expansion of  at β0,
we obtain

(A.3)

where  is between  and β0. Substituting the expression of Un(τ, β0) into the above
equation, we get

(A.

4)

Using the empirical process techniques (Pollard, 1990; Bilias et al., 1997), it can be shown
that

(A.5)

Because  and  is between  and β0, we get  and  A. Hence,
we have

(A.

6)

Then the proof of asymptotic normality is completed by applying the Multivariate Central
Limit Theorem (Sen and Singer 1993).

Proof of Theorem 2
We firstly prove the uniform strong consistency. As usual, we make a simple decomposition

(A.7)

For the first term of (A.7), using Taylor expansion, we can write
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(A.8)

Under Conditions (d) and (f), using the strong consistency of , we can prove that the first
term converges almost surely to 0 uniformly in t ∈ [0, τ].

For the second term of (A.7), we can write

(A.

9)

Using the Uniform Strong Law of Large Number (Pollard, 1990) and Lemma 1 of Lin et al.
(2000), the second term converges almost surely to 0 uniformly in t ∈ [0, τ].

Consequently,  converges almost surely to μ0,k(t) uniformly in t ∈ [0, τ] for k = 1, …,
K.

We now prove the weak convergence of Wn(t). Using the above decomposition, we have

(A.10)

For the first term of (A.10), using Taylor expansion, it is easy to obtain
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(A.

11)

It is easy to see that

(A.12)

From Theorem 1, we have . It can be shown that

(A.13)

Hence we have

(A.14)

Under Conditions (d) and (f), it can be shown that

(A.

15)

Hence we have η2(t) = op(1) uniformly in t ∈ [0, τ]. Then

(A.

16)

For the second term of (A.10), we have
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(A.17)

Using the Uniform Strong Law of Large Number (Pollard, 1990) and Lemma 1 of Lin et al.
(2000), it can be shown that

(A.18)

Hence we have

(A.19)

Summarizing the above results, we arrive at

(A.

20)

where .

From the above expression, the convergence in finite-dimensional distribution of Wn
follows from the Multivariate Central Limit theorem.

To complete the proof, we also need the tightness of Wn. Because ϕi,k(t) consists of

monotone functions,  is tight (Van der Vaart and Weller, 1996, p215). This
completes the proof.

Proof of theorem 4
It is easy to see that
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(A.21)

Note that ω2(t, z) can be rewritten as

(A.22)

From the proof of Theorem 2, we can see that

(A.23)

So ω2(t, z) can be written as

(A.24)

By the Uniform SLLN (Pollard, 1990),  converges to ek(t,

β0) uniform in t. Similarly, it can be proven that  converges to
fk(t, z) uniformly in t and z. Thus, the first term of (A.24) equals

(A.25)

uniformly in t and z. By the Uniform SLLN and Lemma 1 of Lin et al. (2000), the second
term of (A.24) is
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(A.26)

uniformly in t and z. From the proof of Theorem 1, it has been shown that

(A.27)

Combing the (A.24), (A.25), (A.26) and (A.27), we arrive at

(A.

28)

By Taylor expansion, we have

(A.

29)

where  lies between β0 and . It can be shown that

 converges to l(t, z) almost
surely uniformly in t and z. So we have

(A.30)

Using the results from the proof of Theorem 1, we get

(A.31)

Based on the above results, we can arrive at

(A.

32)

Since V (t, z) is represented asymptotically as a sum of independent identical distribution
random vectors, the convergence of finite-dimensional distributions can be proven by the
multivariate CLT. Using the results from modern empirical process, the tightness can also be
obtained. Consequently the weak convergence is proven. This completes the proof.
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Table 1

Summaries of the simulation results for the estimated regression coefficients for the model with the same
regression coefficient for different types of recurrent events.

n σ 2 β10 = 0 β20 = 0.5

Bias ASE ESE CP Bias ASE ESE CP

50 0 0.009 0.202 0.216 0.925 0.003 0.117 0.125 0.931

0.25 −0.004 0.276 0.305 0.921 −0.004 0.163 0.174 0.929

0.5 0.005 0.278 0.315 0.924 0.001 0.164 0.176 0.936

1 0.009 0.265 0.292 0.917 0.003 0.156 0.171 0.922

100 0 −0.004 0.143 0.147 0.942 −0.002 0.083 0.086 0.940

0.25 0.007 0.200 0.203 0.955 −0.002 0.117 0.118 0.937

0.5 0.007 0.202 0.215 0.942 0.001 0.119 0.122 0.935

1 0.008 0.195 0.207 0.943 0.000 0.113 0.120 0.937

200 0 −0.003 0.101 0.100 0.942 −0.003 0.059 0.060 0.942

0.25 −0.003 0.144 0.153 0.934 0.000 0.084 0.087 0.943

0.5 −0.007 0.146 0.151 0.939 0.005 0.084 0.086 0.940

1 −0.006 0.140 0.147 0.939 −0.002 0.081 0.083 0.948
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Table 2

Summaries of the simulation results for the estimated regression coefficients for the model with the different
regression coefficients for different types of recurrent events.

n σ 2 β10 = 0.5 β20 = 0.3

Bias ASE ESE CP Bias ASE ESE CP

50 0 0.009 0.151 0.162 0.931 −0.017 0.161 0.167 0.936

0.25 −0.006 0.188 0.204 0.924 −0.011 0.199 0.205 0.924

0.5 0.005 0.188 0.197 0.945 −0.019 0.192 0.208 0.932

1 −0.005 0.180 0.185 0.933 −0.008 0.184 0.196 0.936

100 0 0.004 0.108 0.109 0.948 −0.010 0.116 0.119 0.941

0.25 −0.005 0.136 0.143 0.938 −0.005 0.142 0.143 0.942

0.5 −0.009 0.135 0.135 0.950 0.008 0.141 0.140 0.947

1 0.005 0.130 0.129 0.954 −0.002 0.136 0.139 0.946

200 0 0.001 0.078 0.077 0.944 −0.005 0.087 0.083 0.935

0.25 −0.001 0.096 0.097 0.952 −0.006 0.105 0.102 0.949

0.5 0.006 0.101 0.096 0.945 −0.005 0.105 0.101 0.940

1 −0.002 0.096 0.093 0.940 −0.001 0.100 0.098 0.943
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Table 3

Recurrent infections by type in the India renal transplant patients.

Recurrent infections

Infections type 0 1 2 3 4 5 6

Bacteria 708 165 67 38 8 3 2

Systemic mycoses 937 47 7 0 0 0 0

Virus 865 187 45 5 1 1 0
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Table 4

Regression analysis of multiple type infections in the India renal transplant study

Covariates
Estimate

(×103)
SE

(×103)
Wald test

(β/SE)2 p-value

Immunosuppression

 Bacteria

  PAC 0.096 0.074 1.686 0.194

  PCM 7.173 2.591 7.661 0.006

  Non CNI ref

 Fungus

  PAC −0.101 0.079 1.642 0.200

  PCM −1.168 0.392 8.896 0.003

  Non CNI ref

 Virus

  PAC −0.116 0.112 1.063 0.303

  PCM −0.788 1.360 0.336 0.562

  Non CNI ref

Age (centered 34 years) 0.001 0.016 0.005 0.942

Gender (male=1, female=0) −0.684 0.501 1.867 0.172

Diabetes Mellitus (DM)

  Pre Tx DM 1.170 0.888 1.738 0.187

  Post Tx DM 0.952 0.511 3.480 0.062

  No DM ref

Acute Rejection (yes=1, no=0) 1.263 0.340 13.767 < 0.001
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