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Abstract
We propose a class of additive transformation risk models for clustered failure time data. Our
models are motivated by the usual additive risk model for independent failure times incorporating
a frailty with mean one and constant variability which is a natural generalization of the additive
risk model from univariate failure time to multivariate failure time. An estimating equation
approach based on the marginal hazards function is proposed. Under the assumption that cluster
sizes are completely random, we show the resulting estimators of the regression coefficients are
consistent and asymptotically normal. We also provide goodness-of-fit test statistics for choosing
the transformation. Simulation studies and real data analysis are conducted to examine the finite-
sample performance of our estimators.
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1 Introduction
Clustered failure time data are common in biomedical studies. Such data usually arise when
study subjects come from the same cluster, for example, failure time can be time to disease
occurrence for the patients in the same clinic or time to blindness for the two eyes in the
same patient. One of the commonly used statistical models to analyze clustered failure time
data is the gamma-frailty model, which accommodates the intra-cluster dependence by
incorporating an unobserved random effect, the so-called frailty, into the Cox (1972)
proportional hazards model. The consistency and asymptotic distribution of the maximum
likelihood estimator for the gamma frailty model have been rigorously studied by Murphy
(1994, 1995) for the case of no covariates and by Parner (1998) for the case with covariates.

The multiplicative hazards model focuses on estimating hazard ratios and its multiplicative
structure may not model the real data well. In some cases, an additive effect could be more
reasonable. Such an effect can be modeled using the so-called additive hazards model
(Aalen 1989; Huffer and McKeague 1991; Lin and Ying 1994; and McKeague and Sasieni
1994; among others), which assumes an additive structure of a baseline hazards function and
a covariate effect. Particularly, for univariate failure time, the additive models assume the
following expression
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(1)

where Λ(t|X) denotes the cumulative hazard function for the given, possibly time-dependent,
covariates X and Λ(t) is the baseline hazard function. Through the additive structure, the
additive model interprets β as risk difference and it has been eloquently advocated and
successfully utilized for right-censored independent survival data in many papers, e.g.,
Andersen et al. (1993, pp. 563–566), Lin and Ying (1994), McKeague and Sasieni (1994),
and Shen and Cheng (1999). Gandy and Jensen (2005a, b) developed a goodness-of-fit test
for checking additive risk model. Additionally, the multivariate version of the above
additive model (1) has been used to model clustered failure time data in Yin and Cai (2004):

where Λij (t|X) denotes the cumulative hazards function for subject j in cluster i and Xij is
the associated covariate. Yin (2007) further developed a test for checking the additive
structure using clustered data. Recently, Yin et al. (2008) considered an additive hazards
model with varying coefficients, where they allowed the effect of Xij (t) to depend on other
covariates.

All the previous additive models except Yin et al. (2008) assume that X affects the hazard
rate linearly. However, in practical applications, this linear assumption may not always be
appropriate. To relax the linear assumption, alternative links other than the linear link can be
considered.

Especially, in this paper, we propose the following general class of additive transformation
models:

(2)

where Q(·) is some known and monotone transformation function. Clearly, when Q(x) = x,
we obtain the previous additive model. However, Q can be other positive link function, for
example, exp{x} and log(1 + x) etc. For transformation Q(x) which satisfies E[exp{−ξ x}] =
exp{−Q(x)} for some positive frailty ξ, model (2) can actually be motivated from a frailty
model for clustered failure time data: when failure times are clustered, in parallel to
generalizing the proportional hazards model to gamma-frailty model, we can generalize the
univariate additive hazards model to incorporate some cluster-specific frailty. One natural
generalization of the linear additive model in (1) is the following model

where Λij (t|X, ξi) denotes the cumulative hazards function for subject j in cluster i given ξi
and we introduce cluster-specific random effect ξi to account for within-cluster correlation
in cluster i. Especially, when ξi has mean 1 and the cluster size is completely random, the
above model yields that the effects of X(t) for all clusters have the same average β but allow
random variation from cluster to cluster. From this general model, by the definition of Q(x),
we obtain that the marginal survival function for subject j in cluster i is
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Hence, the marginal hazard function for Tij is given by model (2). Particulary, if ξ follows a
gamma-distribution with shape and scale parameters (θ1, θ2), then

When  and we define Q(x) = x at the special case of θ2 = 0,
which is the limit as θ2 goes to zero. However, for transformation Q(x) which is not given by
equation E[exp{−ξ x}] = exp{−Q(x)}, model (2) cannot be introduced by any frailty model
any more.

The general model (2) gives a class of transformed additive model for marginal hazards
function for clustered failure times and provides a very flexible way of modeling hazards
models, in parallel to transformation models for multiplicative models. Our goal of this
paper is to provide inference results for this general class of models. Especially, in Sect. 2,
we give a simple inference procedure for model (2) and provide asymptotic properties for
the proposed estimators. In Sect. 3, we discuss in detail some issues on how to select
transformation function Q. Sect. 4 provides some numerical results from simulation studies
and our approach is applied to data from Diabetic Retinopathy Study (Huster et al. 1989) in
Sect. 5.

2 Model and inference
Assume that there are n independent clusters and for cluster i, there are ni subjects. We
denote Tij and Xij as the failure time and the covariates associated with subject j in cluster i,
respectively. We let Λij (t|Xij) be the cumulative hazard function for Tij given covariates Xij.
Our general additive risk model is given by Eq. 2.

Our goal is to estimate parameters specified in Eq. 2. In the presence of right-censoring, we
only observe data

where Cij is the censoring time and assumed to be independent of Tij given Xij and the
cluster sizes are assumed to be completely random. According to Eq. 2, it is clear

where Nij (t) = I (Yij ≤ t)Δij is the observed event process, Rij (t) = I (Yij ≥ t) is the at-risk
process, and Q′(·) denotes the derivative of Q(·). Hence, using the fact that
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has conditional mean zero and following the work of Lin and Ying (1994), we can estimate
β and Λ(·) by solving the following equations

(3)

for all s ≥ 0, and

(4)

Note that each term of the above equations has mean zero when the parameters take the true
values. Particularly, we let Λ(t) be a step function only jumping at the observed event time.
Then from Eq. 2, we obtain that for given β,

(5)

After substituting back into Eq. 3 and some re-organization, we obtain that the estimator for
β solves equation

The Newton–Raphson iterations can be used to solve the above equation. We denote the
estimator for β as β̂ and denote the estimator for Λ(·) given in Eq. 3 as Λ̂(·).

The following results provide the asymptotic properties of the proposed estimators. To this
end, we define
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and assume the limit exists and Σ is non-singular. Let β0 and Λ0(·) denote the true values of
β and Λ(·) respectively and cluster sizes nk are random and identically distributed for each
cluster. We obtain the following theorem.

Theorem 1
Assume Q(·) is a twice-continuously differentiable function. Moreover, Xij (t) has a bounded
total variation with probability one and P (Tij > τ|Xij) > δ and P(Cij > τ|Xij) > δ hold for
some positive constant δ. Then  converges in distribution to a zero-
mean Gaussian process in Rd × l∞[0, τ].

The outline of the proof is given in the appendix. From the proof of Theorem 1, we further
obtain that the influence function for β̂ is given by

Therefore, a consistent estimator for the asymptotic covariance of β̂ is

where a⊗2 = aaT and Σ̂ is a consistent estimator for Σ given by
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Additionally, the asymptotic covariance function for Λ̂ (t) and Λ̂ (s) can be consistently
estimated by the empirical covariance of random variables S(·, t) and S(·, s), where “·”
denotes the observed data and

and Sβ is the influence function for β̂ but with β0 replaced by β̂ in its expression.

3 Selection of link function
3.1 Test of goodness-of-fit

One critical issue in model (2) is the choice of the transformation function Q(·). However, in
practice, since one does not know the underlying distribution for the frailty, one question is
whether the choice of some Q is sufficient to fit the data well. To address this question, we
propose the following statistic for testing the goodness of fit with model (2):

In other words, our test statistic is the cumulative summation of the residuals given by

where the cumulation is taken over the values of Xij (t)T β̂. The similar statistics have been
given before, e.g., Yin (2007).

Using Eq. 3, Gn(x) can also be written as
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The proposed test statistic Gn(x) can be treated as examining how the mean event process
relates to linear predictor Xij (t)T β. Thus, if the transformation function Q is misspecified,
we would expect Gn(x) departs from zero. Particulary, the following theorem holds.

Theorem 2—Under model (2), n−1/2Gn(x) converges in distribution to a zero-mean
Gaussian process in l∞(−∞,∞).

Using Theorem 2, we can simulate the limiting Gaussian process to test the goodness of fit.
Especially, the resampling approach as given in Su and Wei (1991) can be used to simulate
this process: we simulate n i.i.d observations, say Z1,…,Zn, from standard normal
distribution. We then generate a new β as

where Σ̂ is a consistent estimate for Σ given in the previous section, and

With βnew, we calculate the process

We repeatedly generate  for many times and the obtained simulated process should
approximate the limiting process of n−1/2Gn(x).

The rationale behind this resampling approach is below. Following the exact expansion as in
proving Theorem 2, we can show that conditional on the observed data,  is
equivalent to
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Therefore, conditioning on the observed data,  is approximately a Gaussian
process with the same covariance as the asymptotic covariance of n−1/2Gn(x).

Using the resampling approach, we can obtain the approximate distribution of many useful
testing statistics, including supx |Gn(x)|, ∫ |Gn(x)|dx, and etc.

3.2 Robustness for null test
One interesting question is whether testing for the null hypothesis: β = 0 is valid even if Q is
misspecified. Particularly, we look into this issue under the following conditions:

(C.1) Xij is time-independent and has mean zero;

(C.2) Cij is independent of Xij and has the same distribution for j = 1,…, ni;

(C.3) The misspecified transformation function Q is continuously differentiable and
strictly increasing with Q(0) = 0.

Among these conditions, Condition (C.1) holds for any time-independent covariates after
proper shifting. Condition (C.2) assumes the common distribution for the censoring time and
independence between Cij and Xij. This condition is used mostly for the purpose of
simplification; however, it should be carefully justified in practice. For example, when Cij =
Cij′ for j, j′ = 1,…, ni are the administrative censoring time, the condition holds when Xij are
patient treatment allocations. However, the condition is not satisfied when patients in
different treatment groups quit the study at systematically different times. Condition (C.3) is
satisfied by transformations Q(x) = θ1 log(1+θ2x). These conditions are sufficient but not
necessary conditions.

Under the assumptions in Theorem 1 and from its proof, we know β̂ with misspecified
transformation function Q is consistent with some parameter β* which satisfies

Since
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we obtain

(6)

This is the starting point for us to examine the robustness when Q is a misspecified
transformation function.

When β0 = 0, we note Tij is independent of Xij and has the same survival function, so from
(C.1) and (C.2),

Thus, Eq. 6 gives

As the result, we have

where β̃ is between 0 and β*. Since Q(·) is strictly increasing from (C.3), the above equation
holds if and only if β* = 0. That is, we have

Theorem 3—Under conditions (C.1)–(C.3), β* = 0.

Theorem 3 indicates that under the null hypothesis, inference for β0 using misspecified
transformation function is still valid. In other words, one need not worry about using
incorrect transformation when performing the hypothesis testing for β = 0.

4 Simulation studies
We have conducted simulations to examine the small-sample performance of the proposed
method. In the first simulation study, we generated clustered survival data using the
following true model

where each cluster contained two subjects and cluster-specific random effect ξ was
generated from some gamma distribution with mean one and variance θ. Clearly, such data
generation implied transformation additive model (2), where the different choices of θ gave
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different transformations Q(x). Two covariates were generated for each subject: for the first
covariate, one subject in the cluster took value 0 and the other one had value 1; the second
covariate was randomly generated from the uniform distribution in [0, 1]. We let Λ(t) = t2/2
and generated censoring time from the uniform distribution in [0, 3], which yielded
censoring rate around 30%. We set covariates effects to be 0.2 and 0.8, respectively.

We applied our method to estimate covariate effects based on the working model (2).
Additionally, the sandwiched variance estimates was used for inference. Table 1 summarizes
the results from 1000 repetitions with sample size 200 and 400. Column “Bias” denotes the
average bias of the point estimates; column “SE” denotes the empirical standard error of the
point estimates; column “ESE” is the average of the estimated standard errors; column “CP”
refers to the coverage probability of 95% confidence interval based on the normal
approximation. Table 1 shows that for each of the three transformation models, the proposed
method works reasonably well with approximately unbiased estimates and correct inference.

In the second simulation study, we used the same set-up as before. However, we focused on
the small-sample behavior for goodness-of-fit statistics in model (2). To generate the
stochastic process in the goodness-of-fit statistics, we let x go through all the grid points in
the range of XT β. To obtain the distribution of such process, we adopted the resampling
approach described in Sect. 3.1. Additionally, we focused on the supreme statistics supx |
Gn(x)| and used 500 resamplings to simulate its distribution. Table 2 reports the probability
that the observed statistics are larger than the 95% percentile of the simulated statistics from
1000 repetitions. It shows that the tail probability using our approach is very close to the
theoretical value 5%, especially for n = 400. In other words, when the transformation model
is specified correctly, using our goodness-of-fit statistics should provide a valid inference.

In the third simulation study, we aimed to confirm the robustness results as given in Sect.
3.2. In this simulation, we considered only one uniformly distributed covariate which had
the same value for the two subjects in the same cluster. The true model corresponded to Q(x)
= 2 log(1 + x/2) and assumed that the covariate had no effect. However, we considered
estimating β using the working model (2) with each of three transformations Q(x) = x, Q(x)
= 2 log(1 + x/2), and Q(x) = log(1 + x). Thus, we misspecified the transformation in the first
and third cases. Table 3 gives the results from 1000 repetitions with column “α” being the
type I error when testing the null hypothesis. Not surprisingly, we conclude that no matter
what transformation is used, the inference for the null effects is always correct.

5 Application
We apply the proposed methods to the well-known Diabetic Retinopathy Study (Kupfer and
ETDRS research group 1976; Huster et al. 1989), which was conducted to assess the
effectiveness of laser photocoagulation in delaying visual loss among patients with diabetic
retinopathy. One eye of each patientwas randomly selected to receive the laser treatment
while the other eye was used as a control. The failure time of interest is the time (in months)
to visual loss as measured by visual acuity less than 5/200. Following previous authors, we
confine our attention to a subset of 197 high-risk patients, and consider three covariates: X1ij
indicates, by the values 1 versus 0, whether or not the jth eye (j = 1 for the left eye and j = 2
for the right eye) of the ith patient was treated with laser photocoagulation, X2i1 ≡ X2i2
indicates, by the values 1 versus 0, whether the ith patient had adult-onset or juvenile-onset
diabetics, and X3i1 = X3i2 is the age of the subject. Furthermore, we include the interaction
term between treatment and diabetic type in the regression.

We fit model (2) with these covariates and consider a class of transformations Q(x) = θ−1

log(1 + θx) by varying θ from 0 to 1 with Q(x) = x when θ = 0. To select the best fit, we
calculate the goodness-of-fit statistic for each θ and the final θ is chosen as the one
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minimizing the L2-norm of such statistic. The best θ is determined to be 0.79. For
comparison, Table 4 gives the estimated results from θ = 0, θ = 0.79, and θ = 1. Table 4
shows that for different transformations, the point estimates are very close to each other but
there is slightly increasing variation with increasing θ. Based on the selected model, both the
treatment indicator and the interaction term are significant, whereas the diabetic type is not.
The findings of both the direction and the significance of the covariate’s effect agree with
the results using different models (Cai et al. 2002;Zeng et al. 2005). Figure 1 gives the
estimated cumulative hazards function for Λ(t) for the untreated eye in a patient with
juvenile diabetics and age 16 and it appears pretty linear.

In Fig. 2, we also plot the process for testing goodness-of-fit along with a few random paths
from the limiting process, where the thick curve is the observed process. The plot shows that
the selected model fits data pretty well. The p-value using the supreme statistics is 0.42. For
comparison, we also fit the proportional hazards model with gamma frailty. Since the
marginal hazard model is given by θ−1 log{1 + Λ(t)eXTβθ} under the gamma frailty model
where θ is the variance of the gamma frailty, we then construct the same goodness-of-fit
statistic

It turns out that the observed process for  has an increasing drift (Fig. 3) indicating not
a good fit. Additionally, testing the equivalence of this model with our previously selected
model using the supreme value of  yields the p-value close to zero. Thus, we conclude
that the multiplicative model is not suitable for this data set. The additive model with θ =
0.79 is a good choice.

6 Remarks
We have proposed a class of additive transformation models for multivariate failure time.
We have particularly discussed the issue of selecting the transformation by proposing a valid
goodness-of-fit test. Even though we considered the multivariate failure time, it is noted that
all the procedures and approaches apply to the univariate failure time. However, the latter
lacks the motivation for transformation model as given in the introduction. For the additive
risk model, one drawback is that it may yield the decreasing cumulative hazards function
when predicting Λ(t|X). In this case, one usually modifies the predicted value, say Λ̂ (t|X), as
maxs≤t Λ ̂(s|X). It is easy to show that such modification still yields a consistent estimator.

When transformation Q(x) is specifically from some gamma-frailty, we can work on the full
likelihood function instead of marginal transformation hazards model as given in the paper.
The observed likelihood function has form

where f (ξ) is the gamma-frailty density. The inference for maximizing the likelihood
function becomes much harder. It would be interesting to see the efficiency gain over our
estimators by using this approach. Furthermore, one may even allow frailty variability to
vary from cluster to cluster.
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The transformation models can also be extended to other cases, for example, multiple types
of events (Cai and Schaubel 2004) by allowing different baseline hazards function and
different effects for different events. Additionally, when neither additive model nor
multiplicative model is a sufficiently good approximation to model data structure, some
combination of additive and multiplicative effects as given by Lin and Ying (1995) and
Zeng et al. (2005), along with transformations, may be useful.
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Appendix: outline of the proofs
Proof of Theorem 1 Let

First, we note

Thus, in any neighborhood of β0, ln(β) converges almost surely and uniformly in β to

Moreover, ∇βln(β) uniformly converges to ∇βl(β). Since

and − ∇βl(β0) = Σ is non-singular by assumption, from the inverse function theorem, there
exists some β̂ such that ln(β̂) = 0. Therefore, we have shown β̂ →p β0.
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By the Taylor expansion, it is easy to show

where Gn denotes the empirical process from n i.i.d observations. Furthermore, from Eq. 3
and the fact that

we obtain

where β̃ is between β̂ and β0. Since Xij (t), Rij (t) and Nij (t) are stochastic process with
bounded variation, they belong to some Donsker class indexed by t. The same holds for

Xij(t)T β,  as stochastic process indexed by both t and
β. As the result, we have

Then theorem 1 holds using the Donsker theorem (c.f., van der Vaart and Wellner 1996)
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Proof of Theorem 2 First note

where

From the martingale property of d Mij, we obtain

Therefore, we can rewrite Gn(x) as
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Since I (Xij(t)T β ≤ x), as a bounded process index by t, β and x, belongs to some Donsker
class, we obtain

Using the proof of Theorem 1, we have
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Theorem 2 thus follows from the Donsker theorem.
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Fig. 1.
Estimated cumulative hazards function for θ = 0.79 in an untreated eye for a patient with
juvenile diabetics and age 16. The unit of x-axis is month.
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Fig. 2.
The goodness-of-fit statistic for θ = 0.79 (in thick solid line) and simulated random paths
from its limiting process.
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Fig. 3.
The goodness-of-fit statistic for the proportional hazards model with frailty: x-axis is the
linear predictor from the proportional hazards model.
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Table 2

Empirical tail probability for goodness-of-fit statistics

Transformation n=200 n=400

Q(x) = x .054 .050

Q(x) = 2 log(1 + x/2) .033 .052

Q(x) = log(1 + x) .052 .052
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