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Abstract
Recurrent events are frequently encountered in biomedical studies. Evaluating the covariates
effects on the marginal recurrent event rate is of practical interest. There are mainly two types of
rate models for the recurrent event data: the multiplicative rates model and the additive rates
model. We consider a more flexible additive–multiplicative rates model for analysis of recurrent
event data, wherein some covariate effects are additive while others are multiplicative. We
formulate estimating equations for estimating the regression parameters. The estimators for these
regression parameters are shown to be consistent and asymptotically normally distributed under
appropriate regularity conditions. Moreover, the estimator of the baseline mean function is
proposed and its large sample properties are investigated. We also conduct simulation studies to
evaluate the finite sample behavior of the proposed estimators. A medical study of patients with
cystic fibrosis suffered from recurrent pulmonary exacerbations is provided for illustration of the
proposed method.
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1 Introduction
Recurrent event data are common in biomedical studies. For example, patients with cystic
fibrosis may suffer from repeated pulmonary exacerbations of respiratory symptoms
(Therneau and Grambsch 2000); HIV patients may experience recurrent opportunistic
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infections (Li and Lagakos 1997). Other examples include myocardial infarctions, tumor
metastases etc.

Modeling the occurrence of recurrent events has been a much discussed topic in the last few
years and recurrent event data can be viewed as a special case of multivariate failure time
data since the different event times within the same subject are ordered and thus correlated.
Therefore, these data can be analyzed by well-established marginal intensity model
approaches (e.g., Wei et al. 1989; Lee et al. 1992) and conditional intensity model
approaches (e.g., Prentice et al. 1981; Andersen and Gill 1982; Chang and Wang 1999).
These models are commonly used due to the convention and availability of statistical
software. However, when the true underlying covariate effects may add to, rather than
multiply, the baseline event intensity, a plausible alternative would be the additive hazards
model (e.g., Aalen 1980; Breslow and Day 1980; Cox and Oakes 1984; Buckley 1984;
Breslow and Day 1987; Aalen 1989; Huffer and McKeague 1991; Andersen et al. 1993).
Most of these approaches are fully parametric except the nonparametric methods of Aalen
(1980, 1989) and Huffer and McKeague (1991). Lin and Ying (1994) proposed a
semiparametric additive model and gave an explicit estimator of the model parameters
through the techniques analogous to partial-likelihood-based method (Andersen and Gill
1982). The additive and multiplicative hazards models postulate two rather different
relationship between the covariate and the hazard function. However, these two types of
effects could exist for different convariates. Lin and Ying (1995) proposed a general
additive–multiplicative intensity model which allows some covariate effects to be additive
while others to be multiplicative, and studied the asymptotic properties of their proposed
estimates.

In the context of recurrent event data, because the mean number of events is more
interpretable than the event intensity, some authors have proposed to model the mean
function under the assumption that the covariates act multiplicatively on the unspecified
baseline rate function (e.g., Pepe and Cai 1993; Lawless and Nadeau 1995; Lin et al. 2000;
Cai and Schaubel 2004). Schaubel et al. (2006) developed a semiparametric additive model
for the marginal recurrent event rate, wherein they assume the covariates effects are added to
the unspecified baseline rate function. In this article, we consider a general additive–
multiplicative rates model in the spirit of the work of Lin and Ying (1995) which includes
the multiplicative model and the additive model as special cases. The model assumes that
some of the covariates act additively while others multiplicatively on the unspecified
baseline rate function.

The remainder of this article is organized as follows. In Sect. 2, we introduce the proposed
models and derive a class of estimating equations for the estimates of regression parameters
and the baseline rate function. The asymptotic properties of the proposed estimators are
investigated in Sect. 3 with the proofs deferred to the Appendix. Simulation studies are
conducted in Sect. 4 to evaluate the finite-sample behavior of the asymptotic approximation.
The proposed methods are applied to a cystic fibrosis clinical trial in Sect. 5. Some
discussions are given in Sect. 6.

2 Model and method
In this section, we describe the inference procedure for the proposed model, beginning with
the establishment of some notation.

2.1 Notation and model

Let  be the number of events that occur over the interval [0, t] for the ith
subject under study. The corresponding right censoring time is denoted by Ci. Due to the
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censoring, the number of observed events at time t is , where a ∧ b equals
the minimum of a and b. Let Yi(t) = I(Ci ≥ t) denote the at-risk process, where I(·) is the
indicator function. Associated with each Ni(t) is a p-dimensional covariate process

, with any time-dependent elements to be external as defined by
Kalbfleisch and Prentice (2002); i.e., to have paths which are known at time t = 0, where aT

is the transpose of a vector or matrix a. Furthermore, the censoring mechanism is assumed to
be independent in the sense that

Assume that the follow-up interval is [0, τ], where τ is prespecified constant typically
meaning the terminal time of study. Thus, the observable data consist of {Ni(t), Yi(t), Wi(t); t
∈ [0, τ]}(i = 1, …, n). Subjects are assumed to be statistically independent, although events
within the same subject are ordered and thus naturally expected to be correlated.

We consider the following additive–multiplicative rates model:

(1)

where  is p-vector of unknown regression parameters, g and h are knownlink
functions and μ0(·) is an unspecified continuous baseline mean function for subjects with
covariates zi(t) and xi(t) such that . Let γ0 = (γ01, …, γ0p1)T and
β0 = (β01, …, β0p2)T, then γ0j can be interpreted as the rate difference for one unit change in
Zji while holding Xi and other components in Zi the same when g(x) = x. As suggested by the
associate editor, by holding Zi and other components in Xi the same, β0j can be interpreted as
the logarithm of the ratio of residual rate of risk for one unit change in Xji when h(x) = ex,
where the residual rate of risk is defined as the overall rate  minus the
additive rate of risk. Apparently, model (1) defines a very rich family of models through the
link functions g and h, which contains the additive rates model and the multiplicative rates
model as its special cases. Selection of these appropriate link functions may be based on
prior data or the resulting interpretation of the regression parameters. If the rate of interest is
conditioning on the time-independent covariates, i.e., , then by integration or
summing one can obtain , to which we refer as means model. Since the means
model is a special case of rates model, we focus on the rates model (1) hereafter.

2.2 Inference procedure
We now describe the estimating procedure under model (1), beginning by defining the
process:

where θ (γT, βT)T is included in the parameter space denoted by Θ, which contains the true
value θ0 as its interior point and is assumed to be compact for technical proof. Abbreviate
Mi(t, θ0) as Mi(t). Since E{dMi(t)|Wi(t)} = 0 under model (1) and independent censoring, an
approach analogous to generalized estimating equations (Liang and Zeger 1986) suggests
the following estimating equations for μ0(t) and θ0, respectively:
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(2)

(3)

where Qi(t, θ) is a smooth p-vector-value function of Wi(t) and θ not involving μ0(t).

Solving (2), a class of the baseline mean function estimators for μ0(t) (with given θ0) is
directly obtained as follows:

Substituting μ̂0(t, θ) for μ0(t) into (3), followed by some algebraic manipulation, yields an
estimating function U(τ, θ) for θ0 which is free of μ0(t), where

(4)

and

Hence, we obtain an estimator, denoted by θ̂, for θ0, which solves equation U(τ, θ) = 0, and
the corresponding estimator for μ0(t) is then denoted by μ̂0(t, θ ̂). To ensure the monotonicity
of the estimate of the baseline mean function, the estimator for μ0(t) is modified to be:

Instead of constraining θ̂ to force the baseline rate estimator to be positive, the baseline
mean estimator μ̃0(t, θ ̂) is constrained to be monotone non-decreasing, analogous to the
approach of Lin and Ying (1994).

Similarly, one possible choice of Qi(t, θ) discussed by Lin and Ying (1995) is obviously
suitable here to encompass inference procedures arising from multiplicative rates model and
additive rates model, respectively, as its special cases. To be specific, let

(5)
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where and in what follows f′(x) = df(x)/dx. Putting (5) into (4), we have the estimating
equations U(τ, θ) and therefore give the corresponding estimate of θ0.

3 Asymptotic properties
In this section, we establish the large sample properties of the proposed estimators,
beginning with the following regularity conditions, analogous to those of Andersen and Gill
(1982, Theorem 4.1) and assumed to be held throughout our discussion for i = 1, …, n.

C1.  are independent and identically distributed;

C2. P(Ci ≥ τ) > 0;

C3. Ni(τ) is bounded by a constant;

C4. Wi(·) has bounded total variation, i.e., for the j-th element of Wi(·),

 almost surely, where C* is a constant; moreover, Qi(·, θ) has
bounded total variation, uniformly in θ ∈ Θ;

C5. The following defined matrix A is nonsingular:

where ;

C6. g is nonnegative and h{βT Xi(t)} is locally bounded away from 0 for β in a small
neighborhood of β0; g and h are continuous differentiable and

are equicontinuous and bounded uniformly in parameter space Θ.

Conditions C1, C3, C4, and C6 simplify our derivation of the asymptotic results but do not
impose practical limitations. Condition C2 can be enforced by choosing τ to be not greater
than the maximum observation time. Condition C5 is a technique assumption. Note that q̅(t,
θ) is well defined since E[Y1(t)h{βT X1(t)}] is bounded away from zero whenever t ∈ [0, τ]
under conditions C2 and C6. We describe the asymptotic behavior of estimates of the
regression parameters in the following theorem.

Theorem 1 Under conditions C1 to C6, θ ̂ converges almost surely to θ0, while 
converges weakly to a zero-mean normal distribution with covariance A−1 Σ(τ, τ)(AT)−1,
where

for s and t in [0, τ].
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Theorem 1 can be proved by combining the multivariate central limit theorem and some
results from empirical processes theory (Pollard 1990; Bilias et al. 1997) and a lemma from
Lin et al. (2000). We present the outline of the proof in the Appendix.

Furthermore, using the Strong Law of Large Numbers (SLLN) and Lemma 1 from Lin et al.
(2000) and combining with the results of Theorems 1 and 2 followed below imply that the
asymptotic covariance can be consistently estimated by Â−1 Σ ̂(τ, τ) (ÂT)−1, where

with

(6)

The essential asymptotic results for the baseline mean function estimator are summarized by
the following theorem. We firstly introduce some notation:

Theorem 2 Under conditions C1 to C6, {μ̃0(t, θ ̂) − μ0(t)} converges almost surely to 0,
uniformly in t ∈ [0, τ], while  converges weakly to a zero-mean Gaussian
process with covariance function ξ(s, t) = E[Ψ1(s)Ψ1(t)], where

Using arguments analogous to those of Lin and Ying (1994), we can prove

, where op(1) is uniformly in t ∈ [0, τ]. Therefore we work with
μ̃0(t, θ ̂) instead of μ̃0(t, θ ̂) in the proof of Theorem 2. We then apply the central limit theorem
and results from empirical processes theory to the decomposition, {μ̂0(t, θ ̂) − μ0(t)} = {μ ̂0(t,
θ ̂) − μ ̂0(t, θ0)} + {μ ̂0(t, θ0) − μ0(t)}, to finish the proof of Theorem 2. An outline of the proof
is also provided in the Appendix.

The covariance function ξ(s, t) can be consistently estimated by replacing limiting quantities

in Ψi(t) with their respectively empirical counterparts. To be specific, ,
where
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with Sh(t, θ) and S̃(t, θ) listed in the Appendix.

4 Simulation studies
Simulation studies were conducted to assess the adequacy of the proposed large-sample
approximations for practical sample size. Specially, event times were generated from the
following mixed effects rate model:

where the frailty variable ηi induces positive correlation among the within-subject events
and follows a gamma distribution with unit-mean and variance ση. Note that larger ση
corresponds to higher positive correlation among intra-subject event times and ση = 0, i.e., ηi
= 1 for all i, indicates that within-subject event times are independent. We considered the
simple cases:  and the baseline rate m0 ≡ dμ0(t)/dt is a
constant. The (j + 1)th event time for the ith subject was generated by Ti,j + 1 = Ti,j − {ηi[γ0Zi
+ exp(β0Xi)m0]}−1 log(Ui,j+1), where Ui,j were generated from uniform (0, 1) distribution
independently, and Ti,0 = 0. The estimating function U(τ, θ) was derived by choosing Qi(t, θ)
according to (5).

Covariates Zi’s were independently generated from uniform (0, 1). We generated Xi’s
independently from Bernoulli distribution with success probability 0.5. The censoring times
Ci’s were generated from uniform (0, 3). The baseline rate dμ0(t)/dt varied from 0.125 to
0.25. The expected number of observed events varied from 0.42 to 1.67 and 0.57 to 1.98 at
(γ0, β0) = (0, 0.2) and (γ0, β0) = (0.2, 0.2), respectively. We set sample size n =50, 100, 200
and each simulation was repeated 2000 times. The sample mean and sample standard
deviation of the 2000 estimates are given in the Mean and SD columns, respectively. The SE
columns give the average of the estimated standard errors and CP columns give the coverage
probability of the nominal 95% confidence interval for the true parameter using the
estimated standard error.

Table 1 displays the simulation results. From Table 1, we make the following observations:
(i) the estimators proposed are approximately unbiased when γ0 = 0 and slightly
underestimated when γ0 = 0.2; (ii) the average asymptotic standard error estimators (SE) are
approximately equal to the empirical standard deviations (SD); (iii) the corresponding 95%
confidence intervals based on the estimated standard errors provide reasonable coverage
probabilities; (iv) for fixed n and μ0, both SD and SE increase as the intra-subject event
times correlation ση increases; (v) as expected, as the sample size increases, SE is decreasing
and closer to SD.

As suggested by the referees, additional simulation studies were also conducted to
investigate the effect of time-dependent baseline rate function dμ0(t)/dt on the performances
of the proposed estimator. Two cases dμ0(t)/dt = 0.25t and dμ0(t)/dt = 0.5t are considered
with other parameter values not changed. We then use the thinning algorithm (Ross 2006, p.
83) to generate the recurrent event times when the baseline rate function dμ0(t)/dt is time-
dependent. To be specific, let m0(t) = dμ0(t)/dt and mi(t) = ηi [γ0Zi + exp(β0Xi)m0(t)], then
the recurrent event times {Ti,j} for the ith subject over [0, τ] can be generated as follows:
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Step 1: t = 0, j = 0, and Ti,j = 0.

Step 2: Generate a random number U from uniform (0, 1) distribution.

Step 3: . If t > τ, stop.

Step 4: Generate a random number V from uniform (0, 1) distribution.

Step 5: If , set j = j + 1 and Ti,j = t.

Step 6: Go to Step 2.

The related results are summarized in Table 2. It is evident that the same conclusions can be
drawn as that from Table 1.

5 A real example
We now apply the methods developed in Sect. 2 to data from a randomized clinical trial
which was conducted to assess the efficacy of treatment rhDNase (TRT), a highly purified
recombinant enzyme, in reducing pulmonary exacerbations of respiratory symptoms for
patients with cystic fibrosis (Therneau and Grambsch 2000). In the study, 325 patients in the
placebo arm and 322 patients in the rhDNase arm were monitored for pulmonary
exacerbations, along with measuring of baseline level of forced expiratory volume per
second (FEV). Most patients were followed for about 170 days. Table 3 shows the
frequency of the number of exacerbations. The endpoint of this study is to evaluate the
effects of rhDNase (possibly adjusted by covariate FEV) on the recurrences of pulmonary
exacerbations over times.

We will fit the additive rates (AR) model:

the multiplicative rates (MR) model:

and the additive–multiplicative rates models:

and

which are denoted by model AMR1 and model AMR2, respectively.

Mimicking Lin et al. (2001), we use mean-square-type distance between the observed and
the expected recurrences, defined as
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to measure the overall lack of fit in the above four rates models, where M ̂i(t) is defined by
(6) and 0 ≡ t0 < t1 < ⋯ < tL < tL+1 ≡ τ is the set that consists of all the jump points of {Ni(t),
Yi(t); t ∈ [0, τ)}(i = 1, …, n) in addition to 0 and τ.

In order to examine graphically which model fit the rhDNase data better, we replace the
continuous covariate FEV with its discretized version, denoted by dFEV=I(FEV>57.6),
where 57.6 is the median of FEV, in the models AR, MR, AMR1, and AMR2, and thus we
partition the subjects under study into four strata. The bold and thin solid curves in Fig. 1
display the Nelson-Aalen-type nonparametric and the model-based estimators for the mean
numbers of pulmonary exacerbations, respectively, in each stratum under various models.
Figure 2 presents the difference of nonparametric estimator for the mean numbers of
pulmonary exacerbations in the stratum (TRT = 0, dFEV = 0) over that in the stratum (TRT
= 1, dFEV = 0) indicated by bold solid curve and the corresponding difference of the model-
based estimators indicated by the dash curve (for model AR), the dotted-dashed curve (for
model AMR1), and the thin solid curve (for model AMR2). Likewise, the difference of the
nonparametric and model-based estimators for the mean numbers of pulmonary
exacerbations in the stratum (TRT = 0, dFEV = 1) over that in the stratum (TRT = 1, dFEV
= 1) are displayed in Fig. 3. As indicated in these figures, the model AR is unlikely to fit the
rhDNase data very well since the difference of the nonparametric means functions are not
straight lines, and the model AMR2 may provide a reasonable description for the data set.

For further comparisons, we consider the models AR, MR, AMR1, and AMR2 using FEV
instead of dFEV, and we also use D* as a criterion to select model. The analysis results are
summarized in Table 4. First, under the measure of D*, the model AMR2 is the best among
the four models AR, MR, AMR1, and AMR2, which has been suggested graphically as
reflected in Fig. 1. This indicates that the effect of FEV on the recurrence of pulmonary
exacerbations is more likely to be multiplicative while the effect of treatment rhDNase is
more likely to be additive. Second, the treatment rhDNase is effective in reducing the
recurrence of pulmonary exacerbations. Higher FEV level is associated with lower
frequency of the recurrences. Figure 4 displays the mean frequency estimators for the
rhDNase and placebo patients with two different levels of FEV under the selected model
AMR2.

6 Discussions
We propose a semiparametric regression method for analyzing recurrent event data and
consider an unified model in the sense that it allows for both multiplicative and additive
covariate effects. The resulting regression parameter estimator is shown to be consistent and
asymptotically normally distributed and a baseline mean estimator is proposed, which is also
shown to be uniformly consistent and weakly convergent. Numerical results indicate that the
proposed method performs well in finite sample. A medical study is provided as an
illustration.

As the associate editor pointed out, one potential advantage of the additive–multiplicative
rates model (1) is that the additive term is appropriate for detecting large difference in
absolute risk, while the multiplicative term is sensitive for detecting large difference in
relative risk (i.e., rate ratio). Thus, in some situations where both types of covariates exist at
the same time, one can consider model (1) as a candidate regression model for recurrent
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event data. Several considerations can be used as guidances in the initial stage. The first
factor in deciding the classification is the objectives of the investigator and the underlying
biological process. If the investigator is interested in studying the risk difference of some
risk factors, then those variables should be added to the additive part. If the investigator is
interested in studying the risk ratio of some other risk factors, then those variables should be
added to the multiplicative part. Based on the biological process, the covariates anticipated
to have a large impact in absolute risks should be included in the additive part and those
which could have a large impact in risk ratios should be included in the multiplicative part.
When the biological process is not clear, some data-driven methods could be used for the
classification of covariates. For example, when the number of covariates is small, all the
possible models from different combinations of covariates in the additive and the
multiplicative parts can be considered. To facilitate the selection of the models, we have
adopted a mean-square-type distance measure D* between the observed and the expected
recurrences as model selection criterion. The assignment of the covariates to the additive
part or the multiplicative part will follow the model with the smallest D*. When the number
of covariates is moderately large, this comprehensive method could be time-consuming. We
recommend to use a two-step approach. First, one can plot the nonparametric estimators for
the risk difference and the risk ratio for every covariate. The covariate which has constant
risk difference over time should be included in the additive part and the covariate which has
constant risk ratio should be included in the multiplicative part. Second, for those covariates
which are not clear whether they have constant risk difference or risk ratio, we can consider
models from different combinations of these covariates in the additive and the multiplicative
parts. The assignment of the covariates to the additive part or the multiplicative part will
follow the model with the smallest D*.

Obviously, a suitable choice of Qi(t, θ) would lead to appropriate interpretation of the
regression parameters and one form of Qi(t, θ) is proposed, which includes multiplicative
and additive covariate effects as its special cases. The estimating equations are proposed to
allow arbitrary dependence structures within recurrent events. This is analogous to the use of
a generalized estimating equation with an independence working assumption for
longitudinal data (Liang and Zeger 1986). However, such approach may not necessarily be
efficient. One possible way to improve the efficiency of estimate for the regression
parameter is to follow the idea in Cai and Prentice (1995) and consider the weighted
estimating function

where ω = (ωi; i = 1, …, n) is a weight. For more discussions on the weight and its choice
refer to Cai and Prentice (1995). One can also follow arguments in Lin and Ying (1995) to
derive the information bound  for estimating θ0 through defining an appropriate
parametric submodel and then construct the efficient estimating function Sopt(θ) using

sample-splitting technique such that . The zero
root of such Sopt(θ) is expected to achieve the information bound at  rate. An alternative
useful approach to accommodating the dependence of recurrent event times within the same
subject is to incorporate a random effect or frailty η into model (1) as indicated in Sect. 4:

(7)
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where η follows a specified distribution with some unknown parameters, representing the
intra-class correlation. Although there is some literature (e.g., Nielsen et al. 1992; Oakes
1992; Zeng and Lin 2007) on multiplicative intensity-based models with random effect of
the form:

where ℱt is the σ-field generated by {N* (u), W(u+) : 0 ≤ u ≤ t} with W(t+) = lims↓t W(s),
and λ0(t) is the baseline hazard function, methodology development on model (7) is lacking,
although would be valuable, particularly in settings where the association between events
within the same subject is of interest in addition to the additive and multiplicative covariate
effects.

In the presence of a terminal event, such as death, which precludes further recurrent events,
several methods have been proposed for analyzing such recurrent event data (e.g., Cook and
Lawless 1997; Ghosh and Lin 2002; Huang and Wang 2004; Liu et al. 2004; Ye et al. 2007).
As indicated in Lin et al. (2000) and Schaubel et al. (2006), our proposed model and method
could potentially be modified to accommodate such case by substituting D ∧ C for C in the
above inference procedures, where D is the time to the terminal event, and model the
conditional rate function as follows:

(8)

and we can show that the basic results in this paper still hold provided that independent
censoring is redefined in the sense that

However, this approach pertains to the cause-specific rate function, which is analogous to
the cause-specific hazard function (Kalbfleisch and Prentice 2002, p. 251). If the terminal
event is independent of the recurrent event process, then the cause-specific rate function is
the same as the marginal rate function for the recurrences. Otherwise, an alternative method
is expected to jointly model the recurrent event process and terminal event process since
these two processes are usually highly correlated in applications so that it is unrealistic to
take them as separate matters and model them separately (e.g., Cook and Lawless 1997). It
may be the combination of censoring and death that poses considerable challenges in
statistical inference and would be worthwhile to develop methodology for such data.

In some applications, censoring may depend on the underlying recurrent event process even
after conditioning on the covariates in the model (1) or (8). Under the informative censoring
together with multiplicative rates model without terminal event, Wang et al. (2001)
described the correlation structure between the recurrent event process and dependent
censoring time through latent variables and provided an estimator for cumulative rate
function by treating the distributions of the censoring and latent variables as nuisance
parameters; Ghosh and Lin (2003) proposed a joint model that formulates the marginal
distributions of the recurrent event process and dependent censoring time through scale-
change models; Miloslavsky et al. (2004) proposed to adjust for dependent censoring
through the inverse probability of censoring weighting. Generalization of this approach
beyond the multiplicative rates model would be useful.
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Appendix
To begin, we state two useful lemmas which are the bases for asymptotic approximation.

Lemma 1 Under conditions C1 to C6, the processes  converges weakly to a zero-
mean Gaussian process with covariance Σ(s, t).

Lemma 2 Under conditions C1 to C6,

where .

The proofs for Lemmas 1 and 2 follow from Lin et al. (2000) by employing various
empirical process results and the detailed proofs omitted here are available from the authors.

Proof of Theorem 1
Consistency

Define ‖a‖ as the max norm for a vector or matrix a. In view of condition C5, let d = 1/
(4‖A−1‖) and dn = 1/(4‖Â(θ0)−1‖) whenever Â(θ0) is nonsingular. Select δ sufficiently small
such that ‖Â(θ) − Â(θ0)‖ < d whenever ‖θ − θ0‖ < δ, for all n. Since dn almost surely
converges to d under Lemma 2, we can conclude that ‖Â(θ) − Â(θ0)‖ < 2dn for large n, where
n does not depend on θ, i.e., one can find a commonly large n for all θ under condition C6.

Write Oδ = {θ : ‖θ − θ0‖ < δ} and it follows from the Inverse Function Theorem (Rudin

1964; Foutz 1977) that  is a one-to-one mapping from Oδ onto  and the

image set  contains the open neighborhood  with radius dnδ. Hence, when

n is taken sufficiently large, image set  contains the open neighborhood 

with radius dδ/2. On the other hand, the convergence of  to zero can be derived
obviously from Lemma 1. Therefore, θ̂ exists and is unique in Oδ and θ̂ converges to θ0
almost surely since δ can be taken arbitrarily small. In addition, the argument of Jacobsen
(1989) can be used to show the global uniqueness of θ̂ for large n.

Asymptotic normality
Clearly, it follows from the Taylor expansion, Lemmas 1 and 2 that
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Consequently,  behaves asymptotically as a scaled average of independent and
identically distributed random vectors, which converges to a normal distribution with mean
0 and covariance A−1Σ(τ, τ)(A−1)T.

Proof of Theorem 2
Consistency

For simplicity, we introduce the following notation:

Using the Uniform Strong Law of Large Numbers (Pollard 1990, p. 41), we can obtain that
as n → ∞, supt∈[0,τ] supθ∈Θ ‖Sg′(t, θ) − sg′ (t, θ)‖ →a.s. 0, so are the convergences of Sh′ (t, θ)
and Sh(t, θ) to sh′ (t, θ) and sh(t, θ), respectively.

We make a simple decomposition:

and then some simple calculations entail that

which converges almost surely to zero, uniformly in t.

On the other hand, by the Taylor expansion,

where
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It can be shown that  converges almost surely to −s̃(t, θ0), uniformly in t. Since θ̂
→a.s. θ0, the convergence of μ ̂0(t, θ ̂) to μ̂0(t, θ0) is almost sure, uniformly in t. Hence, it is
obvious that μ̂0(t, θ ̂) converges almost surely to μ0(t), uniformly in t.

Weak convergence
With respect to the weak convergence of μ̂0(t, θ ̂), we display the following asymptotic
approximation:

where op(1) is uniformly in t. Thus, the convergence of  in finite
dimensional distributions follows from the multivariate central limit theorem. Tightness can
be shown by demonstrating the manageability of the components of Ψi(t). Hence, we prove
that  converges weakly to a zero-mean Gaussian process with covariance
function ξ(s, t). Then the required weak convergence of  follows directly.
Furthermore, the consistency of the covariance function estimator follows from the
consistency of θ̂ and μ̂0(t, θ ̂), and repeated applications of the Uniform SLLN.
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Fig. 1.
Mean frequency functions of pulmonary exacerbations for each stratum in the rhDNase trial.
The Nelson-Aalen-type nonparametric estimators for the mean numbers of pulmonary
exacerbations are shown by bold solid curves in the strata (TRT = 0, dFEV = 0), (TRT = 1,
dFEV = 0), (TRT = 0, dFEV = 1), and (TRT = 1, dFEV = 1), from top to bottom,
respectively. The corresponding model-based estimators are pertained by thin solid curves

Liu et al. Page 17

Lifetime Data Anal. Author manuscript; available in PMC 2011 October 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Difference of the mean frequency functions for the stratum (TRT = 0, dFEV = 0) versus
(TRT = 1, dFEV = 0). The bold solid curve pertains to the nonparametric estimator; the
dashed curve pertains to the model AR based estimator; the dotted-dashed curve pertains to
the model AMR1 based estimator; the thin solid curve pertains to the model AMR2 based
estimator
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Fig. 3.
Difference of the mean frequency functions for the stratum (TRT=0, dFEV=1) versus
(TRT=1, dFEV=1). The bold solid curve pertains to the nonparametric estimator; the dashed
curve pertains to the model AR based estimator; the dotted-dashed curve pertains to the
model AMR1 based estimator; the thin solid curve pertains to the model AMR2 based
estimator
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Fig. 4.
Estimated mean frequency functions of pulmonary exacerbations in the rhDNase trial under
the model AMR2. The curves from top to bottom pertain to the patients with placebo and
FEV = 25, the patients with rhDNase and FEV = 25, the patients with placebo and FEV =
100, and the patients with rhDNase and FEV = 100, respectively
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