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Abstract
In many biomedical studies, it is common that due to budget constraints, the primary covariate is
only collected in a randomly selected subset from the full study cohort. Often, there is an
inexpensive auxiliary covariate for the primary exposure variable that is readily available for all
the cohort subjects. Valid statistical methods that make use of the auxiliary information to improve
study efficiency need to be developed. To this end, we develop an estimated partial likelihood
approach for correlated failure time data with auxiliary information. We assume a marginal hazard
model with common baseline hazard function. The asymptotic properties for the proposed
estimators are developed. The proof of the asymptotic results for the proposed estimators is
nontrivial since the moments used in estimating equation are not martingale-based and the
classical martingale theory is not sufficient. Instead, our proofs rely on modern empirical theory.
The proposed estimator is evaluated through simulation studies and is shown to have increased
efficiency compared to existing methods. The proposed methods are illustrated with a data set
from the Framingham study.
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1 Introduction
Exposure assessment like assays for biomarker or genetic traits can be prohibitively
expensive in modern biomedical studies. Due to budget constraints, the main exposure in
many studies can only be assembled on a subset of the full study cohort. This subset is
refereed to as the validation set. Meanwhile, an inexpensive auxiliary variable for the main
exposure is often readily available for all the cohort subjects. It is desirable to improve the
study efficiency through properly utilizing these auxiliary information in the statistical
inference.

In failure time studies, some methods have been proposed. For example, Zhou and Pepe
(1995), Zhou and Wang (2000) and Wang et al. (1997) studied the auxiliary covariates
problem for a multiplicative semiparametric hazard model using regression calibration
techniques. Kulich and Lin (2000) and Jiang and Zhou (2007) proposed a corrected pseudo-
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score estimator for the additive risks model of Lin and Ying (1994). While the
aforementioned methods are focused on univariate failure time data, correlated failure time
data are commonly encountered in practice. For example, the data arise from family studies
where individuals within a family may be correlated due to shared genetic or environmental
factors. Two major classes of models have been proposed for correlated failure time data:
the frailty models (Clayton and Cuzick, 1985; Nielsen et al., 1992; Hougaard, 2000;
Gorfine, Zucker, and Hsu, 2006) and the marginal hazard models (Wei, Lin, and Weissfeld,
1989; Lee, Wei, and Amato, 1992; Cai and Prentice, 1995, 1997; Spiekerman and Lin,
1998). When the intracluster correlation is not of interest, marginal hazard models are
preferred approach since they avoid strong assumptions about the dependencies among
correlated failure times.

In the literature of marginal hazard models, two types of models have been extensively
studied: the different baseline hazard model (Wei et al. 1989, referred to as the WLW
model) and the common baseline model (Lee et al. 1992, hereafter referred to as the CBM
model). When the main exposure is observed only on a validation set, several methods have
been proposed to fit marginal hazard model by taking use the auxiliary information. For
example, Hu and Lin (2002) developed a corrected score approach to provide a class of
consistent estimators assuming that the auxiliary and the true covariate have the same mean.
Liu et al. (2009) proposed an estimated pseudo-partial likelihood method assuming a
discrete auxiliary covariate. For continuous auxiliary covariate, Liu et al. (2010) proposed to
correct the partial likelihood through a kernel estimation procedure. All these methods are
based on a marginal hazard model with different baseline hazards(WLW model). However,
in many practical situations, including studies of disease occurrence patterns of twins or
siblings, or in litter mate experiments, or the clustered failure time data in which the subjects
within clusters are exchangeable, it will be natural to restrict the baseline hazard functions to
be common for some or all members of a cluster. To the best of our knowledge, no methods
are available for analysis of correlated failure time data with auxiliary information under the
framework of CBM model.

In this paper, we propose a new inference method based on a pseudo-partial likelihood for
the clustered failure time data where the main exposure is only observed for the validation
set. We assume a marginal proportional hazards model with common baseline hazard and
discrete auxiliary variable. The relative risk function is estimated by a weighted average of
all the observations from the validation set. Consequently, the resulted estimating equation
is not a marginal martingale and the classical martingale theory, the key to the theoretical
development of CBM model, is not sufficient to derive the asymptotic results in this case.
We employ results from the modern empirical process theory to derive the asymptotic
properties of the proposed estimators. Simulation studies show that our proposed estimator
is more efficient than the simple estimator based on the validation data, while not much less
efficient than that from the full data. The merit of our approach is that it does not require the
specification of the association between the main exposure and its auxiliary.

The rest of the paper is organized as follows. In Section 2, we outline the data structure and
propose an estimating procedure for the regression coefficients and cumulative hazard
function. The large sample properties of the proposed estimators for regression coefficients
and baseline hazard function are given in section 3. Extensive simulation studies are
conducted to examine the finite-sample properties and robustness properties of the proposed
methods in section 4. We illustrate the proposed method through the analysis of a real data
set from the Framingham study in section 5. Concluding remarks are given in Section 6. All
proofs are outlined in the Appendix.
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2 Model and Estimation
2.1 Notation and Models

We first set up the requisite notation. Suppose that the full cohort consists of n independent
clusters, and the i-th cluster has ni correlated subjects. We assume that subjects within the
same cluster are exchangeable conditional on covariates (Hougaard, 2000). Suppose that
each individual has a fixed probability to have the main exposure covariate being measured.
The set for individuals who have their main exposure covariate and other covariates being
observed is refereed as validation set.

Let Tik and Cik be the failure time and censoring time for (i, k), where (i, k) represents the k-
th subject in the i-th cluster. The observed time is Xik = min(Tik, Cik). Let Yik(t) = I(Xik ≥ t)
be at-risk indicator process, Δik = I(Tik ≤ Cik) denotes the failure indicator and Nik(t) = I(Xik
≤ t, Δik = 1) is the standard counting process, where I(·) is the indicator function. Let Eik(t)
and Zik(t) denote the possibly time-dependent covariates, where Eik(t) is the main exposure
subjecting to missing and Zik(t) is the remaining covariate vector which is fully observed.
Let Eik = {Eik(t), t ≥ 0}, and Zik is defined similarly. All the time-dependent covariates are
assumed to be external, i.e. they are not affected by the disease processes (Kalbfleisch and
Prentice, 2002). Suppose that the n sets of clustered observations (T, C, E, Z) are
independent and identically distributed. Within each cluster, the observed vectors (T, C, E,
Z) maybe dependent on each other, but are identically distributed. The number of subjects in
each cluster, ni, does not depend on the observations of (T, C, E, Z). In addition, the
clustered observations of T and C are assumed to be independent conditional on the
clustered observations of covariates E and Z (i.e. independent censoring).

Suppose that the complete covariate histories (Eik(·), Zik(·)) are available for the subjects in
validation set and only Zik(·) available for the subjects in non-validation set. Let ηik be the
indicator for subject (i, k) being selected into the validation set, and ηik is assumed to be
independent of {Nik(·), Yik(·), Eik(·), Zik(·), ni : k = 1, · · ·, ni}. In addition, some auxiliary
information for Eik(·) are observed for the whole cohort subjects and are denoted by Aik(·). In
this paper, we assume that Aik(·) is categorical. Therefore, the observed data can be
represented by (Xik, Δik, Zik, ηikEik, Aik). For i = 1, · · ·, n and k = 1, · · ·, ni, we assume that
ηik's are independent Bernoulli variables with distribution Pr(ηik = 1) = ρ.

We assume that conditional on (Eik, Zik), Aik provides no additional information to the
regression model, i.e.

(1)

where λik(·) denotes the corresponding conditional marginal hazards function.

Suppose that the marginal hazard function of Tik follows the proportional hazards model
(Cox 1972):

(2)

where λ0(t) is an unspecified common baseline hazard function, and  are the
parameters to be estimated.

When subject (i, k) belongs to the non-validation set, we only observe Zik and Aik. Under this
situation, we can derive an induced hazard function as follows:
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(3)

where A* includes auxiliary variable A and the part of the information in covariate Z that,
given A, are still related to E and  denotes the expectation. That is, A* satisfying the
following conditional dependence f(Eik(t)|Xik(t) ≥ t, Zik(t), Aik(t)) = f(Eik(t)|Xik(t) ≥ t, A*ik(t)),
where f denotes the conditional density function. Notice that under this formulation, A* still
satisfies the auxiliary assumption that given E and Z, A* does not contribute to the
regression model, i.e., λ(t|Z, E, A*) = λ(t|Z, E). In this paper, we assume that A*ik is
categorical.

2.2 Proposed estimators
By (2) and (3), we derive the induced relative risk function to the baseline as:

(4)

where . Note that ϕ is a conditional expectation.

 can be interpreted as the induced relative risk for a subject with a missing E. If
the data were completely observed, then the regression parameter β of model (2) could be
estimated by solving the estimating equation U(β) = 0 (Lee et al. 1992), where

(5)

with τ denote the study end time,  is the

d-th derivative of rik(β, u) with respect to β (d = 0, 1) and . Since
the data is not complete, (5) cannot be calculated. We need to estimate rik first. It is
sufficient to estimate ϕik(β1, t). Before we give the estimation formula, we first define some
necessary notations. Suppose  is finite discrete with the distribution P(A*(t) = am) =
pm, m = 1 · · · L. Let

Define . It can be shown that
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Therefore, it is natural to estimate ϕam(t) empirically by taking average over those non-zero

 as following:

ϕik(β1, t) can be estimated by

(6)

Replace ϕik(β1, t) in (4) with its estimator , we obtain the estimator for relative risk
rik(β, t),

Define . We can estimate β0, the true parameter, by
 the solution of , where

(7)

with  be the first derivative of  with respect to β

By plugging the estimator of relative risk rik in the commonly-used Breslow estimator for
the cumulative baseline function, we obtain a natural estimator for cumulative baseline

hazard :

3 Asymptotic Properties
To investigate the asymptotic properties of the proposed estimator, we introduce some

notations first. Let  be the true regression parameter. For a vector a = (a1, · · ·,
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ap)′, let . Unless otherwise stated, all the limits are taken as n →
∞.

Let  be the marginal martingale and

Our main results are given in Theorem 1-2 below, the regularity conditions and the proofs of
which are given in the Appendix. We provide only brief remarks about the proofs below.

Theorem 1. Under the regularity conditions in the Appendix,  is a consistent estimator of

β0. Also,  is asymptotically normally distributed with mean zero and variance
matrix in the form , where

with

where s(11)(β, t) and s(12)(β, t) equals the first derivative of s(0)(β, t) to β1 and
β2 respectively.

It is worth pointing out that when there is no individual subjecting to missing, the
asymptotic variance ΣE of proposed estimator is equal to that of partial likelihood estimator
in Lee et al. (1992). The proof of consistency of  follows by the inverse Function Theorem
(Foutz 1977). The asymptotic normality follows from the asymptotic normality of

, a Taylor expansion and the Cramèr-Wold device. The asymptotic normality of
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 is derived by multiple central limit theorem and results from empirical process
theory.

To study the asymptotic properties of , we define the following metric space. Let
 be a space consisting of right-continuous functions {f(t)} with left limits, where f(t) :

[0, τ] → R, make  a metric space by equipping it with the metric

 for . The essential asymptotic results for the
baseline cumulative hazard function estimator are summarized by the following theorem.

Theorem 2. Under the regularity conditions in the Appendix,  converges in probability

to  uniformly in  converges weakly to a zero mean
Gaussian random field  in , the covariance function between  and  is
C(s, t), where

The asymptotic variance can be consistently estimated by replacing the population quantities
with its empirical counterparts.

4 Simulation Studies
Simulation studies are conducted to evaluate the finite sample performance of the proposed
estimator and to compare the proposed methods with existing methods.

We generated failure time data from n = 300 clusters. We allow the cluster size ni to range
from 1 to 6 with equal probability for each integer value in the range. The partially observed
covariate E is generated from a ni multivariate normal distribution Nni(0, V ), where

and Zik's to be standard normal random variables.

For each cluster i, we use the method in Cai and Shen (2000) to generate the ni correlated
failure times with λ0 = 1, which is an extension of the commonly used multivariate failure
time distribution of Clayton and Cuzick (1985). The joint survival function of the ni
correlated failure times take the form:

(8)
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The positive parameter θ represents the intra-cluster association. θ is chosen to be 0.25, 1.5
and 5.7, which represents a strong, moderate and weak intra-cluster association,
respectively. We assume an uniform distribution over (0, τ) for the censoring time, where τ =
5.96, 1.57 and 0.39 corresponding to censoring proportion of approximately 20%, 50% and
80%.

The auxiliary Aij is generated as follows: we first generate Wij = Eij + eij, where eij ~ N(0,
σ2), then we assign Aij the value of 0, 1, 2, or 3 based on whether Wij is in the interval (−∞,
a1], (a1, a2], (a2, a3], or (a3, ∞), respectively, where a1, a2, a3 are the 25%, 50%, 75%
quantiles of W. Here σ is the parameter that controls the strength of the association between
Eij and Wij, then between Eij and Aij. Smaller σ induces stronger correlation between E and
A. Individuals are selected into the validation set by Bernoulli sampling with equal
probability. Simulation results are based on independent runs of 1000 for each data
configuration.

We compare the proposed estimator  with three alternative estimators: ,  and . The
first two are standard partial likelihood estimators (solution of (5)) by using the full data and
the validation data, respectively.  is the standard partial likelihood using the auxiliary
variable to replace the true exposure variable. In real data settings where E is observed only
for a validation set,  can not be calculated.

Table 1 summarizes the simulation results for β1 = 0 and 0.693 with validation fraction 30%
and censoring rate 50%. We list the empirical mean (mean) and standard error (SD), average
of estimated standard error (SE), the empirical coverage rate of nominal 95% confidence
interval and the asymptotic relative efficiency (RE) with respect to the validation set. When
β1 = 0, all estimators are unbiased. When  under estimated β1, both  and  are
approximately unbiased. For β1,  is more efficient than validation data estimator

 is much more efficient when the auxiliary provides more information
(i.e. smaller σ) or when the intracluster association is weaker (i.e. larger θ); In all the
simulated settings, the proposed estimator is not much less efficient than that from the full

data case . For β2,  is almost as efficient as the full data estimator under all settings we
considered (results do not show here). The proposed estimated standard errors provide a
very good estimate of the true variability of β1 and β2 and the corresponding 95%
confidence intervals have reasonable coverage rates.

Table 2 summarizes the relative efficiency of  to the validation estimator  for β1 under
various validation fractions and censoring rate. We fix β1 = 0.693, θ = 1.5 and σ = 0.1. The
relative efficiency increases when the censoring rate increases and when the validation
fraction decreases. This suggests that, with low validation fraction and high censoring rate,
our proposed estimator performs even more efficient when compared to the validation set
method.

Furthermore, as suggested by the referees, we compare the proposed methods with the
estimated pseudo-partial likelihood estimator (EPPLE, denoted by  proposed by Liu et al
(2009), who constructed the estimator based on the marginal hazard model with different
baseline hazard function for different clusters. The failure time satisfies model (8) with fixed
cluster size being K = 2 and baseline hazard being λ01 = λ02 = 1. We set the size of clusters
as n = 300. The parameter settings are: β1 = 0 and 0.693, β2 = −0.2, θ = 0.25 and 1.5, σ =
0.2. Table 3 show the results for the estimators of β1 by listing the empirical mean (mean),
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standard error (SD) and relative efficiency of  with respect to . As can be seen from

Table 3, our proposed estimator  for β1 tends to be a little more efficient than that of Liu

et al.  this is natural since we use more information to estimate the relative risk in the
proposed method. The relative efficiency of  to  becomes smaller for larger θ. For the
estimator of β2, both these two methods are as efficient as the partial likelihood estimator
based on the full data (results are not listed here).

We also conducted some simulation studies to test the robustness of our approach. The
failure times are generated from marginal hazard model with different baseline functions:

with β1 = 0.693, β2 = −0.2 and n = 300. The censoring rate is around 50% and the validation
fraction is set to 30%. We fix one of the baseline λ01 = 1 and λ02 varies from 1 to 2.4 with
jump 0.2. The working model remains to be marginal hazard model with common baseline
function. Table 4 listed the results. It can be seen that when the working model are not too
far away from the true model (e.g. λ02 ≤ 2), the proposed estimator still works well.

5 Analysis of Framingham study
We illustrate our proposed method to estimate the effiect of cholesterol level on the risk of
Coronary Heart disease (CHD) using a data set from the Framingham study (Dawber 1980).
The Framingham Heart Study was the first prospective study on cardiovascular disease. The
study began in 1948 in the United States. Participants from the town of Framingham,
Massachusetts were randomly sampled. The full cohort includes 2336 men and 2873 women
aged between 30 and 62 years. Examination of participants has taken place every two years
and the patients were followed for morbidity and mortality. Since the primary sampling unit
was the family, failure times are likely to be correlated for the individuals within a family.

For simplicity, our analysis consists of data for patients who had no history of hyper-tension
or glucose intolerance and no previous experience of coronary heart disease or a
cerebrovascular accident around age “45”. The data we used consists of 1571 patients from
1401 families, among which 1261 families have only 1 patient, 113 families have 2 patients,
24 families have 3 patients and 3 families have 4 patients. Among the full cohort, 250
patients experienced CHD. The time is originated at age “45”(Age45) and the follow-up
information is up to the year 1980. In our analysis, the failure time was defined as the time
from Age45 to the onset of CHD, and all observations were censored either at the time loss
to follow up, or at the end of the study.

In addition to the cholesterol level (Chol45), as the exposure variable of interest, other
potential confounding variables available for all subjects under study include age at first
exam Framingham (Agev1), body mass index (Bmi45), systolic blood pressure (Sbp45),
gender(Sex, 1 for female and 0 for male), waiting time from first exam to age “45” (Wait),
smoking status (Smoke, 0= no, 1=yes). Since the patients were clustered by family and the
family members are exchangeable within each family, therefore it is reasonable to assume
marginal hazard model (2) with common baseline function. We consider model (2) that
include the above mentioned seven risk factors at Age45 as the covariates.

In the Framingham study, the covariates were measured for all patients, and therefore, this
provide us an opportunity to evaluate our proposed method using various validation
sampling fractions against not only a validation set analysis but also a full data analysis.
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Measurement of the cholesterol level (Chol45) is one example of a variable that maybe
moderately expensive to obtain and therefore represents a candidate main exposure variable
which is observed in a sub-cohort. In terms of practical consideration, smokers usually have
higher Chol45. Hence, we use the smoking status as the auxiliary variable for Chol45. We
consider all seven covariates in the model. The fitted model is:

where Z = (Agev1, Bmi45, Sbp45, gender, Wait, Smoke).

We sampled a sequence of validation sets, with validation fraction ρ being 10%, 20%, 30%
and 40%, from the full cohort of 1571 patients and analyzed them using the proposed
method by assuming that the main covariate, cholesterol level, is only available for the
validation set.

Table 5 listed the results from the Framingham study for the factor “chol45”. It is noted that
the cholesterol level is significant in the full data analysis (95% CI: [0.001, 0.007], p-value:
0.007). Comparing the proposed method and the validation method, we see that at small
validation fractions (ρ < 40%), the proposed estimator does not achieve the significance of
testing βchol45 = 0. Nevertheless, the proposed method is approaching the significant level of
the full cohort analysis as we increase the validation fraction. At ρ = 40%, the proposed
method also reject the null hypothesis that βchol = 0 at 0.05 significance level. Further
inspection of Table 5 also reveals that the validation set analysis consistently produced
smaller Z-scores than the proposed estimator and hence always yielded a larger p-value in
testing βchol45 = 0. At ρ = 40%, the validation estimator did not achieve the significance
level of the full analysis or the proposed estimator.

Table 6 summarizes the results for all the factors in the Framingham study using the three
methods with 615 (ρ = 40%) sample as the validation set. The p-values indicate that, at 0.05
significance level, Chol45, Bmi45, Sbp45, Sex and Smoking status are all statistically
significant for CHD using the proposed method, which is the same as the full data analysis.
However, only Sbp45 and Sex are significant for CHD for the validation set analysis. The
proposed estimates appeared to be closer to the full data analysis, and is more efficient than
the validation set estimator. The standard error of the proposed estimator for all the
covariates is similar at this ρ level with that of the full data estimator.

This example confirmed that the proposed estimator is a more precise estimator. One would
have improved the statistical power that would have been lost if one were only to analyze
the validation set data without incorporating the auxiliary information.

6 Concluding Remarks
In this paper, we proposed an estimated likelihood approach for CBM model, where the
main exposure is partly observed and a discrete auxiliary variable for the main exposure is
available. An estimating equation based on the pseudo-partial likelihood is proposed. Our
approach is nonparametric with respect to the association between the missing covariate and
the observed auxiliary covariate. The proposed estimators are shown to be consistent and
asymptotically normal. The theoretical proof is nontrivial because the classical martingale
theory is not sufficient. Instead, we rely on the results from modern empirical process
theory. Simulation studies and real data example demonstrate that the proposed method
works well in moderate-size sample and shows an improved statistical efficiency over what
would be achieved using only the validation set. Simulation studies also show that the
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statistical efficiency of the proposed method also depend on the validation fraction.
Sampling more individuals result in more efficient proposed estimators.

We have a few recommendations on the applications of the proposed method. First, one can
discretize a continuous auxiliary variable into categories and then apply the proposed
method. To fully take advantage of a continuous auxiliary covariate, a nonlinear smoothing
version of equation (6) will need to be developed. Secondly, the number of categories of the
auxiliary variable cannot be too large (e.g. no more than 6) if the validation sample size is
small (< 60). Additional simulations showed that there could be convergence problems when
the validation size is less than 60 and the number of categories is greater than 6. We
recommend to reduce the number of categories of the auxiliary variable if the sample is
small. Thirdly, the estimating equation of Lee, et al (1992) did not take into consideration of
the potential correlation in the multivariate failure times. Cai and Prentice (1995) and Xue et
al.(2010) showed that more efficient β-estimators could be obtained by introducing weights
into the estimating equations for small and large cluster size respectively. In modeling panel
count data, which involves taking account of the dependence of the successive counts,
Wellner and Zhang (2000) showed that the full non-parametric maximum likelihood
estimator (NPMLE) improved the study efficiency compared to the pseudo likelihood
estimator which ignores the potential correlation between counts. Therefore, introducing
suitable weights to our proposed equation could further improve efficiency. Future work that
improve the efficiency of estimators is certainly warranted.
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APPENDIX

Assumptions and Outline of the Proofs of Theorem 1 and 2
We assume that the following conditions hold:

Conditions

(C1) (Finite interval):  ;

(C2) Pr(τj·(t, am) > 0) > 0;

(C3) For any  has uniformly bounded variation
almost surely over [0, τ];

(C4) For d = 0, 1, 2, there exits a neighborhood  of β0 such that s(d)(β, t) are
continuous function of β, uniformly in t ∈ (0, τ], bounded on  is
bounded away from 0 on  and Σ(β0) is positive definite.

(C5) For , where
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The following lemma (Lemma 4.2, p. 54) in Kosorok (2008) will be often used in proving
the theorem:

Lemma A1. Bn ∈ D[a, b] and An ∈ l∞[a, b] be either cadlag or caglad, where l∞[a, b] is

the collection of all bounded functions on [a, b], and assume . An has
uniformly bounded variation and Bn converges weakly to a tight, mean zero process with

sample paths in D[a, b]. Then .

Define . For  be the d-th

derivative of ϕam(β1, t) respect to . Define 
for a vector b = (b1, · · ·, bp)′ and  for a matrix B = (bij). The following
asymptotic property plays important role in proving the theorems.

Lemma A2. For m = 1, · · ·, L, d = 0, 1, 2,

(A1)

Proof: For d = 0,since , we have

Therefore, the nominator of  equals :

which is op(1) by condition (C5). Combine condition (C2), we can prove (A1) for d = 0. The
same argument works for d = 1, 2.

Define
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Similar as the argument by Liu et al.(2009), we can prove that, for d = 0, 1, 2, 3, 4,

(A2)

(A3)

Since Mik(t) is a Donsker class and  converges weakly to a tight, mean zero
process, we can prove the following useful property by (A3), condition (C4) and Lemma
A1,

(A4)

Before we prove theorems, we prove the asymptotic normality of  in the following
lemma:

Lemma A3. Under conditions  converges to a mean zero Normal
distribution with covariance Σ1(β0) + Σ2(β0).

Proof: By simple algebraic manipulation, we have

(A5)
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By (A1)-(A3), we can show that the first term of (A5) evaluated at β0 equals

Define S(d)(β, t) as the corresponding functions with rik(β, t) substituted for  in
. For the second term of (A5) evaluated at β0, we apply the first order

expansion  to  and

 at  and S(1)/S(0), respectively, we can rewrite the second term of (A5)
evaluated at β0 equals asymptotically:

(A6)

where Ψ(1)(t) and Ψ(2)(t) are defined as the first line and second line of (A6).

By condition (C1)-(C5) and the definition of , Ψ(1)(t) can be rewritten as
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where Qjl(β0) is defined as in Theorem 1. Similarly, we can prove that Ψ(2)(t) is

asymptotically  where Hjl(β0) is defined as in Theorem 1.

It follows that  is asymptotically equivalent to

(A7)

(A8)

(A7) and (A8) are independent. By martingale central limit theorem, (A7) converges weekly
to a continuous normal process with covariance Σ1(β0). (A8) is a summation of iid terms
from the validation sample. By central limit theorem, it converges to a normal distribution
with mean

(A9)

and covariance

Since ηik and ni are independent of covariates {Nik(·), Zik(·)} and 
is a local martingale, we have the expected value of the first term in the mean expression

(A9) is 0. It is easy to show that  and . Therefore the second
term is 0.

The covariance matrix can be expressed as Σ2(β0, which is defined in Theorem1. Therefore
the limiting distribution of 

Proof of theorem 1:

(1) Consistency—To prove the consistency of , we use the Inver Function Theorem
(Foutz 1977) by verifying the following conditions: (I)  exists and is
continuous in an open neighborhood  of β0; (II)  is negative definite with
probability going to 1; (III)  converges in probability to A(β), uniformly for β
in an open neighborhood of β0; (IV)  in probability.

Clearly (I) is satisfied due to the continuity of  and .
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Similar as Andersen and Gill (1982), we can decompose  into several parts:

(A10)

where .

By (A1)-A(4), we can prove that the first term of the right side of (A10) equals
asymptotically

which is martingale and converges to zero in probability by Lenglart inequality.

By condition (C1) and (A1), we can prove that  converges in probability to

When β = β0, we have s(4)(β0, t) = s(2)(β0, t), and A(β0) = −Σ(β0) is negative by condition
(C4). Thus (II) and (III) are satisfied.

Using the result in the proof of Lemma A3, (IV) hold by Chebyshev's inequality. Having
now verified (I)-(IV), we conclude that  converges in probability to β0.

(2) Asymptotic Normality—By a Taylor expansion of  with respect to β and around
β0, we have

(A11)

where β* is between  and β0.

By (III) and the asymptotical normality of , we proved Theorem 1.

Proof of theorem 2: Note that
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With the consistency of , we can show the first term on the right-hand side of the above
inequality converges to zero by (A2) and the martingale properties, and the second term is
also asymptotically negligible by (A1). Then we prove the uniform consistency of .

We can decompose  into the following three parts:

By (A2), the first term equals . The second term is equal to

 by Taylor expansion and (A1), and to

by (A11) and (III).

By similar arguments as in the approximation proof of Ψ(1)(t), we can show the third term is
asymptotically equal to

Thus

Therefore, we can rewrite the above sums into two independent items as

where uik(t, β0) and vik(t, β0) are defined as in theorem 2. We can easily show E(uik(t, β0)) =
0 and E(vik(t, β0)) = 0. By multivariate central limit theorem, Theorem 2 can be proved.
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