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Abstract

Crypts are the basic structural and functional units of colonic epithelium and can be isolated from 

the colon and cultured in vitro into multi-cell spheroids termed “colonoids”. Both crypts and 

colonoids are ideal building blocks for construction of an in vitro tissue model of the colon. Here 

we proposed and tested a microengineered platform for capture and in vitro 3D culture of colonic 

crypts and colonoids. An integrated platform was fabricated from polydimethylsiloxane which 

contained two fluidic layers separated by an array of cylindrical microwells (150-μm diameter, 

150-μm depth) with perforated bottoms (30-μm opening, 10-μm depth) termed “microstrainers”. 

As fluid moved through the array, crypts or colonoids were retained in the microstrainers with a 

>90% array-filling efficiency. Matrigel as an extracellular matrix was then applied to the 

microstrainers to generate isolated Matrigel pockets encapsulating the crypts or colonoids. After 

supplying the essential growth factors, epidermal growth factor, Wnt-3A, R-spondin 2 and noggin, 

63±13% of the crypts and 77±8% of the colonoids cultured in the microstrainers over a 48–72 h 

period formed viable 3D colonoids. Thus colonoid growth on the array was similar to that under 

standard culture conditions (78±5%). Additionally the colonoids displayed the same morphology 

and similar numbers of stem and progenitor cells as those under standard culture conditions. 

Immunofluorescence staining confirmed that the differentiated cell-types of the colon, goblet cells, 

enteroendocrine cells and absorptive enterocytes, formed on the array. To demonstrating the utility 

of the array in tracking the colonoid fate, quantitative fluorescence analysis was performed on the 

arrayed colonoids exposed to reagents such as Wnt-3A and the γ-secretase inhibitor LY-411575. 

The successful formation of viable, multi-cell type colonic tissue on the microengineered platform 

represents a first step in the building of a “colon-on-a-chip” with the goal of producing the 

physiologic structure and organ-level function of the colon for controlled experiments.
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Introduction

Microengineered devices are unique tools for the culture and interrogation of cells and 

tissues in vitro by virtue of their ability to control the cellular microenvironment both 

temporally and spatially.1 Microdevices specifically designed to mimic in vivo organ 

microarchitecture and function, called “organ-on-chips”, are envisioned to expand the 

capabilities of cell culture models and provide better controlled experimental alternatives to 

animal studies.2–4 An excellent example of organ-on-chips is a physiologically functional 

“lung-on-a-chip” that reconstitutes the dynamic mechanical strain and alveolar-capillary 

interface of the human lung.5 Various other organ-on-chips have been reported including 

liver,6 heart,7 blood vessel,8 muscle,9 kidney,10 and gastrointestinal tract,11–13 by 

recapitulating a specific feature of the organ microenvironment (e.g. topography, tissue-

tissue interface, mechanical movement, shear stress, biochemical gradient).

While these organ-on-chips have created novel in vitro models that permit the study of some 

aspects of human physiology, many of them still rely on the use of immortalized cell lines 

derived from tumors. For example, Caco-2 cells derived from a colon carcinoma were used 

in several “gut-on-chips” to mimic the intestinal epithelium.11–13 Although these tumor cell 

lines can form a contiguous monolayer, their cancer phenotype poorly reflects normal tissue 

physiology or microarchitecture found in vivo. This issue points to one of the major 

challenges of organ-on-chips which is the use of primary cells derived from normal tissue to 

form systems more representative of in vivo organ systems.3

The subunit of the living colon is the crypt which is a micron-scale tubular structure 

comprised of a single layer of columnar epithelium that invaginates into the underlying 

connective tissue of the lamina propria. The colonic epithelium is the most rapidly renewing 

tissue in the mammalian body with a renewal time of 3–5 days for mice.14 This tissue 

regeneration is driven by a pool of multipotent colonic epithelial stem cells at the base of the 

crypts.15 The stem cells give rise to transient amplifying progenitor cells that terminally 

differentiate into three major types of epithelial cells as they migrate from the base of the 

crypt towards the lumen: goblet cells (secreting mucus), absorptive colonocytes (absorbing 

water and electrolytes), and enteroendocrine (secreting hormones). The self-renewal 

property of crypts provides homeostasis to the colonic epithelium, while the different cell 

types enable a range of functions to be accomplished by the colon. Therefore, crypts are 

ideal building units for constructing an in vitro tissue model within a microdevice.

A previous effort to design a microdevice for capture and biological assay of colonic crypts 

used polymer crypt-surrogates and fixed crypts.16 A freestanding film microfabricated from 

epoxy photoresist containing an array of micron-scale capture sites, termed a micromesh 

(open holes), was used to capture fixed crypts with high efficiency in an ordered and 

properly oriented fashion.16 However, this micromesh structure was less effective at 

capturing and retaining live crypts likely because crypts are much softer and more 

deformable than crypt surrogates and fixed crypts. For example, when live crypts 

approached the holes via fluidic flow, they deformed and did not properly enter the holes. 

Additionally, the structures were readily dislodged when reagents were added to the device 

and the crypts were viable for only a few hours.
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In vitro culture of live crypts and intestinal stem cells has been attempted for decades with 

little success until the pioneering work by the Clevers and colleagues in 2009 in which long-

term culture of crypts and stem cells from the small and large intestines was achieved by 

virtue of the identification of a number of critical factors needed for cell maintenance and 

proliferation.17–21 One of the most substantial difficulties overcome was the blockage of 

rapid apoptosis following removal of crypts from the basement membrane by addition of a 

ROCK inhibitor to the initial culture media. A second accomplishment was identification of 

growth factors (Wnt-3A, R-spondin 1, noggin and epidermal growth factor [EGF]) that were 

required for support of the colonic epithelium. These factors enable long term survival of 

colonic epithelial cells when added exogenously to a 3D extracellular matrix (ECM). This 

3D culture system supports the growth of colonoids (defined as colonic organoids without 

mesenchyme),22 which contain self-renewing stem cells as well as all of the differentiated 

cell types present in crypts. The development of this culture technology provides the 

opportunity to design microdevices to support a living colonic epithelium for in vitro studies 

in a user-controlled microenvironment.

The goal of the current work was to create a viable colonoids microarray with potential for a 

variety of uses including the study of colonic cell physiology and the stem-cell proliferation 

and differentiation. Microfabrication was combined with primary colonic tissue culture to 

create a viable colonoid microarray. A microengineered crypt-like architecture was 

developed on the arrays using biocompatible substrates. Crypts and colonoids captured on 

the array were embedded in Matrigel to form an array of extracellular matrix plugs encasing 

the living cells. Crypt survival and growth were quantitatively assessed in culture conditions 

that mimicked the native colonic crypt niche with provision of the essential growth factors 

of EGF, Wnt-3A, R-spondin and noggin. Finally, to explore the feasibility of using the 

device as an in vitro drug screening platform, the arrayed colonoids were subjected to small 

molecule inhibition of the Notch pathway, LY-411575.

Experimental Section

Materials

Fluorescein isothiocyanate–dextran (FITC-dextran, average molecular weight 2,000,000), 

Y-27632 dihydrochloride (ROCK inhibitor), N-acetyl-L-cysteine (NAC), and LY-411575 

(γ-secretase inhibitor) were purchased from Sigma Aldrich. The 1002F epoxy photoresist 

was formulated according to a previous publication.23 Polydimethylsiloxane (PDMS) was 

prepared from the Sylgard 184 silicone elastomer kit (Dow Corning). Advanced DMEM/

F-12 medium, EGF recombinant mouse protein, N-2 supplement, B-27 supplement, 

GlutaMAX supplement, penicillin-streptomycin, fetal bovine serum (FBS), HEPES (1M 

buffer solution), and G418 sulfate were obtained from Invitrogen. Mouse noggin 

recombinant protein was from eBioscience. Growth factor reduced Matrigel and collagen 

(type I from rat tail) were purchased from BD. Collagenase (type 4) was purchased from 

Worthington Biochemical. All other reagents including dithiothreitol (DTT), bovine serum 

albumin (BSA) and ethylenediaminetetraacetic acid (EDTA) were from Fisher Scientific.
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Isolation of crypts from colons

Crypts were isolated from wild type and CAG-DsRed/Sox9-EGFP mice (6–9 week old) 

using previously described methods.24 The CAG-DsRed/Sox9-EGFP mouse used in this 

study is a cross between a bacterial-artificial-chromosome-transgenic mouse in which the 

enhanced green fluorescent protein (EGFP) is expressed as a function of the Sox9 regulatory 

region (Sox9-EGFP mouse),25, 26 and the CAG-DsRed mouse (CAG = CMV enhancer plus 

chicken actin promoter) that harbors a transgene for the DsRed protein.17, 26, 27 All 

experiments were performed in compliance with the relevant laws and institutional 

guidelines at the University of North Carolina. All experiments and animal usage was 

approved by the Institutional Animal Care and Use Committee at UNC.

Off-chip 3D culture of colon crypts

Isolated crypts were embedded in collagen for in vitro 3D culture according to previous 

publications with minor modification.21, 24 Briefly, isolated crypts were counted using a 

hemocytometer. A total of 5,000 crypts were suspended in 500 μL of type 1 rat tail collagen 

at 2 mg/ml and placed in a 12-well plate. After polymerization of the collagen at 37 °C for 

30 min, 2 mL of crypt culture medium (CCM) was added to the well. CCM was prepared 

from a mixture of advanced DMEM/F12 medium, Wnt-3A-conditioned medium, and R-

spondin 2-conditioned medium at a volumetric ratio of 2:1:1, and supplemented with noggin 

(100 ng/mL), EGF (50 ng/mL), N2 (1×), B27 (1×), Y27632 ROCK inhibitor (10 μM), NAC 

(1 mM), GlutaMAX (1×), HEPES (10 mM), penicillin (100 unit/mL), and streptomycin (100 

μg/mL). The detailed steps to prepare Wnt3A and R-Spondin 2-conditioned media are 

described in the supplementary information. CCM was prepared in a bulk volume of 500 mL 

and split into 6-mL aliquots and stored at −80 °C until use. The medium was changed every 

48 h. The crypts grew into colonoids in culture (Fig. 1). To harvest the colonoids, the 

collagen gel was digested in DMEM containing collagenase type 4 (500 U/mL) at 37 °C for 

15 min. The released colonoids were washed with PBS containing 0.5% BSA, centrifuged at 

300 g for 2.5 min, and suspended in DMEM for immediate use.

Fabrication of a freestanding PDMS microstrainer array

A freestanding PDMS membrane containing an array of microstrainers was prepared by 

three microfabrication steps (Fig. S1), the details of which are described in the 

supplementary information. In the first step, a master mold composed of an array of 

microstrainers firmly adhered to the glass substrate was fabricated from 1002F photoresist 

by a two-layer photolithography process (Fig. S1A).16 A 10-μm thick 1002F film was 

fabricated first on the glass as the base. The structure was composed of a 10-μm thick grid 

within 30-μm square or circular openings. Then a 150-μm thick 1002F film was coated on 

the top of the base, and holes of 150 μm in diameter were fabricated in the top layer. In the 

second step, a PDMS mold was prepared by replicate molding of PDMS on the master mold 

(Fig. S1B). The PDMS mold contained an array of large posts (150 μm in height, 150 μm in 

diameter) with small posts (10 μm in height, 30 μm in diameter or length) at the top of each 

large post. In the third step, a PDMS microstrainer array was fabricated by replicate molding 

under pressure (Fig. S1C). The PDMS microstrainer had the same geometry as the epoxy 

microstrainer on the master mold.
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Integration of the microstrainer array into a device

Soft lithography was used to fabricate two fluidic layers (a top layer and a bottom layer) that 

were integrated above and below a microstrainer array to create a 2-channel microfluidic 

platform in PDMS (Fig. 2D). The array and the top layer were plasma treated for 2 min, 

aligned and brought into conformal contact to form permanent bonding. Then the bottom 

layer was bonded to the other side of the array in the same manner. The assembled device 

was then baked at 95 °C overnight to enhance the bond strength.

Capture of crypts, selective placement of Matrigel, and on-chip culture of crypts on the 
microstrainer array

The device was sterilized with 70% ethanol and rinsed with PBS buffer ×5. Trapped air 

bubbles inside the microstrainers were removed by degasing the device in a covered Petri 

dish. The microstrainer array was treated with 1% BSA for 1 h at room temperature, and 

rinsed with PBS buffer ×3 prior to loading crypts. To load crypts on the array, a suspension 

of crypts in DMEM was added to port 1 and 2 followed by addition of PBS buffer. Gravity 

drove a trans-array flow delivering the crypts to the wells in the microstrainer array. The 

ratio of crypts:wells was 2:1. Once the crypts were captured on the array, buffer was 

aspirated from the channels, which was then quickly filled with cold liquid Matrigel (50% 

dilution in CCM, 4 °C), and incubated at room temperature for 5 min. Aspiration of liquid 

Matrigel from the channels generated isolated Matrigel pockets embedding the crypts. After 

this step, the device was placed at 37 °C for 10 min to solidify the Matrigel. CCM (1 mL) 

was then added to the top and bottom fluidic layers for crypt culture. Medium was changed 

every 24 h. Colonoids were loaded and cultured on the device in the same manner as the 

isolated crypts.

Microscopy

The crypts and colonoids were imaged using a Nikon Eclipse TE300 inverted 

epifluorescence microscope equipped with DAPI/FITC/Texas Red filter sets. Wide-field 

imaging of the entire array was obtained using an Olympus MVX-10 research macro zoom 

fluorescence microscope equipped with FITC/Texas Red filter sets. 3D images of crypts 

embedded in solidified Matrigel pockets (mixed with 100 μg/mL FITC-dextran) on the array 

were obtained using an Olympus spinning disk confocal microscope equipped with FITC/

Texas Red filter sets. The PDMS microstrainer array was inspected by SEM (FEI Quanta 

200 ESEM, FEI Company).

Immunofluorescence

Crypts isolated from a wild-type mouse were used for immunofluorescence (IF). The freshly 

isolated crypts and in vitro cultured colonoids on the array were fixed with 4% 

paraformaldehyde for 20 min, followed by permeabilization with 0.5% Triton X-100 for 20 

min. IF staining was performed using the following primary antibodies: rabbit anti-Muc2 

(1:200, Santa Cruz, #SC-15334), rabbit anti-chromogranin A (1:1000, Bioss, #bs-0539R), 

mouse anti-carbonic anhydrase II (1:500, Santa Cruz, #SC-48351). The secondary 

antibodies were donkey anti-rabbit or mouse antibodies conjugated with NL594 and NL637 

(1:200, Santa Cruz). DNA was stained with Hoechst 33342 (1 μg/mL, Sigma Aldrich, 
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#B2261). The stained crypts and colonoids were imaged using the Nikon Eclipse TE300 

microscope described above.

Time-lapse imaging of colonoids in response to the growth factor, Wnt-3A

To study the effect of Wnt-3A, crypts isolated from a CAG-DsRed/Sox9-EGFP mouse were 

captured and cultured on two arrays. One array was cultured in the absence of Wnt-3A, 

while the other one was cultured in CCM and served as the control. Images were collected 

with a cooled CCD camera (Photometrix Cool Snap HQ2; Roper Scientific, Tucson, AZ) 

using a Micro-Manager hardware control interface.28 Image analysis was performed using a 

custom script implemented in MATLAB (MathWorks; Natick, MA). Briefly, centers of the 

wells in the array were detected using an implementation of the Hough transform for 

detecting circles.29 Detected wells in overlapping the image edge were rejected from 

analysis and the remaining well centers were used to generate a segmentation mask for each 

field-of-view within the array. This mask was then used to integrate fluorescence intensities 

for each colonoid on the acquired images. For experiments in which dynamic properties 

were tracked, the first image in the sequence was selected for segmentation and the resulting 

mask applied to all images in the sequence.

Gamma-secretase inhibition

To study the effect of a γ-secretase inhibitor, crypts isolated from a CAG-DsRed/Sox9-

EGFP mouse were captured on the two chips and encapsulated with Matrigel. One chip was 

cultured in CCM containing 1 μM LY-411575,30 while the other one without LY-411575 

served as the control. The medium was changed every 24 h. At 48 h, the colonoids on the 

arrays were fixed and stained with Hoechst 33342. The arrays were imaged on an Olympus 

MVX-10 microscope to quantify Sox9 (EGFP) expression as well as DNA content (Hoechst 

33342). Image analysis was performed using a custom script implemented in MATLAB 

based on user initialization of the capture array geometry. The fluorescence intensity was 

analyzed by two-sample student’s t-test. Statistical significance for comparisons was 

assigned at P < 0.05.

Results and Discussion

Use of a CAG-DsRed/Sox9-EGFP mouse model to facilitate quantification of colonoid 
growth and differentiation

Transgenic mouse models expressing multiple fluorescent proteins have enabled 

identification and tracking of cells within viable crypts.17, 26, 27 A CAG-DsRed/Sox9-EGFP 

mouse model was used in which DsRed was constitutively expressed while EGFP was 

expressed in intestinal epithelial stem and progenitor cells, but not in the differentiated 

colonic epithelium.25 This model allows monitoring and quantification of undifferentiated 

cells (Sox9EGFP+; red and green) and differentiated cells (red only) by fluorescence 

microscopy (top scheme in Fig. 1A).

Two types of colonic epithelial samples were prepared for experiments, freshly isolated 

crypts or colonoids cultured from previously isolated crypts. Production of colonoids 

enabled expansion of the primary cells and minimized the numbers of animals required for 
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tissue procurement. To produce this expanded tissue sample, isolated crypts were embedded 

in a patty of collagen hydrogel and supplied with essential growth factors (EGF, Wnt-3A, R-

spondin 2 and noggin) and an apoptosis inhibitor (Y27632).17, 21, 24 Of the isolated crypts, 

78±5% (a total number of 60 crypts counted in 3 culture experiments) formed colonoids 

when cultured for 3 days (Fig. 1B). When cultured under these conditions, the cells in the 

luminal portion of the crypts rapidly died while the crypt base containing the stem cells 

persisted in culture and developed into colloid structures. Colonoids continued to grow and 

by day 3 possessed an enclosed central lumen (Fig. 1). Thus, the crypts underwent a 

dramatic change in morphology during in vitro culture from open and elongated (at day 0) to 

enclosed and spherical (at day 3). Freshly isolated crypts possessed a diameter at the luminal 

end of 100 ± 23 μm, a basal diameter of 50 ± 10 μm and a length of 241 ± 49 μm (n=20). By 

day 3, the spherical colonoids cultured displayed a diameter of 110 ± 43 μm (n=20). In 

addition to the change in shape, compartmentalization of the various cell types was lost 

during in vitro culture. Colonoids possessed a non-polarized structure with self-renewing 

stem/progenitor cells (EGFP) and differentiated epithelial cell types (DsRed) being 

randomly dispersed (Fig. 1B). These cultured colonoids could be harvested from the 

collagen gel by digestion with collagenase which also fragmented the larger structures to 

yield increased numbers of smaller colonoids. The tissue could then be utilized for assays or 

further expanded in culture.

The freshly isolated crypts and in vitro cultured colonoids demonstrated distinct advantages 

and disadvantages. Freshly isolated crypts resembled the in vivo state of the colonic 

epithelium in terms of morphology, cell segregation and tissue polarization, but their 

elongated shape made it difficult to control their orientation on microdevices. Colonoids 

were readily manipulated in microdevices due to their spherical morphology, but their shape 

and lack of a distinct stem-cell and differentiated-cell compartments did not mimic that of in 
vivo crypts. In this study, both freshly isolated crypts and in vitro cultured colonoids (48 h in 

off-chip culture) were prepared in suspension and used as a tissue sources for the 

microdevices.

Fabrication of the microstrainer array and its integration into a device

Currently, the standard approach to in vitro culture of crypts uses conventional culture 

devices such as multi-well plates and Transwell permeable inserts.24, 26, 31 A 

microengineered device to efficiently array and maintain living crypt tissue would represent 

a highly efficient and cost effective platform and provide unprecedented user-controlled 

fluidic microenvironments. To achieve such a tool, a freestanding film containing a 

microstructure termed a microstrainer array was fabricated to capture and retain live crypts. 

The microstrainer array was composed of deep, cylindrical microwells (150-μm diameter, 

150-μm depth) with a thin, grid-like bottom layer (30-μm opening, 10-μm depth) (Fig. 2A–

C). The gridded bottom layer was designed to permit fluid to flow through the microwells 

while blocking crypt passage. The depth of the microwells was expected to enable crypt 

retention in the array sites during reagent manipulation. Arrays similar to that used here have 

been fabricated from epoxy photoresist by a two-layer photolithography process.16, 32 In this 

study, PDMS was selected as the material to fabricate the microstrainer array due to its low 
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autofluorescence, biocompatibility, wide acceptance in the microfluidic community, and 

ease in bonding with other fluidic layers to form integrated devices.

A process composed of three microfabrication steps was used to fabricate the PDMS 

microstrainer array with the details described in the supplementary information. During the 

final fabrication step (Fig. 2A), a soft lithography-based replica molding method was 

employed similar to that used for fabricating a PDMS porous membrane.11 PDMS pre-

polymer was sandwiched between a glass slide and a post-array mold under a uniform 

pressure generated by a 0.75 kg weight. Thermal cure and subsequent demolding yielded a 

high quality PDMS microstrainer array (Fig. 2B). The bottom layer was perforated with 

unobstructed holes (Fig. 2C). Each array was composed of 3×3 subgroups, and each 

subgroup contained 10×10 microstrainers, resulting in a total of 900 microstrainers per 

array. In order to track the growth of crypts, each microstrainer was provided an address 

designated by a combination of letters and numbers. For example, the address of the 

microstrainer in the upper/right corner of Figure 2B is “AA-5a” where “AA” denotes the 

subgroup, “5” and “a” are x and y coordinates of the microstrainer in this subgroup.

To form an integrated microfluidic device, the microstrainer array was sandwiched and 

sealed by plasma-activated bonding of two PDMS layers (Fig. 2D–F). The top layer 

contained a central chamber (8 mm in diameter) and four through holes (8-mm in diameter) 

that provided access points for fluid flow through the device. The bottom layer possessed 

three cylindrical chambers. The integrated device contained two fluidic layers separated by 

an array of microstrainers that divided the central chamber into luminal and basal 

compartments. Ports 1 and 2 connected the luminal compartment, while ports 3 and 4 

connected the basal compartment (Fig. 2E). The fluidic flow in the platform was controlled 

by four ports: 1→2 for flow through the luminal compartment, 3→4 for flow through the 

basal compartment, and 1→4 or 2→3 for trans-array flow. Fig. 2F shows a photograph of 

the integrated platform.

Capture of crypts on the microstrainer array and selective placement of Matrigel

Crypts were loaded onto the array by pipette and moved through the channels by vacuum 

aspiration so that no pumps and valves were needed (Fig. 3A). A suspension of crypts was 

added to ports 1 and 2 followed by addition of PBS buffer to these reservoirs. At the same 

time PBS was removed from ports 3 and 4 driving a trans-array flow which transported the 

crypts to the microstrainer. As fluid moved through the porous base of the microstrainers the 

crypts were retained in the microstrainers (Fig. 3A-ii). This simple loading strategy yielded 

>90% capture efficiency (i.e. percentage of microstrainers on the array that was filled with 

crypts/colonoids) when a crypt:well ratio of 2:1 was employed (Fig. 3B,C). Since the crypts 

were on average 241 ± 49 μm in length, many crypts were deformed as they entered the 

microstrainer (diameter = 150 μm) (Fig. 3D). Some microstrainers captured more than one 

crypt which was deemed acceptable, since it was observed that two adjacent crypts within a 

microwell always fused into one colonoid during culture. Colonoids that were formed in 

culture prior to loading on the array were also captured on the microstrainer array with 

>90% capture efficiency (Fig. S2A) but without deformation due to their spherical shape 

and small size (Fig. 3E). If capture of single crypt per microstrainer is needed, e.g. in 
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conducting clonal analysis of crypts in vitro, a low crypt:well ratio (e.g. 0.2:1) can be 

employed (Fig. S2B).

Intestinal epithelial cells undergo rapid apoptosis termed anoikis when they are detached 

from basement membrane.33 To maintain the viability of crypts in the microstrainers, the 

crypts must be embedded in an ECM hydrogel as quickly as possible. Laminin is enriched in 

basement membranes surrounding the crypts and laminin-rich Matrigel has been shown to 

be effective in maintaining the viability of crypts and maintaining colonic stem cells.17 For 

this reason arrayed crypts were embedded in Matrigel pockets immediately after loading 

onto the array (Fig 3A). After crypts capture on the array (Fig. 3A-ii), buffer was aspirated 

from the channels which were then quickly filled with cold liquid Matrigel (Fig. 3A-iii). 

Liquid Matrigel was then aspirated from the channels leaving an isolated Matrigel plug in 

each microstrainer well. Incubation of the device at 37°C caused the Matrigel to gel and 

encase the crypts (Fig. 3A-iv). When the Matrigel was premixed with fluorescein-dextran, 

confocal, fluorescence microscopy confirmed that the crypts were embedded in isolated 

Matrigel pockets that had the same height and diameter as the microstrainers (Fig. 3F–H). 

Finally medium was added to the upper and lower compartments to supply the crypts with 

nutrients and growth factors (Fig. 3A-v). Although the diffusion of growth factors in 

Matrigel is slow, e.g. with a diffusion coefficient on the order of 106 μm2/hour for vascular 

endothelial growth factor (38.2 kDa),34 the micron-scale Matrigel pockets ensured the 

efficient delivery of growth factors to the crypts, and removal of metabolic wastes from the 

crypts. Addition and removal of medium demonstrated that the crypts or colonoids were 

held firmly in the Matrigel pockets as none were found to be dislodged from the array 

during medium exchange. After capture of crypts or colonoids, media was placed in the 

upper and lower compartments. After initial media placement, no fluid flow was present.

In vitro culture of crypts and colonoids in the microstrainer array

Within the microstrainers, crypts formed 3D colonoids over a 72-h period and the colonoids 

displayed a similar spherical morphology to present under standard growth conditions (Fig. 

4A). Many colonoids filled the entire lumen of the microstrainers by 72 h. Cell debris was 

present on the surface of the microstrainer and likely originated from the expected apoptosis 

of cells in the luminal portion of the crypts. The efficiency of crypt growth into colonoids 

was assessed by comparing the DsRed fluorescence image after 1 and 72 h in culture for 60 

wells in 3 independent culture experiments. Of the crypts loaded into the microstrainers, 

63±13% grew into colonoids, a number similar to that under standard off-chip culture 

conditions (78±5%). All of the living crypt/colonoids expressed EGFP fluorescence and thus 

possessed Sox9-expressing cells indicating that stem/progenitor cells were present in the 

colonoids. These data suggested that the material (PDMS) and geometric constraints 

(microstrainer) did not exert a substantially negative effect on the growth of isolated crypts 

into colonoids.

Colonoids cultured off-chip could also be captured and then cultured on the array (Fig. 4B) 

in a manner similar to that of the crypts. Sox9+ stem/progenitor cells were preserved in the 

colonoids during culture on the device as evidenced by the continued expression of EGFP 

(Fig 4B). Of the colonoids loaded onto the array, 77±8% (n=60 in 3 independent 
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experiments) continued to expand in size on the array at 48 h which was similar to the 

survival rate of crypts loaded onto the array. By 48 h, the living colonoids filled the entire 

lumen of the microstrainers (Fig. 4B). At 72 h, over 70% of the 900-capture sites were filled 

with viable, 3D colonoids possessing stem/progenitor cells as indicated by the presence of 

EGFP in 100% of the colonoids (Fig. 4C). These experiments demonstrate that either freshly 

isolated crypts or in vitro cultured colonoids could be used as the tissue source for the 

microstrainer array.

To assess whether the colonoids on the microstrainer array possessed the full repertoire of 

differentiated lineages, immunostaining for lineage-specific markers was conducted on 

arrayed colonoids derived from a wild type mouse. At 72 h, the colonoids were fixed and 

stained for Muc2 (goblet cells), chromogranin A (enteroendocrine cells), and carbonic 

anhydrase II (enterocytes).21 In freshly isolated crypts, stem/progenitor cells (Sox9+) are 

localized at the base of the crypts (Fig. 4D-i, left,). In contrast, stem/progenitor cells in 

colonoids were the predominant cell type and were randomly dispersed (Fig. 4D-i, right). 

The Wnt-3A protein in the culture medium favored the expansion of stem/progenitor cells 

since Wnt acts to support the undifferentiated progenitor cell type.19 Mature, differentiated 

goblet cells (Muc2+), which secrete mucus to protect and lubricate the colon, are found at 

the luminal portion of the crypts but were dispersed throughout the colonoids (Fig. 4D-ii). 

Enteroendocrine cells (CGA+), which release hormones or peptides to control important 

physiological functions of the colon, are present in in low numbers in freshly isolated crypts, 

and were also rarely observed in the colonoids (Fig. 4D-iii). Colonic enterocytes (CAII+), 

which uptake water and ions from the solid waste in the colon, are located along the luminal 

portion of the crypts. These cells were present in the colonoids but dispersed throughout the 

colonoid at random locations (Fig. 4D-iv). The differentiated cells wre found in the majority 

of imaged wells (Fig. S3). The immunofluorescence staining of colonoids on the array was 

independent on the source of tissue (fresh crypts or off-chip cultured colonoids) (Fig. S4). 

These findings are consistent with the numerical distribution of stem/progenitor and 

differentiated cells in colonoids formed under standard culture conditions.19 Compared to 

freshly isolated crypts, colonoids lacked clear proliferative and differentiated regions.

In vitro response of colonoids to Wnt-3A and γ-secretase inhibitor LY-411575

To demonstrate the utility of the microstrainer array platform, the arrays of CAG-DsRed/

Sox9-EGFP crypts were exposed to two reagents, Wnt-3A and LY-411575. Wnt signaling is 

a major driving force behind intestinal cell renewal and is essential for in vitro growth of 

crypts into colonoids.17, 35 To confirm the role of Wnt-3A, crypts were cultured on the 

microstrainer arrays and images of DsRed fluorescence intensity were acquired every 30 

min (Fig. 5A, B). In the presence of Wnt-3A, the DsRed fluorescence intensity of crypts 

increased steadily over time up to 68 h, indicating expansion of the crypts into colonoids. In 

the absence of Wnt-3A, however, DsRed fluorescence decreased over the time in culture as 

cell numbers declined. This result demonstrates the critical role of Wnt-3A in culturing 

colonic crypts and the utility of the arrays in tracking the of growth factors at the individual 

colonoid level.
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LY-411575 is a γ-secretase inhibitor known to block Notch signaling.36 Inhibition of Notch 

signaling acts to increase differentiation signals along the secretory lineage and decrease 

stem cell numbers.37, 38 To study the effect of LY-411575 on crypts, crypts were cultured on 

the microstrainer arrays in the presence of 0 and 1 μM LY-411575 (Fig. 5C, D). After 

exposure of LY-411575 for 48 h, the colonoids were fixed and their nuclei were stained with 

Hoechst 33342. The location of each colonoid on the microstrainer array was determined by 

having a user initialize the positions of the array’s corners and interpolating the position of 

each well on the array. Hoechst and EGFP fluorescence were integrated over the area of 

each well after background subtraction. EGFP expression was reduced by 39.4% reduction 

compared to that of the control (P < 0.05, student’s t test) (Fig 5D). The results demonstrate 

that Sox9EGFP expression (Fig. 5C) was suppressed by administration of 1 μM of 

LY-411575 suggesting a decrease in functional stem/progenitor cells. No significant change 

in colonoid DNA content was observed (P = 0.087 >0.05, Fig. 5C) between the control and 

drug-exposed arrays indicating that total cell numbers were similar on both arrays and the 

drug did not act by killing cells. LY-411575 did not inhibit the survival of colonoids on the 

arrays at 48 h. Our data is consistent with a previous report that LY-411575 induces 

differentiation of intestinal stem cells and reduces expression of the stem cell marker Lgr5.21 

While a significant difference in the mean level of EGFP fluorescence was observed, 

tracking individual colonoids revealed significant heterogeneity within each population.

Conclusions

An integrated platform possessing microfluidic channels and a microstrainer array was 

fabricated and used to capture and culture colonic crypts that developed into colonoids. 

Captured colonic crypts or organoids were retained on the microstrainer array with >90% 

filling efficiency. A simple operation (filling and then aspiration) generated micron-scale 

Matrigel pockets that encapsulated the crypts and colonoids within the microwells on the 

array. The crypts and colonoids grew within the microstrainers to form or maintain viable 

3D colonoids that possessed the entire cell lineages found in intact crypts. Large numbers of 

colonoids were rapidly screened on the microstrainer arrays without a need for 

computationally expensive image segmentation as the position of each microstrainer within 

the array was predefined. By combining the arrays with wide-field imaging, >400 colonoids 

could be captured per image frame. The arrays enabled rapid in vitro analysis of primary 

colonic tissues during drug exposure and may find usage as a screening tool to identify 

potential adverse gastrointestinal effects of orally administered drugs. This study 

demonstrated for the first time that extremely fragile specimens, such as crypts, can be 

captured and cultured in a microengineered device to form viable structures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Development of colonoids derived from intact crypts. (A) Simplified model of cell 

composition and tissue polarization for crypts (upper structure) and colonoids (lower 

structure). Stem/progenitor cells are depicted in green, and differentiated cells are red. (B) 

Microscopic images of in vitro growth of crypts over 3 days. The left panel shows a large 

number of crypts/colonoids in low magnification brightfield images. The middle panel 

shows 2–3 crypts/colonoids in high magnification brightfield images. The right panel shows 

the merged red/green fluorescence images of crypts/colonoids isolated from the murine 

model system expressing EGFP and DsRed.
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Fig. 2. 
The microstrainer array and integrated fluidic device. (A) A scheme to fabricate the PDMS 

microstrainer array by replicate molding under pressure. (B–C) Microscopic images of the 

array: (B) brightfield and (C) SEM. Scale bar = 200 μm. (D) The integrated platform was 

composed of two microfluidic layers and one array. They were in order: a PDMS top piece 

(green), a PDMS microstrainer array (purple), and a PDMS bottom piece (green). (E) Top 

view of the assembled device. The numbers label the different access ports between the 

reservoirs and the compartments. (F) A photograph of the device with an exterior dimension 

of 30 × 30 × 10 mm.
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Fig. 3. 
Capture of crypts/colonoids on the microstrainer array and selective placement of Matrigel. 

(A) Cross-sectional view of the device as the compartment contents were sequentially 

loaded. i) Device. ii) Capture of crypts. iii) Placement of liquid Matrigel. iv) Aspiration of 

liquid Matrigel from luminal and basal compartments and solidification of the Matrigel 

remaining within the microstrainer wells. v) Addition of medium to the luminal and basal 

compartments. (B–E) Capture of crypts/colonoids on the array. (B) Brightfield image of 64 

capture sites filled with crypts. (C) Red fluorescence image of B. (D) A single crypt is 

shown captured in a microstrainer. (E) A single colonoid is captured in a microstrainer. (F) 

Confocal fluorescence image of Matrigel pockets formed in the microstrainer array. (G–H) 

Shown are nonconfocal fluorescence (G) and confocal fluorescence (H) images of a crypt 

encapsulated within a Matrigel pocket in the microstrainer. The panels display the merged 

red/green fluorescence images. The Matrigel was mixed with 100 μg/mL fluorescein-dextran 

in images F through G.
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Fig. 4. 
Culture of crypts/colonoids in PDMS microstrainers. A crypt (A) or colonoid (B) was 

loaded into a microstrainer on the array. By 72 h, a colonoid formed filling the 

microstrainer. The top panels are brightfield images of the same microstrainer site while the 

lower panels are overlaid red/green fluorescence images of the array site. (C) Widefield 

images (7 × 7 mm) of the tissue array composed of viable, 3D colonoids. The array 

possessed 900 microstrainers. The upper panel is a brightfield image, and the lower panel is 

an overlaid red/green fluorescence image. (D) Immunofluorescence staining. Cell 

composition in freshly isolated crypts (left panel) and colonoids formed in the microstrainers 

(right panel). Immunofluorescence images are shown for samples stained for: (i) Sox9 

(green, stem/progenitor cells), (ii) Muc2 (red, goblet cells), (iii) chromogranin A (red, 

enteroendocrine cells), and (iv) carbonic anhydrase II (red, enterocytes). Hoechst 33342 was 

used as a counter stain to mark the nuclei (blue) in all images. The lumen of crypts faces 

upward. White dashed circles in the bottom panel indicate the perimeter of the microstrainer 

well.
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Fig. 5. 
Response of colonoids to Wnt-3A (A, B) and γ-secretase inhibitor LY-411575 (C, D). (A) 

DsRed fluorescence intensity normalized to the first time-point vs. time for 55 colonoids in 

the presence of Wnt-3A, and 47 colonoids in the absence of Wnt-3A. (B) Average 

fluorescence intensity vs. time for the colonoids. (C) Scatter plot showing EGFP and 

Hoechst 33342 fluorescence levels of individual colonoids after a 48-h exposure to 1 μM 

(blue) and 0 μM (red) LY-411575. (D) Fluorescence intensity of colonoids. Student’s t test: 

* (P < 0.05), NS (not significant, P > 0.05). The whiskers in the plot show, respectively, the 

upper and lower inner fence value, defined as the 25th percentile minus and 75th percentile 

plus 1.5 times the interquartile range.
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