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Abstract
The aim of this paper is to develop a Bayesian local influence method (Zhu et al. 2009, submitted)
for assessing minor perturbations to the prior, the sampling distribution, and individual
observations in survival analysis. We introduce a perturbation model to characterize simultaneous
(or individual) perturbations to the data, the prior distribution, and the sampling distribution. We
construct a Bayesian perturbation manifold to the perturbation model and calculate its associated
geometric quantities including the metric tensor to characterize the intrinsic structure of the
perturbation model (or perturbation scheme). We develop local influence measures based on
several objective functions to quantify the degree of various perturbations to statistical models. We
carry out several simulation studies and analyze two real data sets to illustrate our Bayesian local
influence method in detecting influential observations, and for characterizing the sensitivity to the
prior distribution and hazard function.
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1 Introduction
Survival data are common in various settings, including medicine, biology, engineering,
public health, epidemiology, and econometrics. There is a large literature on developing
various statistical models including parametric, semiparametric and nonparametric models
for analyzing survival data. See the references in Anderson et al. (1993), Fleming and
Harrington (1991), Kalbfleisch and Prentice (2002), Lawless (2003) and Ibrahim et al.
(2001). For instance, frailty models are extensions of the proportional hazards model that
allow us to model the association between individual survival times within clusters and for
modeling multivariate survival data. In addition, cure rate models have been developed to
model time-to-event data for various types of cancers, including breast cancer, non-
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Hodgkins lymphoma, leukemia, prostate cancer, and some other diseases, where for these
diseases, a significant proportion of patients are “cured” (Chen et al. 1999).

Recent advances in computation and prior elicitation have made Bayesian analysis of
complex survival models feasible. For instance, nonparametric prior processes including the
gamma process, the beta process, the Dirichlet process, mixtures of Dirichlet processes,
nested Dirchlet processes, stick-breaking processes, and Polya tree processes have been
developed in semiparametric Bayesian inference (Ibrahim et al. 2001; Sinha et al. 2003;
Hanson and Johnson 2002; Hanson et al. 2009; Dunson and Park 2008; Rodriguez et al.
2008; De Iorio et al. 2009).

The literature on Bayesian survival analysis is enormous, and too numerous to list here.
Ibrahim et al. (2001) give a comprehensive review of Bayesian survival analysis methods up
to 2001 and we refer the reader to their book for more details. More recent work includes
methods for multivariate survival data (Dunson and Dinse 2002; Yin and Ibrahim 2005a),
mixtures of Polya tree priors for accelerated failure time models (Hanson and Johnson
2002), order restricted Bayesian survival analysis (Dunson and Herring 2003; Chen and
Dunson 2004), Bayesian model selection and model averaging in survival analysis (Dunson
and Herring 2005), methods for missing data in survival models (Chen et al. 2002b, 2006;
Ibrahim et al. 2008), Bayesian transformation survival models (Yin and Ibrahim 2005b),
cure rate models (Kim et al. 2009; Yin and Ibrahim 2005c,d; Cooner et al. 2007; Chen et al.
2002a,b,c), methods for recurrent events and panel count data (Sinha et al. 2008; Sinha and
Maiti 2004), additive hazards models (Sinha et al. 2009), dynamic frailty models for
multivariate survival data (Pennell and Dunson 2006), and dependent Dirichlet process
models for survival data (De Iorio et al. 2009). Although not specifically mentioned in their
papers, applications of kernel stick-breaking processes (Dunson and Park 2008) and nested
Dirichlet processes (Rodriguez et al. 2008) to models for survival data are also potentially
promising. Moreover, there has been a substantial literature on Bayesian methods for joint
modeling of longitudinal and survival data. Some recent papers include Brown and Ibrahim
(2003a,b), Ibrahim et al. (2004), Chen et al. (2004), Brown et al. (2005), and Chi and
Ibrahim (2006, 2007).

The literature on Bayesian diagnostics mainly addresses methods based on case deletion
using the Conditional Predictive Ordinate (CPO) (Geisser 1993; Gelfand et al. 1992;
Gelfand and Dey 1994) and the Kullback-Leibler (KL) divergence (Peng and Dey 1995).
Considerable research has been done for developing case influence diagnostics using the KL
divergence under various parametric models (Johnson and Geisser 1983, 1985; Pettit 1986;
Carlin and Polson 1991; Weiss and Cook 1992; Peng and Dey 1995; Weiss 1996;
Christensen 1997; Sinha and Dey 1997; Weiss and Cho 1998). Pettit (1986) suggested the
use of the KL divergence in detecting influential observations in his review of Bayesian
diagnostics. Carlin and Polson (1991) proposed an expected utility approach using the KL
divergence as a utility function to define the influence of a set of observations in a
parametric modeling framework, considering the normal linear model and mixed models.
Weiss and Cook (1992) introduced the KL divergence to assess the divergence between
posteriors in the context of case deletion in generalized linear models. Weiss (1996) and
Weiss and Cho (1998) proposed assessing the influence of case deletion using model
perturbations as well as establishing its relationship to the KL divergence and the CPO.
Sinha and Dey (1997) give a review paper on Bayesian methods for survival analysis and
discuss Bayesian residuals and goodness of fit. Bayesian influence measures for assessing
marginal posterior distributions have also been developed for the multivariate linear model
and normal random effects models in Johnson and Geisser (1985) and Weiss and Cho
(1998).
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Although the above-mentioned methods have not been directly applied to survival models,
they are general enough so that their extensions to censored survival data appear
straightforward. More recently, Bayesian diagnostic methods for semiparametric survival
models using the KL divergence have been examined by Cho et al. (2009).

The extensive literature on Bayesian diagnostic methods for parametric or semiparametric
models has primarily focused on case influence diagnostic procedures, and there is
essentially no literature in Bayesian survival analysis examining more general diagnostic
procedures such as local influence methods, for example (Cook 1986; Zhu et al. 2007; Zhu
and Lee 2001; Zhu and Zhang 2004). In Bayesian analysis of survival data, posterior
quantities such as the Bayes factor or posterior mean for a given dataset may be sensitive to
a small perturbation to any of the three key elements of a Bayesian analysis: the data, the
prior, or the sampling distribution. For this reason, sensitivity analyses should be done to
check the degree of sensitivity of the parameters of interest with respect to these three key
elements of a Bayesian analysis.

In the Bayesian literature, local influence has been developed as a class of sensitivity
analysis methods to perturb each of these three key elements of a Bayesian analysis and
assess the influence of these perturbations on the posterior distribution and its associated
posterior quantities (Berger 1990, 1994; McCulloch 1989; Gustafson 2000; Sivaganesan
2000; Kass et al. 1989; Weiss 1996; Oakley and O’Hagan 2004). The key idea of the local
influence approach primarily computes the derivatives of posterior quantities with respect to
a small perturbation to the prior and the sampling distribution. McCulloch (1989)
generalizes Cook’s (1986) local influence approach to assess the effects of perturbing the
prior in a Bayesian analysis. Moreover, a nonparametric analogue of Cook’s (1986) local
influence approach is to calculate the Frechét derivative of the posterior with respect to the
prior (Gustafson 1996a,b; Gustafson and Wasserman 1995; Berger 1994; Berger et al.
2000). Zhu et al. (2009) develop a general Bayesian influence method for assessing various
perturbations to the prior and the sampling distribution of a class of parametric models while
allowing for incomplete data in a Bayesian analysis. According to the best of our
knowledge, however, very little has been done on developing a general Bayesian local
influence approach for simultaneously perturbing the three components of a Bayesian
model, assessing their effects, and examining their applications in Bayesian survival
analysis.

The aim of this paper is to develop a Bayesian local influence method to perturb the three
components of a Bayesian model and to assess minor perturbations in Bayesian survival
analysis. We propose a perturbation model to individually or simultaneously perturb the
three components of the Bayesian model. We construct a Bayesian perturbation manifold to
characterize the intrinsic structure of the perturbation model and quantify the degree of each
perturbation in the perturbation model. We develop local influence measures for selecting
the most influential perturbation based on various objective functions including the posterior
mean distance and Bayes factor, and examine their statistical properties in Bayesian survival
analysis.

This rest of this paper is organized as follows. In Sect. 2, we introduce the general survival
model and the perturbation model to characterize various perturbations to the initial model.
We construct a perturbation manifold for the perturbation model and derive its associated
geometric quantities. We also develop local influence measures to quantify the effects of
perturbing the data, the prior and the sampling distribution on the posterior quantities. We
present simulation studies and two real data analyses in Sect. 3. We conclude the article with
some final discussion in Sect. 4.
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2 The general method
2.1 Bayesian survival model

Consider data from n independent clusters, with ni observations in the i th cluster for i = 1,
…, n. For the jth observation in the ith cluster (j = 1, …, ni ), we observe a possibly right
censored event time yi j, censoring indicator νi j, where νij = 1 is yij is a failure and νij = 0 if

yij is right censored, and a p × 1 vector of covariates xi j. There is a total of 
observations. Within a cluster, the observations may be dependent, but conditional on the
cluster-specific latent vector bi = (bi1, …, biq )T, (yi j, νij) for different j are independent. Let
Dobs and Dmis = (b1, …, bn) denote the observed data and missing data, respectively, and
Dcom = (Dmis, Dobs ) denotes the complete data.

A formal Bayesian analysis of Dcom involves the specification of a sampling distribution
p(Dcom |θ) and a prior distribution p(θ), where θ = (θF, θI) includes a finite-dimensional
parameter vector θF and a vector of infinite-dimensional parameters θI, such as the baseline
hazard function. For the sampling distribution, we consider a statistical model p(Dcom |θ)
such that

(1)

and p(Dobs |θ) = ∫ p(Dcom |θ)d Dmis. Without the presence of θI, model (1) includes various
parametric models for survival data (Ibrahim et al. 2001; Lawless 2003; Kalbfleisch and
Prentice 2002). This class of survival models also includes proportional hazard models,
frailty models, cure rate models, and many other parametric and semiparametric models. We
mention here that for ease of exposition, we have assumed that the distribution of bi is
parametric and hence its parameters are finite dimensional. However, our methodology is
quite general and can still be applied when the distribution of bi is nonparametric such as a
Dirichlet or Polya tree process, where in this case, the parameters of the distribution of bi are
infinite, and therefore we would write p(bi |θI ) in (1). A typical joint prior specification is to
assume that p(θ) = p(θF ) p(θI ). We usually assume parametric prior distributions for the
components of θF and nonparametric prior distributions for the components of θI. To carry
out Bayesian inference, we usually use Markov chain Monte Carlo (MCMC) methods to
obtain samples from the posterior distribution of the observed data, p(θ|Dobs), given by

(2)

Subsequently, we can calculate posterior quantities of θ, such as the posterior mean of
d(θF ), where d(·) is an arbitrary function.

For the purposes of illustration, we consider the following examples.

Example 1 (Proportional hazard model)—We consider Bayesian analysis of the
proportional hazards model with right censored data (Cox 1972; Ibrahim et al. 2001). This
model is often referred to as the Cox model. In this case, ni = 1 for all i, bi = 0, yi1 = Ti1 ∧
Ci1 is the minimum of the censoring time Ci1 and the survival time Ti1 and νi1 = 1(yi1 = Ti1),
where 1(·) is an indicator function. The Cox model assumes that the conditional hazard
function of yi1 given xi1 is given by
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(3)

where β is a p × 1 vector of regression coefficients and h0(·) is an unknown baseline hazard

function. In this case, θF = β and θI = H0(·), where  is the baseline cumulative
hazard function. The full likelihood for the observed data is given by

(4)

Example 2 (Shared-frailty model)—We consider the commonly used shared-frailty
model with right censored data (Vaupel et al. 1979). Here we have q = 1 and νij takes the
value 1 if yij is a failure time or zero if yij is right censored. It also assumes that the
conditional hazard function of yij given the latent frailty random variable bi for the ith cluster
and xij is given by

(5)

where β is a p × 1 vector of regression coefficients and h0(·) is an unknown baseline hazard
function. It is common to assume a gamma distribution for the latent frailty, that is bi ~ 
(κ−1, κ−1). In this case, θF = (β, κ) and θI = H0(·). The complete-data likelihood function for
all subjects is given by

(6)

Example 3 (Cure rate model)—We consider a Bayesian analysis of the cure rate model
with right censored survival data (Chen et al. 1999; Yakovlev 1994; Ibrahim et al. 2001).
We consider here the promotion time cure rate model as discussed in Chen et al. (1999).
Suppose we have n subjects, and let Ni denote the number of carcinogenic cells for the ith
subject, where the Ni ’s are assumed to be i.i.d. Poisson random variables with mean

, i = 1, …, n. Further, suppose Zi1, …, Zi, Ni are the i.i.d incubation times for the
Ni carcinogenic cells for the i th subject, which are unobserved, and all have baseline
survival function S0(·) with baseline hazard function h0(·), i = 1, …, n. The survival time for
subject i is yi1 = min{Zi j, j = 1, …, Ni }, and the indicator νi1 = 1 if yi1 is a failure time and 0
if it is right censored. Following Chen et al. (1999), the complete-data likelihood p(Dcom |θ)
is given by

(7)

In this case, θF = β and θI = H0(·). Alternative parametric, semiparametric, and multivariate
cure rate models have been developed for modeling time-to-event data for various type of
cancers, such as melanoma and breast cancer (Ibrahim et al. 2001).

Ibrahim et al. Page 5

Lifetime Data Anal. Author manuscript; available in PMC 2012 April 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Example 4 (Prior distributions)—To carry out a Bayesian analysis of the models in
Examples 1–3, we take a joint prior distribution for θ as follows. First we take independent
priors for β, κ, H0, so that p(θ) = p(β) p(κ) p(H0). For κ and β, we may assume κ ~ (φ1, φ2)
and β ~ Np(μ0, Σ0), where (φ1, φ2) denotes the gamma distribution with shape parameter φ1
> 0 and scale parameter φ2 > 0, and Np(μ0, Σ0) denotes the multivariate normal distribution
with p × 1 mean vector μ0 and p × p covariance matrix Σ0. If the smallest eigenvalue
λmin(Σ0) converges to ∞, then Np(μ0, Σ0) tends to an improper prior. In contrast, if the
largest eigenvalue λmax (Σ0) is very small, then N p(μ0, Σ0) tends to a strongly informative
prior.

We can take different prior distributions including a piecewise constant hazards model,
Gamma process model, Beta process model, or a Dirichlet process model for the baseline
hazard h0(·) or cumulative baseline hazard H0(·). One of the most convenient and popular
specifications for h0(·) is the piecewise constant hazards model. To construct this model, we
first construct a finite partition of the time axis, 0 < s1 < s2 < · · · < sJ, with sJ > yij for all i, j,
which leads to J intervals (0, s1], …, (sJ −1, sJ ]. In the jth interval, we assume h0(y) = λj for
y ∈ Ij = (s j−1, sj ]. A common prior for λ = (λ1, …, λJ )T is the independent gamma prior λj ~

(α0 j, α1j) for j = 1, …, J, where α0j and α1j are prior hyperparameters. Another approach is
to build a priori correlation among the λj ’s (Leonard 1978; Sinha 1993; Arjas and Gasbarra
1994; Ibrahim et al. 2001) using correlated priors for λ. For instance, Arjas and Gasbarra
(1994) proposed a first-order autoregressive model on the λj ’s by taking λk |λk−1 ~ (αk, αk/
λk−1) for k > 1. Another common approach to building correlation in the hazard is to define
ψi = log(λj ), j = 1, …, J, and then specify a multivariate normal prior for ψ, where ψ = (ψ1,
…, ψJ )T.

We may also consider a gamma process prior for H0(·), that is, H0 ~  P(c0 H *, c0)
(Kalbfleisch 1978), where c0 is a fixed constant and H *(·) is a known increasing function
with H*(0) = 0. H*(·) can be viewed as a parametric guess for the unknown cumulative
baseline hazard function H0(·). For example if H*(·) is a Weibull distribution, then H*(y) =
γ0 yk0, in which (γ0, k0) are specified hyperparameters. Thus, H*(·) is the mean of the
process and H0(·) is a stochastic process with the properties: H0(0) = 0; H0(t), t > 0, has
independent increments in disjoint intervals; and for t > s, H0(t) − H0(s) ~ (c0(H*(t) −
H*(s)), c0). An alternative approach is to specify a gamma process prior on the baseline
hazard function rate (Dykstra and Laud 1981; Ibrahim et al. 2001).

Our main interest is to make valid Bayesian inferences about θ, and this requires a
reasonably robust prior p(θ) and the correct specification of the sampling distribution. A
non-robust prior for p(θ), the presence of outliers, and misspecifying some of those
modeling assumptions may introduce serious bias in the estimation and inference regarding
β. Thus, it is crucial to assess the robustness of both the prior and the sampling distribution
as well as the identification of outliers. According to the best of our knowledge, no
sensitivity analyses involving all three of the components of a Bayesian model have been
carried out for the survival models considered here.

2.2 Perturbation model
We develop a class of perturbation models to characterize various perturbation schemes to
perturb the data, the prior, and the sampling distribution as follows:

(8)
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and ∫p(Dcom, θ|ω)d Dcom dθ = 1, where ωP ∈ RmP, ωS ∈ RmS, and ωD ∈ RmD represent
perturbations to the prior, the sampling distribution, and the data, respectively. Moreover, let

m = mP + mS + mD, and we assume that  represents no perturbation.
For instance, we may only perturb individual observations (or clusters) in order to identify
influential observations (or clusters). Specifically, the likelihood function p(Dcom |θ, ωD) for
perturbing the data is defined by

(9)

where ωd,i represents the perturbation vector to the observations in the ith cluster. To assess
the sensitivity of model assumptions to a small perturbation, we usually surround p(Dcom |θ)
by a class of distributions p(Dcom |θ, ωS) such that p(Dobs |θ, ωS) = ∫ p(Dcom |θ, ωS)d Dmis,

, and . We may statistically assess whether

 is valid.

As an illustration, we examine various perturbations to the proportional hazards and shared-
frailty models.

Example 1 (continued)—To carry out the Bayesian analysis, we specify independent
priors given by p(θ) = p(β) p(H0), where β ~ Np(μ0, Σ0) and H0 ~  P(c0 H*, c0) as discussed

in Example 4. We consider a prior perturbation to H0 by assuming ,

in which , and a local perturbation to h(y|xi1) by assuming that

, where  are differentiable functions of ωD,i

and . Without loss of generality, we assume that the yi1’s are distinct and
y(1)1 < · · · < y(n)1 denote the ordered failure or censoring times. Following the derivation in
Sinha et al. (2003), the perturbed posterior distribution of β is given by

(10)

where φ (β; μ0, Σ0) denotes the multivariate normal density with mean μ0 and covariance

matrix Σ0, , and ν(j)1 is the censoring indicator for the
jth ordered survival time y(j)1.

Example 2 (continued)—We consider a data perturbation to h(y|xi j, bi ) by assuming

(11)

If , then  represents no perturbation. Thus, the sampling
distribution for the data perturbation, p(Dcom |θ, ωD), is given by
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(12)

The perturbation to the prior ωP (θ) includes the additive ε–contamination class and the
geometric contamination class as special cases (Berger 1990, 1994; Gustafson and
Wasserman 1995; Moreno 2000). We examine perturbations to the prior distribution of θ in
Example 4.

Example 4 (continued)—We perturb p(β) by assuming that β ~ Np(μ0 + ωP,1, ωP,2 Σ0),

where ωP,1 ∈ Rp and ωP,2 ≥ 0 is a positive scalar. Thus,  is

independent of θ, and thus  represents no perturbation. Consider the additive
ε–contamination class given by p(θ; ωP (θ)) = p(θ) + ωP [g(θ) − p(θ)], where ωP ∈ [0, 1]
and g(θ) is a contamination distribution (Berger 1994). We may assume that the density of
p(β) can be approximated by

where P(β; ωP, k) is a multivariate polynomial of order k and ωP are coefficients of P(β;

ωP, k) such that P(β; 0, k) = 1 (Gallant and Nychka 1987). Thus,  represents no
perturbation.

For the piecewise exponential model, we have h0(y) = λj, where sj−1 < y ≤ sj, j = 1, …, J. We
assume that λj ~ (ωP0,j α0 j, ωP1,j α1j) for j = 1, …, J, where ωP,j = (ωP0, j, ωP1,j )T can be
regarded as perturbation vectors and ωP,1 =· · ·= ωP,n = 1 represents no perturbation. Let
log(λj ) = ψj, j = 1, …, J, and let ψ = (ψ1, …, ψJ )T. We consider a perturbation to ψ using a
discretized integrated Ornstein-Uhlenbeck process (Sinha and Dey 1997), given by

(13)

where ψ0,j is the prior mean of ψj, the εj are i.i.d, , and ωP,j can be regarded as
a perturbation parameter, j = 1, …, J − 1. Thus, ωP,1 =· · ·= ωP, J −1 = 0 represents no
perturbation. A simple perturbation to the gamma process prior for H0(·) is to use a positive

scale function k*(t, ωP ) to perturb H*(·) such that , where k*(t,
0) = 1 represents no perturbation.

2.3 Bayesian perturbation manifold
We propose a Bayesian perturbation manifold to quantify each perturbation ω in the
perturbation model to the Bayesian survival model (1). Since Ω is a subset of Rm, the
perturbed model  = { p(Dcom, θ| ω): ω ∈ Rm} can be regarded as an m-dimensional
manifold under some conditions (Amari 1990). The geometric structure of  is mainly
characterized by an m × m generalized Fisher information matrix within the Bayesian
framework, denoted by G(ω) = (g jk (ω)). Let ωk be the kth component of ω, ℓc(ω) = log
p(Dcom, θ|ω), and ∂ωk = ∂/∂ωk. The m2 quantities
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(14)

for j, k = 1, …, m, in which Eω denotes the expectation taken with respect to p(Dcom, θ| ω),
form the metric tensor of , denoted by G(ω). Geometrically, the m functions ∂ωj ℓc(ω) can
be regarded as the basis functions in the tangent space Tω of  at each ω ∈ . If there are
no random effects or missing data, p(Dcom, θ| ω) and ℓc(ω) reduce to p(Dobs, θ| ω) and
ℓo(ω) = log p(Dobs, θ| ω), respectively.  = { p(Dobs, θ| ω): ω ∈ Rm} can be regarded as a
generalization of the perturbation manifold in Zhu et al. (2007, 2009).

An appropriate perturbation to the survival model (1) requires that G(ω0) be a diagonal
matrix. Since G(ω) is essentially a Fisher information matrix, the (i, i)th element gii (ω) can
be interpreted as the amount of perturbation introduced by ωi, whereas gij (ω) represents the
association between ωi and ωj. A diagonal G(ω) indicates that all components of ω may be
regarded as being orthogonal to each other in the perturbed model (Cox and Reid 1987). A

large value of  indicates that ωi and ωj play similar roles in the
perturbation model . An extreme scenario is that ωi and ωj are linearly dependent, that is

, and thus one of them can be dropped. For interpretation purposes, it
is important to introduce an appropriate perturbation to the survival model (1) in order to
make it easier to identify the source of a large perturbation.

Although G(ω0) may not be diagonal for an arbitrary perturbation ω, we can always choose
a new perturbation vector ω̃, defined by

(15)

such that G(ω̃) evaluated at ω0 equals Im (Zhu et al. 2007, 2009). Given the geometric
structure of , we can further carry out influence analysis of ω.

We can compute several additional geometric quantities of the manifold , which are useful
for characterizing the geometric structure of  (Amari 1990). To connect two tangent
spaces at two neighboring points ω and ω′, we introduce the Levi-Civita connection of
G(ω), given as follows:

(16)

Furthermore, we can determine a geodesic ω(t) = (ω1(t), …, ωm (t)) with respect to the
affine connection Γjkl (ω) on . Specifically, the geodesic ω(t) satisfies the equation

where gls(ω) is the (l, s)th element of G(ω)−1. As we move along a geodesic, the tangent
vector of the geodesic does not change in length and direction. The geodesic is an extension
of the straight line ω(t) = ω0 + th in Euclidean space (Amari 1990).
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Finally, we can obtain the Bayesian perturbation manifold ( , G(ω)) with metric tensor
G(ω). As an illustration, we examine the geometric structure of the proportional hazards and
shared-frailty models in Bayesian analysis.

Example 1 (continued)—The perturbation model  = { p(Dobs, β| ωP, ωD) (ωP, ωD) ∈
Ω} can be regarded as a Riemannian manifold. The tangent space Tω of  is spanned by

(17)

where ν(0)1 = 0 and y(0)1 = 0. The submatrices of G(ω0) are given by

(18)

Clearly, G(ω0) is not a diagonal matrix, and thus, ω is not an appropriate perturbation.
However, we can always choose a new perturbation vector ω̃ = ω0 + G(ω0)1/2 (ω − ω0),
which gives an appropriate perturbation.

Example 2 (continued)—We consider the frailty model using the piecewise constant
hazards model and assume the data perturbation (11) to h(y|xi j, bi ). Thus, p(Dcom, θ| ωD) is
given by

(19)

The tangent space TωD of  = {p(Dcom, θ| ωD): ωD ∈ Ω} is spanned by

for i = 1, …, n, where . It can be shown that

 is given by
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(20)

for i = 1, …, n and . Here, a⊗2 = aaT for a vector a.
When ωD,i is a scalar for each i, G(ω0) is a diagonal matrix and thus, ω is an appropriate
perturbation. In general, for multivariate ωD,i, we can choose a new perturbation vector

 for each i to obtain an appropriate perturbation ω̃D =
(ω̃D,1, …, ω̃D,n)T.

2.4 Local influence measures
We consider an l × 1 objective function f (ω):  → Rl, such as the posterior mean distance,
φ-divergence (l = 1, see Example 6), or Bayes factor (l = 1), which defines the aspect of
inference of interest for sensitivity analysis. We first consider the finite-dimensional
manifold . Let ω(t) be a geodesic on  with ω(0) = ω0. It follows from a Taylor’s series
expansion that f (ω(t)) = f (ω (0)) + ḟh(0)t + O(t2), where ∂t ω(t)|t=0 = h ∈ Rm and

, in which ∇f = ∂ωf (ω0).

First, we consider the case with ∇f ≠ 0. We define a first-order influence measure (FI) in the
direction h ∈ Rm as follows:

(21)

where G = G(ω0) and Wf is a positive semi-definite matrix. Particularly, for the appropriate
perturbation ω̃(ω) in (15), FI f,h reduces to

(22)

The maximum value of FI f,h equals the principal eigenvalue of , which
quantifies the largest degree of local influence of ω̃ to a statistical model, while the

corresponding eigenvector of , denoted by hmax, can be used either for
identifying robustness of priors, influential observations, or an inadequate sampling
distribution. The quantity FI f,h has a strong connection with McCulloch’s (1989) Bayesian
local influence measure for assessing the prior. The quantity hmax indicates the worst
perturbation direction for f (ω̃), that is, the direction that gives maximum change to the
objective function. We also suggest inspection of FIf,ei, where ei is an m × 1 vector with ith
component 1 and 0 otherwise (Zhu and Lee 2001; Zhu et al. 2007). The use of the FI f,ei ’s
can identify the most significant components of ω̃.

Example 5 (Influence measures)—We consider the logarithm of the Bayes factor for
comparing ω with ω0 as follows:
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(23)

where p(Dobs|ω) = ∫ p(Dobs, θ|ω)dθ = ∫ p(Dcom, θ|ω)d Dmisdθ. Under some smoothness
conditions, B(ω) is a continuous map from  to R. If we set f(ω) = B(ω), it can be shown
that

(24)

To calculate the local influence measures associated with B(ω), we just need to compute ∇B
and G(ω0) and choose an appropriate Wf, such as Wf = I. For instance, for Examples 1 and 2,
we can easily calculate them given the formulas given in Sect 2.3 along with MCMC
methods for computing ∇B.

We consider the posterior mean of a function of θ, denoted d(θ) ∈ Rl, after introducing ω as
follows:

(25)

We can set f(ω) = Md(ω) and Wf ≡ WMd = [Cov(d(θ)|Dobs)]−1. It can be shown that

(26)

and these local influence measures are associated with Gustafson’s (1996a; 1996b) local
sensitivity quantities. To calculate the local influence measures associated with Md(ω), we
just need to compute ∇Md and G(ω0). For instance, for Examples 1 and 2, we can easily
approximate them using the formulas given in Sect. 2.3 along with MCMC methods for
computing ∇Md.

We can also carry out Bayesian local influence when ∇f = 0. For notational simplicity, we
assume that the dimension of f(ω) equals 1. It follows from a Taylor’s series expansion that
f(ω(t)) = f(ω(0)) + 0.5 f̈h(0)t2 + O(t3), where f̈h(0) = hT Hf h and . We define a
second-order influence measure (SI) in the direction h ∈ Rm as follows:

(27)

Particularly, for the appropriate perturbation ω̃(ω) in (15), SIf,h reduces to

(28)

Similar to the first-order influence measure, we only consider the eigenvalue-eigenvector
pairs of G−1/2 Hf G−1/2, which can be used either for identifying non-robust priors,
influential observations, or inappropriate and non-robust sampling distributions. We also
examine SIf,ei (Zhu and Lee 2001; Zhu et al. 2007, 2009).
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Example 6 (φ-divergence)—We consider the φ-divergence between two posterior
distributions before and after introducing the perturbation ω as follows:

(29)

where R(Dmis, θ; ω) = p(Dmis, θ|Dobs, ω)/p(Dmis, θ|Dobs) and φ(·) is a convex function with
φ(1) = 0, such as the Kullback-Leibler divergence or the χ2-divergence (Kass et al. 1989;
Weiss 1996). We set f(ω) = Dφ(ω). It can be shown that ḟ0 = 0 and

(30)

In practice, we use MCMC methods to draw samples  from p(θ,
Dmis|Dobs) to approximate Hf.

3 Examples
3.1 Simulation studies

Survival times yi1 (i = 1, …, 100) are generated from an exponential distribution with hazard

, where xi1 = (xi11, xi12, xi13)T in which xi11, xi12 and xi13 are generated from the
normal distributions N(1.8, 0.20), N(1.7, 0.30) and N(2.0, 0.25), respectively, and β = (β1,
β2, β3)T = (0.8, 0.8, 0.8)T. To introduce some outliers, we generated new survival times {yi1:

i = 99, 100} from the exponential distribution with hazard ,
where εi is generated from a uniform distribution U(0, 1). The survival times {yi1: i = 1, …,
98} are randomly right censored with probability 0.10. The censoring proportion of the
survival times is about 7.2%.

We fit the piecewise constant hazards model to the simulated data in which we chose
subintervals (sj−1, sj] with equal lengths for J = 200 and used MCMC (Metroplis-Hastings)
sampling to carry out Bayesian influence analysis (Chen et al. 2000). We specify the
following prior distributions for β and λj (j = 1, …, J):

(31)

where μ0, Σ0, α0j, α1j are specified hyperparameters. We set μ0 = (0.8, 0.8, 0.8)T, α0j = 8.0,
α1j = 10.0, and Σ0 = diag(0.25, 0.25, 0.25). In the MCMC sampler, we choose a normal
proposal density which yields an average acceptance rate of 32.5%.

We simultaneously perturbed the piecewise constant hazards model and the prior
distributions of β, whose perturbed log-posterior is given by

where δij = 1 if subject i either failed or was right censored in the jth interval and 0
otherwise, νi = 1 if subject i failed and νi = 0 if subject i was right censored, ω = (ω1, …, ωn,
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ωβ1, ωβ2)T and θ = (β, λ). In this case, ω0 = (0, …, 0, 1, 1)T represents no perturbation. After
some calculations, we have

where , and the
expectation is with respect to the joint distribution of (y, β, λ). Then, we chose a new
perturbation scheme ω̃ = ω0 + G(ω0)1/2(ω − ω0) and calculated the associated local
influence measures hmax corresponding to (24) which we denote by , SIDφej and SIMdej,
in which φ(·) was chosen to be the Kullback-Leibler divergence and d(θ) = θ. Cases 99 and
100 were detected to be influential by our local influence measures (Fig. 1a, c, e).

We used the same setup except that we employed a perturbed prior distribution for β,
namely p(β) = N(μ0, 0.4Σ0), and then we applied the same MCMC method, perturbation
scheme, and local influence measures. Cases 99 and 100 and the perturbed prior distribution
of β were identified to have a big effect (Fig. 1b, d, f).

To detect the misspecified survival model, we generated new survival times {yi1: i = 1, …,

100} from an exponential distribution with hazard , where xi1 = (xi11,
xi12, xi13)T is generated from the multivariate normal distribution N3((1.8, 1.7, 2.0)T,
diag(0.2, 0.3, 0.25)). The survival times {yi1: i = 1, …, 100} are randomly right censored
with probability 0.10. The actual censoring proportion of the survival times is about 13.0%.

Similarly, the piecewise constant hazards model with  is used to fit the
simulated data using the priors for β and λj given in equation (31), where we chose
subintervals (sj−1, sj] with equal lengths using J = 120. In this simulation study, we consider
the following perturbation to the sampling distribution p(Dobs|θ), given by

where . In this case, ω = 0 represents no perturbation. The local influence
measures including the Bayes factor, KL-divergence and posterior mean for the above
generated dataset were calculated under a N(0.813, 0.5I3) prior for β and are, respectively,
denoted as tB, tφ and tM. Let β̃ denote the posterior mean of β for the above generated
dataset. To formally assess the sizes of tB, tφ and tM, we computed a “p-value” as follows.
We used the parametric bootstrap and simulated 100 data sets according to the fitted model
with β = β̃. Then, for each simulated data set, three corresponding local influence measures,

denoted as  and , were calculated. The p-values, which were

calculated using the formula , are given by 0.0, 0.04
and 0.0, respectively. These results show that the survival model is misspecified at
“significance level” α = 0.05. In the MCMC scheme, we used a normal proposal density
which yielded an average acceptance rate of 26% in calculating tl, and used a normal
proposal to yield an average acceptance rate of 32% for calculating .
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In the second simulation study, we considered the shared-frailty model. For the shared-
frailty model (5), we set n = 100, and we chose varying values of ni in order to create a
scenario with different cluster sizes. In particular, we set n1 = … = n10 = 3, n91 = … = n100 =
20, and nj ∈ {5, 7, 8, 10, 12, 14, 16, 18} for i = 11, …, 90. For each cluster i (i = 1, …, n),
the survival times yij (j = 1, …, ni) are generated from an exponential distribution with

hazard , where xij = (xij1, xij2, xij3)T in which xij1 = 1.0, xij2 and xij3 are,
respectively, generated from the (5.0, 8.0) distribution and the N(2.0, 0.25) distribution,
where β = (β1, β2, β3)T = (0.8, 0.8, 0.8)T. To introduce some outliers, we generated new
survival times {yij: i = 99, 100, j = 1, …, 20} from the exponential distribution with hazard

. The survival times {yij: i = 1, 2, …, 98, j = 1, …, ni} are randomly
right censored with probability 0.10. The censoring proportion of the survival times is about
15.8% in the dataset.

We fit the piecewise constant hazards shared-frailty model in which we chose subintervals
(sj−1, sj] with equal lengths for J = 120 and used MCMC sampling to carry out Bayesian
influence analysis. Here, we adopted the same prior distributions for β and λl (l = 1, …, J) as
those given in Eq. 31. Also, the same values of the hyperparameters for μ0, α0j, α1j and Σ0
(see the first simulation study) were used in the analysis, and we chose a normal proposal
density in the MCMC scheme to give us an average acceptance rate of 33%.

We simultaneously perturbed the piecewise constant hazards shared-frailty model and the
prior distribution of β. The perturbed complete-data log-posterior of θ = (β, λ) is given by

where δijl = 1 if the jth observation in the ith cluster either failed or was right censored in the
lth interval and 0 otherwise, and ω = (ω1, …, ωn, ωβ1, ωβ2)T. In this case, ω0 = (0, …, 0, 1,
1)T represents no perturbation. After some calculations, we have

where ,
and the expectation is with respect to the joint distribution of (y, β, λ). Then, we chose a new
perturbation scheme ω̃ = ω0 + G(ω0)1/2(ω − ω0) and calculated the associated local
influence measures , SIDDφej and SIC Mhej, in which φ(·) was chosen to be the Kullback
divergence and d(θ) = θ. Cases 99 and 100 were detected to be influential by our local
influence measures (Fig. 2a, c, e).

We used the same setup except that we employed a perturbed prior distribution for β, given
by p(β) = N(4.0μ0, 0.6Σ0), and then we applied the same MCMC method, perturbation
scheme, and local influence measures. Cases 99 and 100 and the perturbed prior distribution
of β were identified to have a big effect (Fig. 2b, d, f).
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Similarly, to detect a misspecified model, we generated new survival times {yij: i = 1, …,

100, j = 1, …, ni} from the exponential distribution with hazard . The
survival times {yij: i = 1, …, 100, j = 1, …, 7} are randomly right censored with probability
0.10. The actual censoring proportion of the survival times is about 10.3%. The piecewise

constant hazards shared-frailty model with  is used to fit the simulated data
using the priors of β and λj given in Eq. 31, where the subintervals (sj−1, sj] have equal
lengths using J = 120. Here, we consider the following perturbation to p(Dobs|θ):

where . In this case, ω = ω0 = 0 represents no perturbation. The local
influence measures including the φ-divergence and posterior mean for the above generated
dataset were calculated using the prior p(β)=N (0.813, 0.25I3) for β. In the MCMC scheme,
we take a normal proposal density such that the average acceptance rate is 34%. To compute
a p-value, again we used the parametric bootstrap method and generated 100 bootstrap
datasets from the fitted model with β = β̃. Two corresponding local influence measures,

denoted as  and , obtained from the 100 simulated data sets were
calculated and used to estimate the p-values as 0.04 and 0.01, respectively. These results
show that these influence measures are significant.

3.2 Multiple myeloma data
Multiple myeloma is a hematologic cancer characterized by an overproduction of antibodies.
The Eastern Cooperative Oncology Group (ECOG) carried out a clinical trial (E2479)
examining a chemotherapy to treat this disease and to also identify important prognostic
factors that are predictive of survival. Our primary goal here is to illustrate the proposed
methodology for carrying out Bayesian influence analysis. The response variable y is time to
death, which is subject to right censoring. There are a total of n = 339 observations with
eight observations being right censored. We examine eight covariates, which are blood urea
nitrogen (x1), hemoglobin (x2), platelet count (x3) (1 if normal, 0 if abnormal), age (x4),
white blood cell count (x5), bone fractures (x6), percentage of the plasma cells in bone
marrow (x7), and serum calcium (x8). To ease the computational burden, we standardized all
the covariates.

We fit the piecewise constant hazards model to the E2479 dataset in which J = 28 is used
with the intervals chosen so that at least one failure or censored observation falls in each
interval. The prior distributions for β and λj (j = 1, …, J) given in Eq. 31 are adopted, but μ0
is taken to be that given in Ibrahim et al. (2001, Table 3.2 with a0 = 0 on p. 63), α0j = 8.0,
α1j = 10.0, and Σ0 = diag(1.0, …, 1.0). In the MCMC sampling, we chose the proposal
density so that it gave an average acceptance rate of 34%.

We simultaneously perturbed the piecewise constant hazards model and the prior
distributions of β and λj (j = 1, …, J), whose perturbed log-posterior is given by
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(32)

where ω = (ω1, …, ωn, ωβ1, ωβ2, ωα1, …, ωαJ)T and θ = (β, λ). In this case, ω0 = (0, …, 0,
1, 1, 1, …, 1)T represents no perturbation. After some calculations, we have

where  and the
expectation is taken with respect with the joint distribution of (y, β, λ). Then, we chose a
new perturbation scheme ω̃ = ω0 + G(ω0)1/2(ω − ω0) and calculated the associated local
influence measures , SIDDφej and SIC Mhej, in which φ(·) was chosen to be the Kullback
divergence and d(θ) = θ. Examination of Fig. 3a indicates that cases 188, 261, 271, 294,
301, 307, 309, 321 and 339 were detected to be influential by our local influence measures;
Fig. 3b shows that cases 110, 185, 261, 271, 304, 307, 321 and 339 were detected to be
influential by our local influence measures; whilst cases 110, 185, 234, 261, 271, 304, 306,
307 and 339 were detected to be influential by Fig. 3c. Cases 261, 271, 307 and 339 were
identified to be influential by all three figures. All these figures show that the priors for β
and λj (j = 1, …, 28) do not impact the analysis very much.

To examine the robustness of the sampling model, we consider the following perturbation to
p(Dobs|θ):

where . In this case, ω = ω0 = 0 represents no perturbation. The local
influence measures including the Bayes factor and φ-divergence were calculated with
p(β)=N(μ0, I8), where μ0 is taken to be that given in Ibrahim et al. (2001, Table 3.2 with a0
= 0 on p. 63) and are, respectively, denoted by tB and tφ. Let β̃ denote the posterior mean of
β for the E2479 dataset. To calculate a p-value, we simulated 100 datasets from the fitted
model with β = β̃, and calculated the two corresponding local influence measures, denoted

by  and , which yielded the p-values 0.0 and 0.0, respectively. These
results show that these influence measures are highly significant and therefore the sampling
model may be misspecified. In the MCMC algorithm, we chose the normal proposal density
to yield an average acceptance rate of 34%.
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3.3 Melanoma data
Melanoma incidence is increasing at a rate that exceeds all solid tumors. Here, we examine a
phase III clinical trial (E1690) carried out by the Eastern Cooperative Oncology Group
(ECOG) involving post-operative chemotherapy for melanoma patients. The two main
treatment arms on the E1690 trial are high-dose interferon (IFN) and observation (OBS),
and one of the main aims in this study was to compare these two treatment arms with respect
to relapse-free survival (RFS). There are a total of n = 427 observations with relapse-free
survival (y) subject to right censoring. To illustrate our proposed methodology, we consider
the three covariates treatment (x1: IFN, OBS), age (x2), and sex (x3).

We fit a semiparametric cure rate model to the E1690 dataset using the likelihood in (7)
along with a piecewise constant hazards model for h0(·) in which J = 10 is used with sj being
the ((1 − e−j/J)/(1 − e−1))th quantile of the yj’s. The prior distributions for β and λj (j = 1, …,
J) given in Eq. 31 are adopted with μ0 = 0, α0j = 8.0, α1j = 10.0, and Σ0 = diag(0.25, …,
0.25). In the MCMC algorithm, we choose a normal proposal density so that the acceptance
rate is approximately 30%.

We simultaneously perturbed the cure rate model (7), a subset of the λj’s, and the prior
distributions of β and λj (j = 1, …, J), whose perturbed log-posterior is given by

(33)

where δij and νi are defined as before, ω = (ω1, …, ωn, ωβ1, ωβ2, ωα1, …, ωαJ, ωλ1, …,
ωλK)T, Tk ∈ {1, …, J} (k = 1, …, K) is an index set and satisfies Tk1 ∩ Tk2 = φ for every k1 ≠
k2 ∈ {1, …, K} and T1 ∪ … ∪ TK = {1, …, J}, and θ = (β, λ). In this case, ω0 = (0, …, 0, 1,
1, 1, …, 1)T represents no perturbation. Here, we take K to be 5 and T1 = {1, 2}, T2 = {3, 4},
T3 = {5, 6}, T4 = {7, 8}, T5 = {9, 10}. After some calculations, we have

where GN = E{ξξT}−E(ξ)E(ξ)T with , Hλ =
E{ηηT}− E(η)E(η)T with η = (η1, …, ηK)T in which

for k = 1, …, K, and the expectation is taken with respect with the joint distribution of (y, β,
λ). Then, we chose a new perturbation scheme ω̃ = ω0 + G(ω0)1/2(ω − ω0) and calculated
the associated local influence measures SIDφej and SIC Mhej in which φ (·) was chosen to be
the Kullback divergence and d(θ) = θ. It is important to note here that cure rate models have
improper survival functions (i.e., limt→∞ S(t) > 0), and therefore the survival density of the
cure rate model integrates to a constant less than 1. In order for the metric tensor to be
meaningful here, we must therefore normalize the survival density for the cure rate model so
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that it is a bonafide density (i.e., integrates to 1). After doing such a normalization, the
metric tensor G is well defined for this model and has a theoretical justification. Such a
theoretical justification, however, is beyond the scope of this paper.

Results for the Bayesian analysis are reported in Fig. 4. Figure 4a shows that cases 110, 132,
205, 221, 230, 237, 257, 264, 296, 326, 388 and 405 were detected to be influential by our
local influence measures; whilst cases 26, 35, 77, 267, 296, 297, 341, 397 and 405 were
detected to be influential by Fig. 4b. Cases 296 and 405 were identified to be influential by
Fig. 4a, b.

4 Discussion
We have developed a Bayesian local influence method to perturb Dcom, p(θ), or p(Dcom|θ) in
assessing minor perturbations to the prior and/or the sampling distribution in Bayesian
survival analysis. We have introduced a perturbation model to characterize simultaneous (or
individual) perturbations to the data, the prior distribution and the sampling distribution. We
have constructed a Bayesian perturbation manifold to the perturbation model and calculated
its associated geometric quantities including its metric tensor. We have developed first-order
and second-order local influence measures based on several objective functions to quantify
the degree of various perturbations to the statistical model. Finally, we have also examined a
number of examples to highlight the broad spectrum of applications of this local influence
method in Bayesian survival analysis.

Finally, we mention that in order for the metric tensor G to be well defined for the proposed
methodology, the joint density of (y, θ) needs to be proper, that is, it needs to integrate to 1.
Therefore, proper priors for θ must be used as well as proper sampling densities. The cure
rate model, as noted earlier, does not have a proper sampling (survival) density and
therefore, the survival density must first be normalized before the metric tensor and other
geometric quantities can be calculated. The normalized survival density in this case is given
by

where f*(γ|θ) is the (improper) survival density for the cure rate model. Theoretical
justifications for these types of models as well as extensions of this methodology to
Bayesian models with improper priors will be pursued elsewhere.
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Fig. 1.
Index plots of local influence measures for simultaneous perturbation. In the first column,
three local influence measures including (a) SIDφej, (c) , and (e) SIMdej can detect the
two influential cases: 99 and 100, and (g) gii. In the second column, three local influence
measures including (b) SIDφej, (d) , and (f) SIMdej can detect both the two influential
cases (99 and 100) and the impact of the perturbed prior distribution for β, and (h) gii
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Fig. 2.
Index plots of local influence measures for simultaneous perturbation. In the first column,
three local influence measures including (a) , (c) SIDφej, and (e) SIC Mhej can detect the
two influential cases: 99 and 100, and (g) gii. In the second column, three local influence
measures including (b) , (d) SIDφej, and (f) SIC Mhej can detect both the two influential
cases (99 and 100) and the impact of the perturbed prior distribution for β, and (h) gii
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Fig. 3.
Index plots of local influence measures (a) , (b) SIDφej, (c) SIC Mhej, and (d) gii for
simultaneous perturbation (30)
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Fig. 4.
Index plots of local influence measures (a) SIDφej, (b) SIC Mhej, and (c) gii for simultaneous
perturbation (31)
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