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Abstract
Recurrent events data are frequently encountered and could be stopped by a terminal event in clinical
trials. It is of interest to assess the treatment efficacy simultaneously with respect to both the recurrent
events and the terminal event in many applications. In this paper we propose joint covariate-adjusted
score test statistics based on joint models of recurrent events and a terminal event. No assumptions
on the functional form of the covariates are needed. Simulation results show that the proposed tests
can improve the efficiency over tests based on covariate unadjusted model. The proposed tests are
applied to the SOLVD data for illustration.
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1 Introduction
In many clinical trials, events may occur repeatedly for individual subjects and the occurrence
of such recurrent events could be stopped by a terminal event. For instance, recurrences of
hospitalizations could be terminated by the death of a patient. It is often of interest to assess
the treatment efficacy simultaneously with respect to both the recurrent events and the terminal
event in many applications.

As an example, let us consider the Studies of Left Ventricular Dysfunction (SOLVD),
conducted between June 1986 and March 1989, to determine the effectiveness of Enalapril in
reducing mortality and hospitalizations for heart failure in patients with chronic congestive
heart failure and low ejection fractions (The SOLVD Investigators 1991). A total of 2569
patients were randomly assigned to placebo or Enalapril. The patients experienced between
zero and twenty-seven hospitalizations during the course of the study. The death rate was about
39.7% for the placebo group and 35.2% for the SOLVD group. Since death could be related
with the hospitalization process, these high death rates are not negligible.

Several methods have been proposed for the analysis of recurrent events data, for example, the
work of Andersen and Gill (1982); Wei et al. (1989); Pepe and Cai (1993); Lawless and Nadeau
(1995) and Lin et al. (2000). All these methods assume that the censoring mechanism is
independent of the recurrent event processes. Some efforts have been made in recent years on
modeling the recurrent events and the terminal event, such as Huang and Wang (2004) (HW
hereinafter), Liu et al. (2004); Ye et al. (2007); Huang and Liu (2007); Rondeau (2007) and
Liu and Huang (2008). These works account for the dependence between the recurrent events
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and the terminal event by allowing a common frailty variable to have a multiplicative effect
on the recurrent event intensity, rates/means function and on the hazard function respectively.
To assess the treatment efficacy, simultaneous test statistics can be built on the score statistics
of the joint models for both the recurrent events and the terminal event.

Jointly assessing the treatment efficacy on the recurrent events and death has been treated
previously using log-rank type of statistics, see Cook and Lawless (1997) and Ghosh and Lin
(2000). There are several differences between these two methods and the proposed method.
Firstly, both methods of Cook and Lawless (1997) and Ghosh and Lin (2000) build on the
assumption that the recurrent event processes are terminated by death in the sense that they are
not defined after death. In this paper, we view the recurrent event process as latent,
unobservable after death; that is, death is viewed as dependent censoring. This was also the
approach taken by Ghosh and Lin (2003) and Huang and Wang (2004). Secondly, Ghosh and
Lin (2000) proposed a one degree freedom test by taking a linear combination of the marginal
log-rank statistics for death and for recurrent events, to perform simultaneous inference on both
endpoints. When there is a treatment effect in one endpoint but not in the other, or the treatment
effects for both endpoints are in opposite directions, such a combined statistic does not have
satisfactory power. In addition, the clinical interpretation in these circumstances is not very
clear and could be misleading sometimes. Moreover, both methods of Cook and Lawless
(1997) and Ghosh and Lin (2000) build on the marginal treatment effects for the endpoints and
does not consider the correlation between the recurrent event process and the terminal event,
which however often exists in practice. With the intention to test the treatment effects on both
endpoints while dealing with the dependence between the terminal event and the recurrent
events and incorporating auxiliary covariates information, we consider joint modeling based
covariates-adjusted score statistics in this paper.

It is well known that incorporating covariates in log-rank type of test can improve efficiency
(Tsiatis et al. 1985; Slud 1991; Kong and Slud 1997; Li 2001). The rationale of this approach
builds on the behavior of such tests under model misspecification (Struthers and Kalbfleisch
1986). That is, the unadjusted test is actually based on a different model other than the data
generating process, if the process indeed depends on some covariates. The efficiency of such
covariate-adjusted tests highly depends on the prespecified working model: these tests may
not be as efficient as the covariate-unadjusted tests if the prespecified working model is wrong.
The interpretation of the unadjusted test and that of the covariate-adjusted test is thus different:
the covariate-adjusted test is trying to test a conditional treatment effect; while the unadjusted
test is trying to test a marginal treatment effect.

Recent development of semiparametric theory (Bickel et al. 1998; Tsiatis 2006) provides a
new framework of covariate adjustment in treatment comparison. In this framework, the model
space can be enlarged by incorporating more covariates which are independent of the treatment
assignment, but correlated with the outcome. Different from the covariate-adjusted approach
mentioned above, the approach does not involve study of model misspecification. Since the
auxiliary covariates can provide more information of the outcome, this method can provide
more efficient inference compared with the covariate-unadjusted modeling while possessing
the same model interpretation.

In this paper, we propose covariate-adjusted score statistics based on HW's model using this
approach. The inference is focused on the comparison of the treatment effects on the intensity
of the recurrent events process and on the cumulative hazards of the terminal event. We propose
efficient influence functions in a certain class of functions and develop the inference procedure.
Simulation results demonstrate that the proposed tests can significantly improve efficiency
compared with the original HW's model. Compared with the score tests based on HW's model
with the treatment indicator as the only regressor, our test can incorporate auxiliary covariates
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information, hence are more efficient while keeping the same interpretation and similar
computational advantage as HW's method. Moreover, compared with the traditional covariate
adjustment methods, the proposed method provides a better solution when the functional form
of the auxiliary covariate is unknown. We also give rigorous justification and asymptotics of
the inference procedure, by applying the semiparametric theory to the multivariate failure time
data. We demonstrate both empirically and theoretically the efficiency gains of the proposed
tests over tests based on HW's model with the treatment indicator as the only regressor. We
also empirically demonstrate the efficiency gains of the proposed method over HW's model
with the adjustment covariates as the regressors.

The remainder of the paper is organized as follows. In Sect. 2, the data set-up and HW's joint
model are introduced. The proposed efficient influence functions, the corresponding estimating
equations and the inference procedure are presented in Sect. 3. Section 4 gives some simulation
evidence and the proposed method is applied to the data from the SOLVD study in Sect. 5.
The article concludes with some discussion in Sect. 6.

2 The data and model assumptions
Assume that there are n independent subjects randomly assigned to two treatments with known
probabilities ρ and 1 − ρ, and accordingly define Xi = 0 or 1, for subject i = 1, . . . , n. Let Ti ≡
(Ti1, Ti2, . . . , TiMi), where Ti1 < Ti2 < . . . < TiMi are the ordered event times of interest which
constitute the recurrent event process, and Mi denotes the number of recurrent events for subject
i. Let Di be the terminal event time and Ci be the censoring time. The research interest is focused
on Ti and Di in time interval [0, τ], where τ is the time for the end of the study and both event
processes potentially could be observed beyond τ.

Define Yi ≡ min(Ci, Di, τ), the time when the observation of the recurrent event process is
terminated, and Δi ≡ I (Di ≤ Yi), the failure indicator function for the terminal event. The
observed data for subject i, Oi ≡ (Ti, Yi, Δi, Xi) are independent replicates of O ≡ (T, Y, Δ, X).
We also utilize when convenient the following counting process notation:

, , ,  and
.

To account for correlations among Ti, Di and Ci, a nonnegative latent variable γ is used without
specifying its distribution. This latent variable γ satisfies E(γ) = E(γ|X) = 1 to assure the model
identifiability. Conditioning on the covariate Xi and the latent variable γi, which is an i.i.d.
realization of γ, {Ti, Di, Ci} are assumed to be mutually independent.

Let  be the σ-field generated by the recurrent event process {NR0(s) : 0 ≤ s ≤ t}, and λ(t) be

the intensity function of NR0(t) associated with , that is, , where
dNR0(t) is the increment NR0{(t + dt)−} − NR0(t−) of NR0 over the small interval [t, t + dt). It
is assumed that λ(t) = γλ0(t)exp(Xα0), t ∈ [0, τ], where the baseline intensity function λ0(t) is a
continuous function, and the log intensity ratio α0 denotes the treatment effect for the recurrent
events. Similarly, let  be the σ-field generated by the death process {ND0(s) : 0 ≤ s ≤ t}, and

h(t) be the hazard function of ND0(t) associated with , that is, ,
where dND0(t) is the increment ND0{(t + dt)−} − ND0(t−) of ND0 over the small interval [t, t +
dt). It is assumed that h(t) = γh0(t) exp(Xβ0), t ∈ [0, τ], where h0(t) is a continuous baseline
hazard function and the log hazard ratio β0 denotes the treatment effect for the terminal event.
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Let Λ0(·) and H0(·) be the cumulative baseline intensity function and cumulative baseline
hazard function respectively, the likelihood function based on {γi} and the observed data
{Oi} takes the form Ln(α, β, λ0(·), h0(·)) ≡

(1)

Since E(NR(Yi)|Xi, Yi, γi) = E(Mi|Xi, Yi, γi) = γi exp(Xiα0) Λ0(Yi), it follows that

, which suggests the following estimating equation for α0:

(2)

An estimating equation for β0 can be constructed from the usual partial score function of β for
the terminal event:

(3)

We note that, however, Eqs. 2 and 3 are not directly applicable, since {γj} are not observed
and Λ0(·) is unknown. Huang and Wang (2004) proposed plug-in estimator  and  which
are easy to compute as follows.

To find an unbiased estimator of Λ(·), we note that the likelihood in Eq. 1 can be decomposed
as Ln =

The first part L1n arises from the conditional distribution of the event times, given the observed
number of events Mi, and it does not require information on Xi and the unobserved γi. Define
a probability density function f(t) = λ0(t)/Λ0(τ) on t ∈ (0, τ] and the corresponding cumulative
probability function F(t). Conditional on (γi, Yi, Xi, Mi), the observed recurrent event times are
the order statistics of a set of independent and identically distributed random variables with
likelihood L1n. F(t) can be estimated by a nonparametric maximum likelihood estimator of
L1n, with:

(4)

where {s(l)} are the ordered and distinct values of the event times {Tik}, d(l) is the number of
events occurring at s(l), and N(l) is the total number of events with event time and censoring
time satisfying Tik ≤ s(l) ≤ Yi. The class of estimating function for α can be upgraded as
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where  and . The estimator is denoted as .

To resolve the problem of unknown γ in the estimation of β, again note that E(Mi|Xi, Yi, γi) =
γi exp(Xi α0)Λ0(Yi). The subject specific frailty γi can thus be estimated as:

Plugging  into the score function (3), another estimating equation for β becomes:

with the estimator denoted as . Define functions G(t) ≡ E(γ I (Y1 ≥ t)), R(t) ≡ G(t)Λ0(t),

, and

It was shown in HW that under certain regulatiry conditions,

, with the influence function fi(α) being the second

entry of the vector function , where

. The asymptotic variance of 

is thus .

To study the asymptotic properties of , further define

where
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, and

. Through some linearization arguments, it can be shown that under certain regularity

conditions, , where the influence function gi(β) = E

[∂U(β)/∂β]−1ψi(β). The asymptotic variance of  is thus . Since it is not easy to directly
implement the plug-in estimator of fi and gi, bootstrap variance estimators of α and β is used
in Huang and Wang (2004).

Compared with other joint models of the recurrent and the terminal event processes (Liu et al.
2004; Ye et al. 2007), HW's model relaxes the condition of independent non-death censoring
and is computationally simpler at the expense of efficiency. To be specific, both Liu et al.
(2004) and Ye et al. (2007) involve procedures solving for the high dimensional parameters:
Λ0(·) and H0(·), while HW method uses a plug-in estimator of the shape function of Λ0(·) and
only needs to solve two estimating equations for α and β. As a consequence, Liu et al.
(2004) and Ye et al. (2007) maximize the full likelihood, while HW method maximizes a
conditional likelihood, hence may not be as efficient as the former two methods, which was
empirically demonstrated by Ye et al. (2007). On the other hand, the frailty distribution in HW
method is left unspecified, whereas Liu et al. (2004) and Ye et al. (2007) both have the gamma
distribution assumption. As HW method allows greater generality by leaving the frailty
distribution function unspecified, however, the plug-in estimation of γ for each individual is
rather loose and leads to larger variability for the estimation of β. In the next section, with
intention to improve efficiency while keeping the generality and computational advantage of
HW method, we propose score test statistics through incorporating the information of auxiliary
covariates.

3 A general class of influence functions
In this section, we provide a class of influence functions based on HW's model, and an auxiliary
p−dimensional covariate Z. By “auxiliary covariate”, we refer to variables other than the
treatment indictor, that are correlated with the outcome processes. For ease of illustration, we
set p = 1. We assume that Z is independent of X, and is correlated with both recurrent events
and the terminal event processes. Conditional on (X, Z, γ), (NR(·), D, C) are mutually
independent. As a referee point out, if censoring C affects D or NR(·) in ways other than γ, then
the proposed method can not relax the independent non-death censoring assumption. Other
model assumptions in Sect. 2 also apply here.

We first introduce some relevant results in semiparametric efficiency framework for ease of
readers. Assume the observed data {Xi}, i = 1, . . . , n are i.i.d. random variables and the
distribution function of X has the form pX(x; θ) with respect to some dominating measure,
indexed by an unknown parameter θ ≡ (β, Λ). The parameter of interest is β and Λ is a nuisance
parameter. If an estimator  asymptotically normally converges to the true value θ0 with root-

n rate, that is, , the mean zero function ϕ(Xi; θ) is
called the influence function and can be used for the inference of . The influence functions
associated with parameter β belong to , a Hilbert space  of all functions with zero mean
and finite variance. The efficient influence function ϕ*(X; θ) is defined as the influence function
with the smallest variance, i.e., . The efficient influence function
is associated with the efficient estimator which is the estimator with the smallest asymptotic
variance achieving the information bound. The efficient influence function is orthogonal to the
nuisance tangent space associated with Λ.

Song and Cai Page 6

Lifetime Data Anal. Author manuscript; available in PMC 2010 November 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



To find more efficient estimators of the parameter of interest, α and β, we utilize the augmented
model space with auxiliary covariates Z and take two steps. In step 1, we provide a class of
influence functions for α and β in this augmented model space by first characterizing the tangent
space of the whole parameter, , and its orthogonal complement . Let

,  and
. Since X is independent of Z, the conditional

distribution of X given Z is identical to the marginal distribution of X, which is binary with
given mean ρ. Therefore  can be completely specified, for it does not involve any unknown
parameters. As a consequence, a straightforward application of Theorem 4.5 of Tsiatis
(2006), which is re-stated in the appendix, yields that  is a direct sum  and . Its
orthocomplement, , is .

Since the linear space  can be equivalently expressed as the space {h(Z, X) − E{h(Z, X)|Z} :
h(Z, X) − E{h(Z, X)|Z}}, and X is a binary indicator function, the double index function h(Z;
X) can be simplified into sum of two functions indexed only by Z: h(Z; X = 1)1(X = 1) + h(Z;
X = 0)1(X = 0). Let h1(Z) ≡ h(Z; X = 1), and h2(Z) ≡ h(Z; X = 0), we can have the expression
that h(Z; X) = Xh1(Z)+(1−X)h2(Z). It follows that any function l2(Z, X) in  can be expressed
as h(Z, X)−E(h(Z, X)|Z) = Xh1 (Z)+(1−X)h2(Z)−{E(X|Z)h1(Z)+E((1−X)|Z)h2(Z)} = (X − ρ)
h1(Z)−(X − ρ)h2(Z) = (X − ρ)h3(Z). We thus show that any function in  takes the form (X −
ρ)h1(Z), where h1(Z) is an arbitrary function of Z.

As stated in Sect. 2, f1 and g1 are influence functions for α and β. By Theorem 4.3 of Tsiatis
(2006) in the appendix, conditional on γ, the space of all influence functions of α and β take
the form

(5)

where h1(·) and h2(·) are arbitrary functions of Z.

In step 2, we further pick out the efficient influence functions among the class of functions (5).
Following the semiparametric efficiency theory (Bickel et al. 1998), the efficient influence
function is the projection of an arbitrary influence function on the tangent space of . We first

compute  and , the projection of f1 and g1 onto the space . The

efficient influence function for α and β are  and ,
respectively.

To find , we need to find  such that

, for all h(Z), i. e., we require that

. Since Z and X are independent, simple algebra yields
that

The efficient influence functions of α in the class of (5) is . Similarly
we can show that the efficient influence functions of β in the class of (5) is

, where
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When there are no further assumptions about the conditional distribution of D and N(·) given
Z, it is generally difficult to compute f* and g* directly. Here we suggest to use a “sieved”
approach, which restricts the search for the estimates of α and β to those with influence
functions of the form {f1 + (X − ρ)qT(Z)a}, and {g1 + (X − ρ)qT(Z)b}, a, , where k-
dimensional vector q(Z) consists of basis functions. For example, if we use the (k − 1)-order
polynomial basis, q(Z) = {1, Z, Z2, . . . ,Zk−1}T; one may also choose a spline basis of
discretization basis with q(Z) = {I(Z ≤ t1), I(t1 ≤ Z ≤ t2), . . . , I(tk−2 ≤ Z < tk−1), I(Z ≥ tk−1)} for
t1 < t2 < . . . < tk−1. If the basis is sufficiently rich so that the linear space spanned by q(Z)
approximates the space of all possible h well, the resulting estimators should be close to
“optimal” if they are “optimal” within the restricted class. A similar approach is also used by
Leon et al. (2003).

Since the “meat” part of the variance of  and  consists pieces that are not easy to
implement, we restrict our search to minimize the variance components that are easy to
compute. Let μn denote the sample mean of Xi, i = 1, . . . , n, our estimation procedure can be
summarized as follows:

1. solve the least square problem

(6)

for fixed , where F̂(Yi) can be obtained as in (4). The minimizer is denoted as â.

2. solve  in the estimating equation

The estimator is denoted as .

3. solve the least square problem

where , i, . . . ,n. The minimizer is denoted as b̂.

4. solve β in the estimating equation
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The estimator is denoted as .

Both HW's estimating equations and the proposed estimating equations are in the general
influence function classes. Since the general influence function classes are mean zero at the
true value, both methods are unbiased.

The following arguments reveal that the proposed estimator is at least as efficient as HW's

estimator. Since , the asymptotic variance of  is

, where A ≡ −E
{XMb1(Y)F(Y)−1} accounts for the variance due to the estimation of F(t), and it does not involve

α. The second part .

Let , where a0 is the limite of the minimizer â in (6). The asymptotic
variance of  is

,

since . It follows that  since E(B(α0) + (X1 − ρ)

qT(Z1)a0)2 ≤ E(B(α0))2 and E{A(X1 − ρ)qT (Z1)}= 0. The proof for  shares
a similar argument and we omit the details here. Similar as in Huang and Wang (2004), due to
the complexity of evaluating the variance directly, we propose using bootstrap method instead.
We tried several bootstrap sizes as 250, 200, 100 and 50. Empirical results are satisfactory with
bootstrap size as small as 50. In our experience, the computation time of implementing the
proposed method is almost the same as that of HW's method with both covariate adjusted and
unadjusted, since our procedure only has two steps more than HW's method: step 1 and step
3. These two steps usually take about 10 iterations to converge in one second in R.

Since the computation expense is rather small compared with HW's method while efficiency
improvement could be substantial and the model interpretation is unchanged, we recommend
to use the proposed method when there are some auxiliary covariates, which are independent
of the treatment indicator but are related to the outcome processes.

4 Simulation studies
In this section we carry out simulations to illustrate the proposed method. For each setting, we
generated 1000 datasets. The sample size n was set as 200. The study was restricted within
time interval [0, 10]. The treatment indicator X was generated taking values 1 or 0 with
probability 0.5. Given the treatment X and the frailty γ, a subject's underlying recurrent event
process {N(t), t ∈ [0, 10]} is a nonstationary Poisson process with the corresponding intensity
function γλ0(t) exp(xα), where the baseline intensity function is λ0(t) = 1. The subject's failure
time D has a hazard function γh0(t) exp(xβ), where the baseline hazard function h0(t) = t/400.
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Given the frailty γ, the censoring time C was taken to follow an exponential distribution with
mean 1 in the treatment group or with mean 3/γ2 in the control group. This censoring mechanism
can be interpreted as follows when considering the frailty as an unobserved health indicator.
Sick patients with a high occurrence rate in the control group will drop out early due to large
values of frailty. On the other hand, the dropout of the patients in the treatment group is
noninformative for both the recurrent event process and failure times, since the treatment has
effectively reduced the event occurrence rate. The frailty γ follows a gamma distribution with
unit mean and variance 0.5. Note that we do not restrict the cumulative intensity function to
be one at the end of the study. It is standardized to be mean 1 instead.

To generate the nonhomogeneous Poisson process, we use the thinning method proposed in
Lewis and Shedler (1979) and Kuhl and Bhairgond (2000), which can be summarized as
follows:

Step 1. Set t = ti−1, the previous event time, where t0 = 0.

Step 2. Generate random variables U1 and U2 uniformly distributed on [0,1] independently.

Step 3. Replace t by t − (1/λ*) log U1, where λ* ≡ maxt λ(t).

Step 4. If U2 ≤ λ(t)/λ*, set ti = t and stop; else go back to step 2 and go on.

We consider one dimensional auxiliary covariate Z, which is independent of the treatment
assignment X, but correlated with terminal event D and recurrent event process N(t). We
generate Z from standard normal distribution. The following three models are considered to
demonstrate our proposed approach.

In the first model, the terminal event time was generated as
, where ϕ(·) denotes the cumulative distribution function of

a standard normal random variable. In the following we explain why D is indeed generated
from a proportional hazards model with hazard function H(t|X, γ) = H0(t) exp{Xβ}γ and the
baseline hazard H0(t) = t2/800. Conditional on covariates X and frailty γ, the survival function
of a proportional hazards model satisfies S(t|X, γ) = exp{−H(t|X, γ)} = exp{−H0(t) exp{Xβ}γ}.
Assume D0 ~ S(t|X, γ), utilizing the fact that S(D0|X, γ) ~ U[0, 1] and ϕ(Z) ~ U[0, 1], we generate
the death time D0 through ϕ(Z) = S(D0|X, γ), that is, ϕ(Z) = exp{−H(t|D0, γ)} = exp{−H0(D0)
exp{Xβ}γ}. Since Z is standard normal and ϕ(·) is the CDF of standard normal, ϕ(Z) follows a
uniform (0,1) distribution. Since S(D0|X, γ) also follows a uniform (0, 1) distribution, we set ϕ
(Z) = S(D0|X, γ). Through this manner, we generate the survival time while incorporating the
effect of Z at the same time. Consequently . A sample
correlation between the time to survival and Z was approximately –0.3. The effect of Z on time
to the first event (provided it happens) was incorporated in a similar manner. This leads to a
sample correlation of approximately –0.5 between the time to the first recurrent event and
baseline covariate Z. For this model, we consider three sub scenarios with (α, β) = (0, 0), (−0.4,
−0.8) and (−1, −1.5) to represent the null hypothesis, local alternative and large alternative
respectively.

In the second model, we put Z as a linear regressor in the log intensity ratio and the hazard
ratio:

(7)

In the third model, the quadratic form of Z is put as a regressor to represent a U-shaped effect
of the adjusted covariate:
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(8)

The values α1 and β1 are set to 0.5. In contrast with that of the first model, the covariate Z takes
explicit forms in the second and the third model. For these two models, we consider two sub
scenarios with (α, β) = (0, 0) and (−0.4, −0.8) to represent the null and alternative hypothesis
respectively.

In addition to the proposed method, two other methods are performed for all three models to
gauge the difficulties of the problem: HW's method without covariate adjustment and the
adjusted covariate as a linear regressor in the model. The standard error is obtained from the
50 times nonparametric bootstrap with replacement. The results for the three models are
recorded in Tables 1, 2 and 3 respectively. The relative efficiencies for the proposed method
over HW method in all three models are presented in Table 4.

For all of the cases considered here, all estimators are unbiased, the means of the standard error
estimates agree well with the sample standard errors and the empirical type I errors are close
to the nominal level 0.05. In the first model, without specifying the functional form of Z, the
proposed estimator is the most efficient among the three methods. Sometimes over 50%
efficiency gain is achieved. In the second model, where the adjusted covariate takes a linear
form in the model, the proposed method is almost as efficient as the results from fitting the
true model in terms of the estimation of α and β. In the third model, where the adjusted covariate
takes a U-shaped form in the model, the proposed method is again the most efficient one in
terms of the estimation of α and β and achieving highest power among the three methods. The
efficiency gains of the proposed method seem to increase with the degree of mis-specification
of the adjustment covariate effect, as the efficiency gains of the third model is more significant
than that of the second model. In general, the proposed method for covariate adjustment seems
to be more robust and efficient in our study.

5 A data example: SOLVD study
We illustrate the proposed method to the data from the SOLVD clinical trial, a randomized
double-blind trial conducted between June 1986 and March 1989, to compare enalapril to
placebo (The SOLVD Investigators 1991). Enalapril was an angiotensin-converting-enzyme
inhibitor. The investigators are interested in the effect of enalapril in reducing the mortality
and hospitalization in patients with chronic heart failure and ejection fractions ≤ 0.35.

The study enrolled 2569 patients, 1284 patients were randomly assigned to receive placebo
and 1285 were randomized to receive enalapril doses of 2.5–20 mg per day. The follow-up
time of patients ranged from 22 to 55 months, with the average 41.4 months. During the time
patients were monitored, data on all hospitalizations, survival time and the baseline level of
ejection fraction (%) (EF × %) were recorded. There were 510 deaths in the placebo group
with death rate 39.7%, as compared with 452 in the enalapril group, with death rate 35.2%.
Table 5 summarizes numbers of hospital admissions and deaths for treatment and control
groups.

We are interested in testing the treatment effect in terms of reducing the number of
hospitalizations and the mortality. The results of applying joint model of Huang and Wang
(2004) with the treatment indicator as the only covariate is provided in Table 6. We also
considered the baseline auxiliary covariate, level of ejection fraction (EF × %) with the
histogram in Fig. 1. The ejection fraction can be considered to be independent of the treatment
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indicator due to the small sample correlation coefficient –0.007. This covariate may be
auxiliary to the outcome as reflected from the significance of HW's model where the ejection
fraction is considered as a regressor. The results for the proposed method and covariate
adjustment as the regressor are also shown in Table 6.

Nonparametric bootstrap with bootstrap size 50 were used to estimate the standard error of
 and . Both estimated covariate effects are statistically significant with p values <0.001 for

all three methods. The analysis indicates that enalapril is effective in terms of reducing the
mortality and hospitalizations for heart failure in patients with chronic congestive heart failure
and low ejection fractions.

The estimation results for three methods are fairly close for both hospitalization and death. The
estimation error of the proposed method is smaller than HW's method without adjusting
covariates, as expected, although the efficiency improvement is not significantly large. We
conjecture that this may be because the prediction effect of the ejection fraction is relatively
small, due to the rather small magnitude of the estimation of the log intensity ratio and the log
hazard ratio (–0.024 and 0.040) together with the range of the ejection fraction from 5 to 35.

6 Discussion
In this paper, we propose a joint covariate-adjusted score test statistic based on a joint model
of correlated recurrent events and a terminal event. The test of interest is focused on the
comparison of the treatment effect on the intensity of recurrent events processes and the
cumulative hazard of the terminal event. We propose efficient influence functions for the
treatment indicators and develop an effective inference procedure. Compared with traditional
covariate-adjusted methods, this method does not assume the functional form of the adjusted
covariates and is more robust. In practice, except the case where sufficient evidence supports
that the adjusted covariate appear in the true model as a linear regressor, we would recommend
using the proposed method, as it is generally more robust and efficient compared with the
traditional covariate adjustment approach.

In the numerical studies, we consider one dimensional auxiliary covariates Z mainly due to
computation concerns, since the polynomial basis or spline basis are only vectors of k − 1
elements in the sieved approach and can be easily solved by a least square estimation. The
computation could be more complicated when Z is composed of several covariates. How to
choose an appropriate expansion (approximation) for adjusting multivariate auxiliary
covariates is a practical and challenging problem. With the current methodology that only one
dimensional covariate can be adjusted, the following two step procedure could be a possible
remedy: in the first step, we can reduce the dimension of the covariates with certain dimension
reduction method, such as choosing the first principle component; in the second step, the
proposed covariate adjustment methodology can be performed with the resulted one
dimensional component from the first step. This two-step procedure could utilize the
information of the multi-dimensional covariates and deserves future research as well.
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Appendix
We give Theorems 4.3 and 4.5 of Tsiatis (2006) for ease of readers.
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Theorem 4.3 If a semiparametric RAL estimator for β exists, the efficient influence function
of this estimator must belong to the space of influence functions, the linear variety

, where ϕ(Z) is the influence function of any semiparametric RAL estimator for β
and  is the semiparametric tangent space, any if an RAL estimator for β exists that achieves
the semiparametric efficiency bound (i.e., a semi-parametric efficient estimator), then the
influence function of this estimator must be the unique and well-defined element

Theorem 4.5 The tangent space  for the nonparametric model, i.e., the entire Hilbert space
, is equal to

where

and

j = 2, . . . , m, and , j = 1, . . . , m are mutually orthogonal spaces. Equivalently, the linear
space  can be defined as the space

for all square-integrable functions  of Z(1), . . . Z(j).

In addition, any element  can be decomposed into orthogonal elements

where

for j = 2, . . . , m, and hj(·) is the projection of h onto , i.e., .
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Fig. 1.
The histogram of ejection fraction in SOVLD data
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Table 4

Relative efficiencies with respect to HW's model with only treatment indicator as the regressor for the settings
recorded in Table 1

Null Alternative

Model α β α β

Model 1

Auxiliary covariate as a regressor 1.077 1.249 1.124 0.788

    Proposed model (Local Alt) 1.086 1.442 1.124 1.758

    Proposed model (Larger Alt) 1.111 1.612

Model 2

Auxiliary covariate as a regressor 1.188 1.005 1.132 1.004

    Proposed model 1.178 1.000 1.132 1.000

Model 3

Auxiliary covariate as a regressor 1.283 1.092 1.241 1.119

    Proposed model 1.677 1.402 2.028 1.659
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