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Abstract

A systems biology approach was used to comprehensively examine the impact of renal disease 

and hemodialysis (HD) on patient response during critical illness. To achieve this we examined 

the metabolome, proteome, and transcriptome of 150 patients with critical illness, stratified by 

renal function. Quantification of plasma metabolites indicated greater change as renal function 

declined, with the greatest derangements in patients receiving chronic HD. Specifically, 6 uremic 

retention molecules, 17 other protein catabolites, 7 modified nucleosides, and 7 pentose phosphate 

sugars increased as renal function declined, consistent with decreased excretion or increased 

catabolism of amino acids and ribonucleotides. Similarly, the proteome showed increased levels of 

low-molecular weight proteins and acute phase reactants. The transcriptome revealed a broad-

based decrease in mRNA levels among patients on HD. Systems integration revealed an 

unrecognized association between plasma RNASE1 and several RNA catabolites and modified 

nucleosides. Further, allantoin, N1-methyl-4-pyridone-3-carboxamide, and n-acetylaspartate were 

inversely correlated with the majority of significantly down-regulated genes. Thus, renal function 

broadly affected the plasma metabolome, proteome, and peripheral blood transcriptome during 

critical illness; changes not effectively mitigated by hemodialysis. These studies allude to several 

novel mechanisms whereby renal dysfunction contributes to critical illness.
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acute kidney injury; chronic kidney disease; gene expression; hemodialysis; sepsis

Introduction

Sepsis, defined as the Systemic Inflammatory Response Syndrome (SIRS) due to infection, 

is a major cause and consequence of acute and chronic kidney disease.1, 2 Hemodialysis 

(HD) can be used to mitigate renal failure although it is not a perfect substitute. Some 
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metabolites and low-molecular weight proteins accumulate despite HD.1, 3 These analytes 

have not been comprehensively characterized and so their relationships to renal dysfunction, 

morbidity, and death are not fully known.

Recent methodological improvements in metabolome, proteome and transcriptome profiling 

have enabled comprehensive characterization of molecular perturbations in disease. 

Integrating ‘omic data can generate novel hypotheses of disease pathophysiology. Moreover, 

integrative metabolomic, proteomic and transcriptomic analyses can internally validate 

molecular findings.4 When combined with qualitative clinical phenotypes, integrative ‘omic 

studies can improve diagnostic, prognostic, and therapeutic strategies.4-9 However, in order 

to avoid false discoveries, these technologies must be applied to well-defined clinical 

populations with deep and accurate phenotype data with variance decomposition to control 

for unsuspected sources of variability.4, 6, 8, 10, 11

We utilized such an approach to analyze the Community Acquired Pneumonia and Sepsis 

Outcome Diagnostic (CAPSOD) study. This observational study was designed to 

comprehensively identify blood metabolites, proteins, and transcriptional changes 

differentiating early community-acquired sepsis from non-infectious SIRS and to 

differentiate 28-day survivors from non-survivors at the time of initial presentation.4 

Interestingly, CAPSOD study analysis identified renal function as a major determinant of 

acute host response to sepsis and SIRS in survivors and non-survivors. We have therefore 

more fully investigated the associations of the peripheral blood metabolome, proteome, and 

transcriptome with renal function in patients at the time they present to the Emergency 

Department with sepsis or other SIRS-associated illnesses. The results presented herein 

provide a complete observational analysis of host response to critical illness in those 

developing acute kidney injury (AKI) or who were on chronic HD.

Results

Patient demographics and Clinical Characteristics

A previously analyzed 150-subject cohort from the CAPSOD study (Figure 1) identified 

renal dysfunction as the greatest contributor to variance in the plasma metabolome 

(explaining 44% of total variance).4 We therefore stratified these 150 subjects by renal 

functional category in order to explore renal-dependent systems biology. The Acute Kidney 

Injury Network (AKIN) criteria were used to classify renal dysfunction in those subjects 

who were not receiving chronic hemodialysis.12 The four categories were AKI0 (no 

significant increase in serum creatinine; n=65), AKI1 (serum creatinine increase of ≥ 0.3 

mg/dl, or 150% to 200% above baseline; n=41), AKI2/3 (serum creatinine increase of more 

than 200% above baseline, or ≥ 4.0 mg/dl with an acute increase of at least 0.5mg/dl; n=20), 

and chronic hemodialysis (HD; n=24) (Table 1). AKIN Stage 2 and 3 were combined for 

this analysis due to small subject number. All HD patients were on dialysis prior to study 

enrollment. Acute Physiology and Chronic Health Evaluation II (APACHE II) scores, a 

measure of acute illness correlating with mortality, were highest in AKI2/3 (mean 22.8 ± 

8.3) and lowest in AKI0 (mean 13.8 ± 7.5). Mean age was similar across AKI categories, 

ranging from 51.6 to 67.4 years. The majority of subjects in each group were black (range 

55-92%). For those with sepsis, the frequency of infectious agents was similar among the 
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four renal function groups with the exception of S. aureus infections, which were higher in 

the HD group. Mortality was highest among patients with AKI2/3 (40%) and lowest among 

patients receiving chronic HD (12.5%).

Plasma metabolomic perturbations in kidney dysfunction and HD

Mass spectrometry (MS) was used to measure the levels of 370 plasma metabolites in 150 

CAPSOD subjects with SIRS.4 Two hundred and forty-one of these metabolites were 

annotated. Clinical assays of serum creatinine, capillary lactate and serum glucose correlated 

well with log-transformed, normalized plasma MS values4, indicating that the MS assays 

were semiquantitative. Unsupervised principal components analysis (PCA) by Pearson's 

moment-correlation demonstrated primary segregation by renal function category (Figure 

1B). Therefore, a global assessment of the plasma metabolome associated with renal 

function was undertaken. The group without evidence of AKI (AKI0) was defined as the 

reference group. Fifty-eight percent of metabolites were significantly different (−log10 p ≥ 

2.0) in at least one comparison with the reference group [ANOVA with 1% false discovery 

rate (FDR) correction].13, 14 Most of these differences reflected elevated plasma metabolite 

levels in subjects with acutely impaired renal function (Figure 1C, Table S1). Furthermore, 

the pattern of change across groups appeared to be additive, with greater deviations in 

metabolite concentrations and number of affected metabolites in those with deteriorating 

renal function. In particular, although HD is designed to remove toxic metabolites, the vast 

majority of metabolites were elevated in patients with impaired renal function, and remained 

significantly increased in the chronic HD group (151 of 183 significantly different 

metabolites were increased compared to AKI0; Table S1). These results showed the 

profound influence of renal function on the plasma metabolome in patients with acute SIRS-

associated illness, with the most pronounced effect in those who were receiving chronic 

hemodialysis.

We sought to characterize renal function-dependent changes in biochemical pathways 

among subjects with SIRS. The metabolome can be conceptually divided into four major 

biochemical categories: protein, carbohydrate, nucleic acid and fatty acid metabolism. As 

expected, significant increases in metabolites involved in protein catabolism and the urea 

cycle were observed in the groups with impaired renal function. Nine primary amino acids 

differed significantly between the AKI groups, and all but cysteine and lysine were 

decreased in HD patients (Table S1). The decrease in primary amino acids may have 

reflected increased protein catabolism which has been noted in both renal failure and 

sepsis.1, 15 Among patients receiving HD, the decrease may also be due to dialysis itself. In 

contrast, 33 of 39 (85%) significantly different amino acid derivatives (primarily catabolites) 

were elevated in AKI2/3 and HD patients. Urea, the principal product of protein catabolism, 

causes acute systemic toxicity if not cleared. Plasma urea concentrations were elevated 1.9-, 

2.3-, and 3.5-fold in the AKI1, AKI2/3, and HD groups, respectively (when compared to the 

AKI0 group). There were also stepwise increases in the concentrations of six other known 

uremic retention substances with decreasing renal function. For example, there was a 19.5-

fold increase in phenylacetylglutamine and a 12-fold increase in 4-acetamidobutanoate in 

the HD group versus the AKI0 group. Phenylacetylglutamine is involved in an alternative 

nitrogen elimination pathway16, whereas 4-acetamidobutanoate is a precursor of the urea 
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cycle component ornithine. The uremic retention biochemicals P-cresol sulfate, 3-indoxyl 

sulfate, 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF), and N1-methyl-4-

pyrridone-3-carboxamide (4PY) also showed stepwise increases in concentrations as renal 

function declined.17 An additional 17 protein catabolites showed the same association with 

renal function. The increase in amino acid derivatives may be the result of increased 

utilization of proteins and amino acids as energy substrates, or the kidney's inability to 

eliminate nitrogenous waste products during renal failure, or both.

The effect of renal function on the levels of intermediates involved in energy metabolism 

was assessed. The concentrations of most common sugars were unchanged with respect to 

renal function. Notable exceptions included increased levels of sucrose and maltose. 

Notably, 17 nucleic acid catabolites (glucuronate, arabitol, threitol, gluconate, arabinose, 

xylose, xylonate, D-arabonic acid, erythronate, hypoxanthine, 1-methyladenosine, N2, N2-

dimethylguanosine, N-6-carbamoylthreonyladenosine, urate, allantoin, pseudouridine, and 

phosphate) showed stepwise increases in plasma concentrations with decreasing renal 

function. These are discussed further below.

Measures of fatty acid oxidation, such as ketone bodies (3-hydroxybutyrate and 

acetoacetate) and free fatty acids, showed very little change with renal function, suggesting 

there to be no significant dysfunction in glycolysis or excess β-oxidation in relation to 

impaired renal function in patients with SIRS. However, there were marked increases in the 

metabolically inert sugar mannitol in patients with impaired renal function. Mannitol has 

well-known associations with elevated osmotic pressure and renal injury.18, 19 Mannitol 

levels were 2.8-fold higher in AKI2/3 and 11-fold higher in HD compared to AKI0. These 

increases were not due to exogenous administration of mannitol, and therefore appear to 

represent endogenous production.

Plasma proteomic perturbations in kidney dysfunction and HD

Although plasma protein homeostasis is largely regulated by the liver and other extra-renal 

organs and tissues, the normal kidney plays a prominent role in low molecular weight 

protein (LMWP) excretion and reabsorption.1 The plasma proteome in different renal 

function categories was therefore investigated. One-hundred-sixty-four proteins were 

identified, defined by the detection of two or more unique peptide sequences at <10% false-

discovery rate.4 Of these, 46 (28%) showed significant differences between patients in 

different renal function categories (ANOVA with 5% FDR, Table S2). The majority (34/46; 

74%) were increased in AKI2/3 and HD as compared to AKI0 (Figure 2 and Table S2). The 

changes were primarily in the complement cascade, the kallikrein-kinin pathway, acute 

phase reactants, and the majority of LMWPs (Table S2). Among the affected LMWPs, some 

have previously been implicated in renal failure such as β-2 microglobulin (B2M), cystatin 

C (CST3), and lipocalin 2 (LCN2).3, 20

Blood transcriptome perturbations in kidney dysfunction and HD

The role of renal function on the blood transcriptome in patients with SIRS was investigated 

by mRNA sequencing and digital gene expression in 133 of the 150 subjects. Samples from 

17 subjects were of insufficient quality for inclusion. Transcripts of 1,997 genes were 
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differentially expressed across all groups (ANOVA with 1% FDR, Figure 3 and Table S3). 

Most of these (1,950 of 1,997 genes) differed between the HD and AKI0 groups. Moreover, 

98.5% were decreased in HD. We observed similar total white blood cell counts (WBC) and 

differential WBC counts in the four AKI/HD categories, with the exception of AKI2/3 

compared to AKI0, where both total WBC and neutrophil percent were significantly higher 

after Bonferroni correction (p-value = 0.0012 and 0.0164, respectively) (Table S4). This 

difference did not, however, account for most of the alterations in transcript abundance since 

only 96 genes had differential expression in AKI2/3 as compared to AKI0. Eighty (83.3%) 

were increased and 16 were decreased in the AKI2/3 group (Figure 3). Ingenuity Pathway 

Analysis of the 1,997 differentially expressed genes across AKI/HD groups showed 

enrichment for 55 canonical pathways (-log10 p-value ≥ 1.40; Figure 3B; Table S5). These 

featured dermatan sulfate biosynthesis, p38 MAPK signaling, chrondroitin sulfate 

biosynthesis, heparin sulfate biosynthesis, and fatty acid oxidation.

Integrative analysis of metabolome, proteome, and transcriptome

Integration of multiple, orthogonal ‘omic datasets has the potential to unveil and internally 

validate biological pathways of particular importance to a disease state that may go 

unrecognized in single datasets. We previously reported an integrated analysis of the 

proteome and metabolome in these patients.4 That analysis was notable for the significant 

positive correlations between plasma ribonuclease A family 1 (RNASE1) protein 

concentration and multiple RNA catabolites (seven pentose phosphate sugar metabolites and 

7 modified nucleosides). RNASE1 is secreted into plasma by vascular endothelial cells and 

is maintained at a concentration of 300–400 μg/L.21 It is stored in the Weibel-Palade-bodies 

of endothelial cells, and is released upon stimulation with prothrombotic or proinflammatory 

agents like thrombin and vascular endothelial growth factor. Plasma RNASE1 acts to 

hydrolyze both extracellular single stranded and double stranded RNA released as a result of 

cell damage or associated with viral infection. When stratified by renal dysfunction, the 

strongest association between RNASE1 and these RNA catabolites was in patients with 

AKI2/3 and HD. Specifically, the levels of RNASE1 protein, sugar metabolites 

(glucuronate, arabitol, threitol, gluconate, arabinose, xylose, and xylonate), and modified 

nucleosides (hypoxanthine, 1-methyladenosine, N2, N2-dimethylguanosine, N-6-

carbamoylthreonyladenosine, urate, allantoin, and pseudouridine) were significantly higher 

in patients with AKI2/3 or HD than in AKI0 controls (Table S1 and S2). This presumably 

reflects decreased renal clearance or increased production of RNASE1 as a consequence of 

SIRS, exacerbated by AKI.

An integrated analysis of the metabolome and transcriptome was also performed to define 

additional pathways and associations affected by renal function. We performed cross-

correlation analysis of the 1,997 significantly different transcripts with the values of 215 

significantly different metabolites in 133 matched patient samples. We found that 8,477 

correlations were significant (−log10 p-value ≥ 4.4) and further assessed them for 

biologically plausible gene expression-metabolite interactions (Table S6). Eighty percent 

(6749/8477) of the significant correlations were accounted for by just 11 metabolites (Table 

2).
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Four metabolites, allantoin, N1-methyl-4-pyrridone-3-carboxamide (4PY), n-acetylaspartate 

(NAA), and the GC/MS unidentified metabolite X-04498 accounted for the greatest number 

of significant gene expression-metabolite correlations (1,058, 949, 916, and 906, 

respectively). Allantoin is an end-stage degradation product of purine catabolism produced 

via peroxidation of uric acid and protein degradation.22 4PY, a degradation product of 

nicotinamide-adenine dinucleotide (NAD), is a uremic retention molecule that can inhibit 

poly (ADP-ribose) polymerase (PARP-1) activity.23, 24 NAA is the second most abundant 

metabolite found in neuronal tissue and is thought to function as a neurotransmitter as well 

as a reservoir for acetyl-CoA and acetate.25 Reduced levels of NAA in the brain are seen in 

brain injury and have been linked to uremic encephalopathy.26 X-04498 is a metabolite 

identified by GC/MS whose spectral signature has been recurrently observed in human 

plasma and serum but whose structural information is unknown.

Ingenuity Pathway Analysis for the gene expression changes associated with allantoin 

(1,058 transcripts), 4PY (949 transcripts) and NAA (916 transcripts) was performed. 

Allantoin was associated with 68 enriched canonical pathways (-log10 p-value ≥ 1.40; 

Figure 3C; Table S7) related to p38 MAPK signaling, P2Y purigenic receptor signaling, and 

inflammation. Expression of RNA, autophagy, and n-glycosylation of protein were the top 

disease and function categories (-log10 p-value = 3.5×1010, 2.4 ×105, 7.7×105, respectively; 

Table S8). For 4PY, 47 canonical pathways were significantly enriched (-log10 p-value ≥ 

1.40; Figure 3D; Table S9). Most of the pathways related to inflammatory signaling, 

hypoxia, and p38 MAPK signaling. The disease and function pathways enriched among 

4PY-associated gene expression differences were similar to those observed for allantoin 

Table S10). Likewise, NAA-associated gene expression differences demonstrated similar 

changes to the canonical (Figure 3E; Table S11) and disease and function pathways (Table 

S12) observed with allantoin and 4PY.

Discussion

Renal dysfunction is associated with high morbidity, mortality, and healthcare costs.1, 2 

Numerous studies have described metabolic, protein, or gene transcription changes in renal 

disease although, to our knowledge, this is the first comprehensive and integrated ‘omic 

analysis performed concomitantly in a single cohort of patients.

In patients with AKI, many derangements in the alternative nitrogen processing pathways 

and urea metabolism were noted that provide a comprehensive picture of the molecular 

biology attendant to renal dysfunction during critical illness. In these patients, plasma levels 

of seven primary amino acids were decreased, whereas those of 33 amino-acid catabolites 

were increased. Two of the latter were related to alternative nitrogen processing pathways, 

including phenylacetylglutamine, which was elevated 19.5-fold16; and 4-

acetamidobutanoate, which was elevated 12-fold. Four urea retention molecules (P-cresol 

sulfate, 3-indoxyl sulfate, CMPF, and 4PY) were also increased.17 Interestingly, most of the 

amino-acid catabolites were also elevated in the HD group. Thus, both the urea cycle and 

alternative nitrogen-waste pathways appear to be perturbed in AKI during SIRS-associated 

illness. Moreover, HD fails to correct these perturbations. This observation may be clinically 

significant since amino-acid derivatives and protein degradation products have been 
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implicated in the generation of uremic symptoms and can be ameliorated by low-protein 

diets.1 Additional studies are warranted to explore the utility of amino acid catabolites as 

markers of hemodialysis efficacy and subsequent optimization during acute concurrent 

illness.

Several of the amino-acid catabolites that differed in renal dysfunction have also been 

implicated in endothelial dysfunction. Of the 33 amino-acid derivatives that were increased 

in association with worsening renal function, two were phenyl compounds associated with 

endothelial dysfunction (phenylacetylglutamine and P-cresol sulfate).27-29 In sepsis, 

endothelial dysfunction promotes thrombus formation in the microvasculature, which 

contributes to the development of AKI.30 Similarly, endothelial impairment also occurs 

during CKD progression.31 Phenylacetylglutamine and P-cresol sulfate elevations have been 

identified in several different animal models of chronic renal dysfunction. These substances 

are toxic to endothelial cells and have been associated with increased risk of cardiac 

complications in the setting of renal dysfunction.27-29 Although increased levels of these 

metabolites are thought to be the result of worsening renal function, recent studies suggest 

they increase early in disease and may instead increase the risk of renal disease 

progression.32 Thus they may serve both as novel biomarkers for early renal dysfunction 

during acute illness and therapeutic targets in the prevention of renal disease progression.

Overproduction of reactive oxygen species (ROS) is an established mediator of renal 

damage both in sepsis30 and several types of CKD, mediated by endothelial injury as well as 

glomerular and tubular cell damage.33, 34 Several urea retention compounds and alternative 

nitrogen pathway metabolites (including 3-indoxyl sulfate, CMPF, and P-cresol) were 

increased in patients with renal dysfunction and have been shown to increase ROS 

production.35-37 For example, 3-indoxyl sulfate is an antioxidant at physiologic levels, but at 

high concentrations, it enhances intercellular ROS production in endothelial cells.38 The 

generation of ROS appears to promote acute vascular damage through inflammation, and 

proliferation of smooth muscle cells.39 Thus, 3-indoxyl sulfate and related compounds may 

mediate some of the vascular injury and increased cardiovascular morbidity and mortality 

associated with renal disease. They represent potential therapeutic targets to improve 

survival in patients with sepsis-associated renal dysfunction.

Endothelial dysfunction is not the sole cause of renal disease progression. Progressive 

tubular dysfunction and injury is a hallmark of many types of AKI including sepsis-

associated AKI40 and also plays an important role in worsening CKD.33, 34 Mannitol, which 

was significantly increased in AKI2/3 (2.8-fold) and HD groups (11.8-fold), has been 

implicated in tubular toxicity. In renal ischemia, mannitol can improve renal blood flow.41 

However, ischemia does not contribute significantly to sepsis-mediated AKI. Moreover, 

mannitol leads to tubular injury at high osmotic pressure.18, 19, 42-44 Mannitol regulates renal 

transcription indirectly via changes in osmolality that affect the osmosensitive transcription 

factor, nuclear factor of activated T cells 5 (NFAT5).45 Thus, mannitol elevation in AKI and 

HD may represent an allostatic response exacerbated by SIRS-associated illnesses, such as 

septic shock, and may indirectly contribute both to endothelial and tubular injury. The 

failure of HD to remove mannitol suggests that additional studies are warranted to explore 

its tubular toxicity, and its potential as a therapeutic target in AKI.
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To better understand the proteome during AKI in SIRS, we performed concomitant mass 

spectrometry of plasma proteins4 and categorized those changes based on degree of renal 

dysfunction. Twenty-eight percent of identified plasma proteins were significantly increased 

in patients with declining renal function. The changes were primarily noted in the 

complement cascade, the kallikrien-kinin pathway, acute phase reactants, and LMWPs. 

These pathways have all been consistently implicated in various studies of renal disease 

progression.46-49 These perturbations correlate with renal disease severity and align with 

published studies associating these proteins/pathways with renal dysfunction.1

Concomitant analysis of the blood transcriptome showed that nearly all of the 1,997 

differentially expressed genes were down-regulated in HD compared to AKI0. Although this 

broad-based decrease could be interpreted as a non-specific transcriptional repression, there 

were a number of biologically relevant pathways manifest within this broad decrease. These 

down-regulated genes were principally involved in p38 MAPK signaling, ERK, cell cycle 

regulation, immune function, and metabolism pathways1, 50, but not apoptosis.51 Rather, we 

hypothesize the circulating leukocyte population is unable to respond to pro-inflammatory 

signals despite the systemic inflammatory response. This is supported by studies 

demonstrating T-cell dysregulation in patients with ESRD.52, 53

Combinations of transcriptome, proteome and metabolome data may establish multi-

dimensional molecular models of complex diseases that can provide insights into network 

responses to perturbation.4 One notable example, particularly in the AKI0 and HD groups, 

focused on protein. This protein is stored in vascular endothelial cells and secreted upon 

stimulation with prothrombotic or proinflammatory agents like thrombin or vascular 

endothelial growth factor. Cross correlating plasma RNASE1 concentrations with the 

metabolome revealed strong associations with metabolites known to cause endothelial cell 

injury: phenylacetylglutamine, P-cresol sulfate, and mannitol.27-29 We speculate the 

accumulation of such metabolites leads to endothelial cell injury and a subsequent release of 

RNASE1 into the circulation. Moreover, RNASE1 mitigates vascular injury by hydrolyzing 

extracellular RNA (eRNA) released as a result of cell damage or in association with viral 

infection.54 For example, RNASE1 was cardioprotective in remote ischemic preconditioning 

by reducing the levels of eRNA and TNF-α in arterial blood.55 This relationship is also 

supported in our data whereby plasma RNASE1 levels are highly correlated with RNA 

degradation products. In summary, SIRS, particularly in patients on chronic HD, leads to 

increased concentrations of endothelial-toxic metabolites (Figure 4). This stimulates 

RNASE1 release, which degrades eRNA resulting in increased RNA degradation products 

and an overall compensatory decrease in inflammation. This decreased inflammation may in 

part be responsible for the decreased gene expression observed in chronic HD patients.

Although almost all differentially expressed genes were found to be down-regulated in the 

HD group compared to controls, standard pathway analyses failed to identify discrete 

potential mechanisms responsible for this down-regulation. An appealing hypothesis was, 

however, that the increased metabolites observed in declining renal function states could 

have either direct or indirect effects on leukocyte metabolic response. They could also be 

leukocyte-toxic leading to global transcriptional suppression. To test this hypothesis, we 

performed cross-correlation of the significant metabolites and transcripts which revealed 

Tsalik et al. Page 9

Kidney Int. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



moderate correlations (Pearson's product-moment correlation coefficient -0.35 to -0.53). 

Within these, a few metabolites accounted for a majority of the correlations. Specifically, 

allantoin, 4PY, and NAA correlated with the greatest number of significantly different 

transcripts. 4PY is an end-stage NAD degradation product and a uremic retention 

molecule.23, 24 4PY is also the substrate for 4-pyridone-3-carboximide-1-β-d-ribonucleoside 

triphosphate (4PYTP), a novel NAD nucleotide, which has been identified as a biomarker of 

NAD-induced lymphocyte toxicity in children with renal failure.56 Another possible 

inhibitory role of 4PY in PARP1 activity has been described.24 PARP1 regulates 

transcription through epigenetic histone modification and transcription factor 

regulation.57, 58 Accordingly, we hypothesize that 4PY inhibits PARP1 activity, resulting in 

decreased gene expression (Figure 4). Ingenuity Pathway Analysis of genes altered by 4PY 

predicted that a network composed of carbohydrate metabolism, cellular function and 

maintenance, and RNA post-transcriptional modification was a top affected network with 30 

of 35 genes within the network significantly downregulated in HD as compared to AKI0 

(Figure S1). Interestingly, PARP1 was also identified as a key transcriptional regulatory 

target within this network. While the hypothesis is speculative, it suggests interesting 

metabolite/gene interactions that may alter transcription within leukocytes during renal 

failure. Another metabolite highly associated with decreased gene expression was allantoin, 

a uric acid catabolite generated by free radicals.59 Allantoin elevation in ESRD and patients 

receiving HD has been reported.60 Although allantoin has no known transcriptional 

regulatory effects in humans, we observed a strong correlation with decreased gene 

expression in peripheral blood. Ingenuity Pathway Analysis of genes affected by allantoin 

suggested that P2Y Purigenic Receptor signaling was one of the top altered canonical 

pathways. Dysregulated purine catabolism could lead to decreased response to inflammatory 

signals and globally decreased transcription. This speculation is supported by the 

observation that uric acid, the precursor of allantoin, plays a role in the body's inflammatory 

response including T-cell stimulation.61, 62 We also noted a strong association between 

NAA and many of the downregulated genes. NAA has been previously identified as a 

marker of uremic encephalopathy.26 However, NAA's relationship to transcriptome 

dysregulation remains unclear. This analysis also revealed that gene expression differences 

between HD and AKI0 were not explained entirely by cross-correlation analysis, presenting 

an opportunity for future research into other underlying mechanisms.

There were several limitations of this study. The effects of renal function on the plasma 

metabolome, proteome, and blood transcriptome were limited to patients with sepsis and 

other acute SIRS-associated illnesses. A component of the host response to SIRS and sepsis 

is increased protein catabolism and nucleotide degradation. For example, muscle wasting of 

25% can occur in the first week of sepsis-related ICU care.15 Despite the relatively large and 

heterogeneous sample size, the patients included in this cohort are not necessarily 

representative of all patients with AKI, especially those without an acute concomitant illness 

leading to SIRS. It is also unclear how chronic kidney disease would affect a patient's 

systems biology. Therefore, the generalizability of our findings to renal function in other 

acute and chronic illnesses will require testing.

Another limitation was that phlebotomy was performed at the time patients presented at the 

Emergency Department with acute illness, and was not synchronized or normalized to the 
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time since most recent dialysis session in patients receiving HD. It is assumed the plasma 

metabolome, proteome, and blood transcriptome differ before and after HD. However, we 

did not observe significant variability within the HD population that would suggest a 

dominant effect of time-to-HD on plasma metabolite levels. Furthermore, phlebotomy 

occurred before any subjects were initiated on continuous veno-venous HD (CVVHD). 

Therefore, we cannot comment on the effects of this form of dialysis. Among patients 

receiving HD, it was only those who were chronically HD-dependent that were included in 

this study. Patients who developed a need for HD during their hospitalization were not 

included as a function of study design, since samples were only collected in the first 24 

hours of hospitalization. Therefore, we cannot extrapolate the impact of acute vs. chronic 

HD on these systems biology changes. Finally, as with any association study, we cannot 

assume causality. However, known biological pathways and published reports do inform 

likely mechanisms of interaction. Moreover, better understanding of the pathophysiology 

will help improve these interpretations and guide targeted experiments to interrogate 

implicated pathways.

This study has several notable strengths. It presents comprehensive metabolomic, proteomic, 

and transcriptomic profiles related to renal function in SIRS/sepsis patients. We utilized 

integrative ‘omics to identify potentially causal interactions for both metabolomic 

dysfunctions and renal toxicity. Furthermore, since renal function greatly influences 

outcomes in sepsis and trauma, understanding this complicated interaction may lead to better 

therapeutic management with protocols tailored to a dynamic fluid-phase blood 

environment. For example, the results presented herein identified key molecules and 

pathways associated with renal dysfunction, offering opportunities for targeted intervention. 

Viewed in the context of known pathobiology, these molecules and pathways offer likely 

explanations for the high morbidity and mortality in HD patients. Moreover, these same 

molecules and pathways should serve as diagnostic and therapeutic targets to improve upon 

HD-related health and longevity.

Methods

Subject Enrollment and Cohort Selection

The Community Acquired Pneumonia and Sepsis Outcome Diagnostics (CAPSOD) study11 

(ClinicalTrials.gov NCT00258869) was approved by the Institutional Review Boards of the 

National Center for Genome Resources (Santa Fe, NM), Duke University Medical Center 

(Durham, NC), Durham Veterans Affairs Medical Center (Durham, NC), and Henry Ford 

Health Systems (Detroit, MI). Demographic and clinical information for the 150-subject 

cohort were obtained as previously described.4, 11 Renal function categories were based on 

the Acute Kidney Injury Network system12: AKI0 (no significant increase in serum 

creatinine; n=64), AKI1 (serum creatinine increase of ≥ 0.3 mg/dl, or 150% to 200% from 

patient's baseline; n=42), AKI2/3 (serum creatinine increase of more than 200% from 

baseline, or ≥ 4.0 mg/dl with an acute increase of at least 0.5mg/dl; n=20), and hemodialysis 

(HD; n=24). As there were only two subjects meeting AKI2 criteria, they were included 

with AKI3 subjects to create the one category. When pre-enrollment baseline values were 
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unavailable, we used creatinine measurements obtained upon convalescence in order to 

calculate AKI stage.

Metabolome, Proteome, and Transcriptome Measurements

Metabolomic and proteomic analyses was performed previously4 and reanalyzed for 

changes dependent on renal function. Details regarding how the metabolome and proteome 

were measured are provided in an online data supplement.

The transcriptome was analyzed for renal function-dependent changes. Whole blood RNA 

was isolated using PaxGene Blood RNA kit (Qiagen) according to manufacturer's 

instructions. mRNA sequencing libraries were prepared from total RNA according to 

Illumina's mRNA-seq Sample Prep Protocol v2.0. Briefly, Random-primed cDNA was 

synthesized and fragments were 3′ adenylated. Illumina DNA oligonucleotide sequencing 

adapters were ligated and 350-500bp fragments were selected by gel electrophoresis. cDNA 

sequencing libraries were amplified by 18 cycles of PCR and quality was assessed with 

Bioanalyzer. cDNA libraries were stored at -20°C, and were sequenced on the 

IlluminaGAIIx instruments (54-cycle singleton reads) as previously described.63 Base calling 

used the Illumina Pipeline software v1.4, except for 14 samples which used v1.3. Results 

were aligned to the NCBI human nuclear genome reference build GRCh37/hg19 using 

GSNAP and Alpheus.64 Uniquely aligned reads were enumerated on a RefSeq gene-by-gene 

basis and expressed as aligned reads per million. Sparse gene expression (<50% of the 

patients have reported read counts) were removed leaving a total of 18,618 genes expressed 

within the cohort. Expression data has been deposited in Gene Expression Omnibus (to be 

provided prior to publication).

Statistical Analyses

Overlaid kernel density estimates, univariate distribution results, correlation coefficients of 

pair wise sample comparisons, unsupervised principal components analysis (by Pearson 

product-moment correlation) and Ward hierarchal clustering of Pearson product-moment 

correlations were performed using log2+1 transformed data as described10 with JMP 

Genomics 5.0 (SAS Institute Inc., Cary, NC, USA). Four renal function categories were 

used for analysis: AKI0, AKI1, AKI2/3, and HD. AKI0 defined the reference standard for 

ANOVA, assuming a 1-5% FDR correction, as noted.13, 14 Normalized data was visualized 

(cell plots) with Java Treeview.65 Continuous variables are presented as mean ± standard 

deviation unless otherwise noted. Metabolite-by-transcript interactions were identified using 

global cross correlation analysis.4

Ingenuity Pathway Analysis (Ingenuity Systems, Inc., Redwood, CA) was performed per 

manufacturer's instructions on the 1,997 significantly different genes identified, as well as 

genes significantly associated with allantoin, 4PY, and NAA. Canonical pathways as well as 

Disease and Function pathways with −log10 p ≥ 1.4 were considered significantly enriched.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
a) CONSORT diagram for the analyzed cohort. b) PCA with Pearson's product-moment 

correlation. AKI0 (Red, n = 65); AKI1 (Green, n = 41); AKI2/3 (Blue, n = 20); HD (gold, n 

= 24). c) Cell plot of representative significant metabolomic changes.
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Figure 2. Significant Differences in the Proteome
Cell plot for significant proteomic changes due to decreasing renal function. ANOVA with 

5% FDR.
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Figure 3. Significant transcriptomic differences
Heatmap with Pearson's moment-correlations for significantly different gene expression due 

to decreasing renal function (ANOVAs with 5% FDR correction). 1,997 genes were 

significantly different from the reference group, AKI0. IPA for top 10 canonical pathways 

affected by AKI/HD for b) 1,997 significantly different transcripts, c) 1,058 genes correlated 

with allantoin, d) 949 genes correlated with 4PY and e) 916 genes correlated with NAA.
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Figure 4. Integrative model of declining renal function
In patients with ESRD receiving HD, we hypothesized phenyacetylglutamine, p-cresol 

sulfate, and ROS may increase vascular endothelial injury and subsequent release of 

RNASE1, which then degreades eRNA. Purines are degraded into uric acid. Since humans 

lack functional uricase, a free-radical, non-enzymatic oxidation converts uric acid to 

allantoin. Increased 4PY, a degradation product of NAD, inhibits PARP1, which along with 

allantoin may decrease leukocyte gene transcription. These interactions between 4PY, 

allantoin, renal function, and gene expression are hypothetical.
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Table 1
Patient Demographics

Acute Kidney Injury Stage Stage 0 Stage 1 Stage 2/3 HD

n 65 41 20 24

APACHEII 13.8 ± 7.5 18.5 ± 7.9 22.8 ± 8.3 17.7 ± 5.0

S. aureus 20.0% 9.8% 10.0% 33.3%

S. pneumoniae 21.5% 19.5% 35.0% 8.3%

E. coli 12.3% 14.6% 5.0% 4.2%

Other Etiologic Agent1 12.3% 22.0% 20.0% 33.3%

Unidentified Etiologic Agent 10.8% 12.2% 25.0% 4.2%

No Infection 23.1% 22.0% 5.0% 16.7%

Death 20.0% 29.3% 40.0% 12.5%

Age 59.6 ± 17.7 64.9 ± 16.6 67.4 ± 18.6 51.6 ± 12.1

Gender (male) 50.8% 61.0% 45.0% 62.5%

Race (B/W/O) 40/23/2 27/11/3 11/6/3 22/2/0

Liver disease 6.2% 7.3% 20.0% 4.2%

Heart failure 6.2% 9.8% 15.0% 4.2%

Chronic lung disease 30.8% 29.3% 30.0% 20.8%

Malignancy 13.8% 19.5% 5.0% 8.3%

1
Includes all identified etiologic agents other than S. aureus, S. pneumoniae, or E. coli

Data presented as mean ± standard deviation

Black, white, other (B, W, O)
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Table 2
Metabolites associated with the greatest number of significantly different transcripts

Metabolites # of Correlated Genes

Fraction of Total Significant 
Correlations (5637 total 

correlations)

Fraction of Significant 
Associations (1700 total 

genes)

X-04498 751 0.133 0.442

N1-methyl-4-pyridone-3-carboxamide (4PY) 742 0.132 0.436

allantoin 616 0.109 0.362

n-acetylaspartate 400 0.071 0.235

homocitrulline 351 0.062 0.206

tryptophan 213 0.038 0.125

3-methylhistidine 205 0.036 0.121

X-12556 172 0.031 0.101

pseudouridine 139 0.025 0.082

urea 131 0.023 0.077

n-acetylalanine 114 0.020 0.067

X-12688 114 0.020 0.067

1-5-anhydroglucatol 113 0.020 0.066

2-hydroxyglutarate 98 0.017 0.058

X-13553 76 0.013 0.045

indolelactate 64 0.011 0.038

caproate 61 0.011 0.036

kynurenine 61 0.011 0.036

methylcysteine 50 0.008 0.029

arabitol 42 0.007 0.025
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